Structure and
Interpretation
of Computer
Programs

Second Edition

Harold Abelson and
Gerald Jay Sussman
with Julie Sussman

[Gotofirst, previous, next page; contents;, index|

[Gotofirdt, previous, next page; contents;

index]

Structure and Interpretation
of Computer Programs

second edition

Harold Abelson and Gerald Jay Sussman
with Julie Sussman

foreword by Alan J. Perlis

The MIT Press

Cambridge, Massachusetts London, England

McGraw-Hill Book Company

New York St. Louis SanFrancisco Montreal

Toronto

[Gotofirgt, previous, next page; contents,

index]

[Gotofirdt, previous, next page; contents; index|

This book is one of a series of texts written by faculty of the Electrical Engineering and Computer
Science Department at the Massachusetts Institute of Technology. It was edited and produced by The
MIT Press under ajoint production-distribution arrangement with the McGraw-Hill Book Company.

Ordering I nformation:

North America
Text orders should be addressed to the McGraw-Hill Book Company.
All other orders should be addressed to The MIT Press.

Outside North America
All orders should be addressed to The MIT Press or itslocal distributor.

© 1996 by The Massachusetts Institute of Technology
Second edition

All rights reserved. No part of this book may be reproduced in any form or by any electronic or
mechanica means (including photocopying, recording, or information storage and retrieval) without
permission in writing from the publisher.

This book was set by the authors using the LATEX typesetting system and was printed and bound in the
United States of America.

Library of Congress Cataloging-in-Publication Data

Abelson, Harold
Structure and interpretation of computer programs/ Harold Abelson
and Gerald Jay Sussman, with Julie Sussman. -- 2nd ed.
p. cm. -- (Electrical engineering and computer science
series)
Includes bibliographical references and index.
ISBN 0-262-01153-0 (MIT Press hardcover)
ISBN 0-262-51087-1 (MIT Press paperback)
ISBN 0-07-000484-6 (McGraw-Hill hardcover)
1. Electronic digital computers -- Programming. 2. LI1SP (Computer
program language) |. Sussman, Gerald Jay. 1. Sussman, Julie.
[11. Title. IV. Series: MIT electrical engineering and computer
science series.
QA76.6.A255 1996
005.13'3 -- dc20 96-17756

Fourth printing, 1999

[Gotofirst, previous, next page;, contents; index|

[Gotofirdt, previous, next page; contents; index|

This book is dedicated, in respect and admiration, to the spirit that lives in the computer.

1 think that it's extraordinarily important that we in computer science keep fun in computing. When it
started out, it was an awful lot of fun. Of course, the paying customers got shafted every now and then,
and after awhile we began to take their complaints seriously. We began to feel asif wereally were
responsible for the successful, error-free perfect use of these machines. | don't think we are. | think we're
responsible for stretching them, setting them off in new directions, and keeping fun in the house. | hope
the field of computer science never losesits sense of fun. Above all, I hope we don't become missionaries.
Don't feel asif you're Bible salesmen. The world has too many of those already. What you know about
computing other people will learn. Don't feel asif the key to successful computing isonly in your hands.
What's in your hands, | think and hope, isintelligence: the ability to see the machine as more than when
you were first led up to it, that you can make it more."

Alan J. Perlis (April 1, 1922-February 7, 1990)

[Gotofirdt, previous, next page; contents; index|

[Gotofirdt, previous, next page; contents; index]

Contents

Foreword

Pr eface to the Second Edition

Prefaceto the First Edition

Acknowledgments

1 Building Abstractions with Procedures

1.1 The Elements of Programming
1.1.1 Expressions
1.1.2 Naming and the Environment
1.1.3 Evauating Combinations
1.1.4 Compound Procedures
1.1.5 The Substitution Model for Procedure Application
1.1.6 Conditional Expressions and Predicates
1.1.7 Example: Square Roots by Newton's Method
1.1.8 Procedures as Black-Box Abstractions

1.2 Procedures and the Processes They Generate
1.2.1 Linear Recursion and Iteration
1.2.2 Tree Recursion
1.2.3 Orders of Growth
1.2.4 Exponentiation
1.2.5 Greatest Common Divisors
1.2.6 Example: Testing for Primality

1.3 Formulating Abstractions with Higher-Order Procedures
1.3.1 Procedures as Arguments
1.3.2 Constructing Procedures Using Lanbda

1.3.3 Procedures as General Methods
1.3.4 Procedures as Returned Values

2 Building Abstractionswith Data
2.1 Introduction to Data Abstraction
2.1.1 Example: Arithmetic Operations for Rational Numbers

2.1.2 Abstraction Barriers

2.1.3 What Is Meant by Data?

2.1.4 Extended Exercise: Interval Arithmetic
2.2 Hierarchical Data and the Closure Property

2.2.1 Representing Sequences

2.2.2 Hierarchical Structures

2.2.3 Seguences as Conventional Interfaces

2.2.4 Example: A Picture Language
2.3 Symbolic Data

2.3.1 Quotation

2.3.2 Example: Symbolic Differentiation

2.3.3 Example: Representing Sets

2.3.4 Example: Huffman Encoding Trees
2.4 Multiple Representations for Abstract Data

2.4.1 Representations for Complex Numbers

2.4.2 Tagged data

2.4.3 Data-Directed Programming and Additivity
2.5 Systemswith Generic Operations

2.5.1 Generic Arithmetic Operations

2.5.2 Combining Data of Different Types

2.5.3 Example: Symbolic Algebra

3 Modularity, Objects, and State
3.1 Assignment and Local State
3.1.1 Loca State Variables
3.1.2 The Benefits of Introducing Assignment
3.1.3 The Costs of Introducing Assignment
3.2 The Environment Model of Evaluation
3.2.1 TheRulesfor Evaluation
3.2.2 Applying Simple Procedures
3.2.3 Frames as the Repository of Local State
3.2.4 Internal Definitions
3.3 Modeling with Mutable Data
3.3.1 Mutable List Structure
3.3.2 Representing Queues
3.3.3 Representing Tables
3.3.4 A Simulator for Digital Circuits
3.3.5 Propagation of Constraints
3.4 Concurrency: Time |s of the Essence
3.4.1 The Nature of Time in Concurrent Systems
3.4.2 Mechanisms for Controlling Concurrency
3.5 Streams
3.5.1 StreamsAre Delayed Lists

3.5.2 Infinite Streams

3.5.3 Exploiting the Stream Paradigm

3.5.4 Streams and Delayed Evaluation

3.5.5 Modularity of Functional Programs and Modularity of Objects

4 Metalingquistic Abstraction
4.1 The Metacircular Evaluator
4.1.1 The Core of the Evaluator
4.1.2 Representing Expressions
4.1.3 Evauator Data Structures
4.1.4 Running the Evaluator as a Program
4.1.5 Dataas Programs
4.1.6 Internal Definitions
4.1.7 Separating Syntactic Analysis from Execution
4.2 Variations on a Scheme -- Lazy Evaluation
4.2.1 Normal Order and Applicative Order
4.2.2 An Interpreter with Lazy Evaluation
4.2.3 Streamsas Lazy Lists
4.3 Variations on a Scheme -- Nondeterministic Computing
4.3.1 Amb and Search
4.3.2 Examples of Nondeterministic Programs
4.3.3 Implementing the Anb Evaluator
4.4 Logic Programming
4.4.1 Deductive Information Retrieval
4.4.2 How the Query System Works
4.4.3 s Logic Programming Mathematical Logic?
4.4.4 1mplementing the Query System

5 Computing with Register Machines

5.1 Designing Register Machines
5.1.1 A Language for Describing Register Machines
5.1.2 Abstraction in Machine Design
5.1.3 Subroutines
5.1.4 Using a Stack to Implement Recursion
5.1.5 Instruction Summary

5.2 A Register-Machine Simulator
5.2.1 The Machine Model
5.2.2 The Assembler
5.2.3 Generating Execution Procedures for Instructions
5.2.4 Monitoring Machine Performance

5.3 Storage Allocation and Garbage Collection
5.3.1 Memory as Vectors
5.3.2 Maintaining the lllusion of Infinite Memory

5.4 The Explicit-Control Evaluator
5.4.1 The Core of the Explicit-Control Evaluator
5.4.2 Sequence Evaluation and Tail Recursion
5.4.3 Conditionals, Assignments, and Definitions
5.4.4 Running the Evaluator
5.5 Compilation
5.5.1 Structure of the Compiler
5.5.2 Compiling Expressions
5.5.3 Compiling Combinations
5.5.4 Combining Instruction Sequences
5.5.5 An Example of Compiled Code
5.5.6 Lexical Addressing
5.5.7 Interfacing Compiled Code to the Evaluator

References

List of Exercises

| ndex

[Gotofirdt, previous, next page; contents; index]

[Gotofirdt, previous, next page; contents; index|

Foreword

Educators, generals, dieticians, psychologists, and parents program. Armies, students, and some societies
are programmed. An assault on large problems employs a succession of programs, most of which spring
into existence en route. These programs are rife with issues that appear to be particular to the problem at
hand. To appreciate programming as an intellectual activity in its own right you must turn to computer
programming; you must read and write computer programs -- many of them. It doesn't matter much what
the programs are about or what applications they serve. What does matter is how well they perform and
how smoothly they fit with other programs in the creation of still greater programs. The programmer must
seek both perfection of part and adequacy of collection. In this book the use of ~program” is focused on
the creation, execution, and study of programs written in adialect of Lisp for execution on adigital
computer. Using Lisp we restrict or l[imit not what we may program, but only the notation for our program
descriptions.

Our traffic with the subject matter of this book involves us with three foci of phenomena: the human mind,
collections of computer programs, and the computer. Every computer program isamodel, hatched in the
mind, of area or mental process. These processes, arising from human experience and thought, are huge
in number, intricate in detail, and at any time only partially understood. They are modeled to our
permanent satisfaction rarely by our computer programs. Thus even though our programs are carefully
handcrafted discrete collections of symbols, mosaics of interlocking functions, they continually evolve: we
change them as our perception of the model deepens, enlarges, generalizes until the model ultimately
attains a metastabl e place within still another model with which we struggle. The source of the
exhilaration associated with computer programming is the continual unfolding within the mind and on the
computer of mechanisms expressed as programs and the explosion of perception they generate. If art
interprets our dreams, the computer executes them in the guise of programs!

For all its power, the computer is a harsh taskmaster. Its programs must be correct, and what we wish to
say must be said accurately in every detail. Asin every other symbolic activity, we become convinced of
program truth through argument. Lisp itself can be assigned a semantics (another model, by the way), and
if aprogram's function can be specified, say, in the predicate calculus, the proof methods of logic can be
used to make an acceptable correctness argument. Unfortunately, as programs get large and complicated,
as they almost always do, the adequacy, consistency, and correctness of the specifications themselves
become open to doubt, so that complete formal arguments of correctness seldom accompany large
programs. Since large programs grow from small ones, it is crucia that we develop an arsenal of standard
program structures of whose correctness we have become sure -- we call them idioms -- and learn to
combine them into larger structures using organizational techniques of proven value. These techniques are
treated at length in this book, and understanding them is essential to participation in the Promethean
enterprise called programming. More than anything else, the uncovering and mastery of powerful
organizational techniques accelerates our ability to create large, significant programs. Conversely, since
writing large programs is very taxing, we are stimulated to invent new methods of reducing the mass of
function and detail to be fitted into large programs.

Unlike programs, computers must obey the laws of physics. If they wish to perform rapidly -- afew
nanoseconds per state change -- they must transmit electrons only small distances (at most 1 1/2 feet). The
heat generated by the huge number of devices so concentrated in space has to be removed. An exquisite
engineering art has been devel oped balancing between multiplicity of function and density of devices. In
any event, hardware always operates at alevel more primitive than that at which we care to program. The
processes that transform our Lisp programsto ~ machine” programs are themselves abstract models which
we program. Their study and creation give agreat deal of insight into the organizational programs
associated with programming arbitrary models. Of course the computer itself can be so modeled. Think of
it: the behavior of the smallest physical switching element is modeled by quantum mechanics described by
differential equations whose detailed behavior is captured by numerical approximations represented in
computer programs executing on computers composed of . . . !

It is not merely a matter of tactical convenience to separately identify the three foci. Even though, as they
say, it'sal in the head, thislogical separation induces an acceleration of symboalic traffic between these
foci whose richness, vitality, and potential is exceeded in human experience only by the evolution of life
itself. At best, relationships between the foci are metastable. The computers are never large enough or fast
enough. Each breakthrough in hardware technology |eads to more massive programming enterprises, new
organizational principles, and an enrichment of abstract models. Every reader should ask himself
periodically ~"Toward what end, toward what end?" -- but do not ask it too often lest you pass up the fun
of programming for the constipation of bittersweet philosophy.

Among the programs we write, some (but never enough) perform a precise mathematical function such as
sorting or finding the maximum of a sequence of numbers, determining primality, or finding the square
root. We call such programs algorithms, and a great deal is known of their optimal behavior, particularly
with respect to the two important parameters of execution time and data storage requirements. A
programmer should acquire good algorithms and idioms. Even though some programs resist precise
specifications, it is the responsibility of the programmer to estimate, and always to attempt to improve,
their performance.

Lispisasurvivor, having been in use for about a quarter of a century. Among the active programming
languages only Fortran has had alonger life. Both languages have supported the programming needs of
important areas of application, Fortran for scientific and engineering computation and Lisp for artificial
intelligence. These two areas continue to be important, and their programmers are so devoted to these two
languages that Lisp and Fortran may well continue in active use for at least another quarter-century.

Lisp changes. The Scheme dialect used in this text has evolved from the original Lisp and differs from the
latter in several important ways, including static scoping for variable binding and permitting functions to
yield functions as values. In its semantic structure Scheme is as closely akin to Algol 60 asto early Lisps.
Algol 60, never to be an active language again, lives on in the genes of Scheme and Pascal. It would be
difficult to find two languages that are the communicating coin of two more different cultures than those
gathered around these two languages. Pascal isfor building pyramids -- imposing, breathtaking, static
structures built by armies pushing heavy blocksinto place. Lisp isfor building organisms -- imposing,
breathtaking, dynamic structures built by squads fitting fluctuating myriads of simpler organismsinto
place. The organizing principles used are the same in both cases, except for one extraordinarily important
difference: The discretionary exportable functionality entrusted to the individual Lisp programmer is more
than an order of magnitude greater than that to be found within Pascal enterprises. Lisp programs inflate
libraries with functions whose utility transcends the application that produced them. The list, Lisp's native
data structure, is largely responsible for such growth of utility. The simple structure and natural

applicability of lists are reflected in functions that are amazingly nonidiosyncratic. In Pascal the plethora
of declarable data structures induces a specialization within functions that inhibits and penalizes casual
cooperation. It is better to have 100 functions operate on one data structure than to have 10 functions
operate on 10 data structures. As aresult the pyramid must stand unchanged for a millennium; the
organism must evolve or perish.

To illustrate this difference, compare the treatment of material and exercises within this book with that in
any first-course text using Pascal. Do not labor under the illusion that thisis atext digestible at MIT only,
peculiar to the breed found there. It is precisely what a serious book on programming Lisp must be, no
matter who the student is or where it is used.

Note that thisis atext about programming, unlike most Lisp books, which are used as a preparation for
work in artificial intelligence. After al, the critical programming concerns of software engineering and
artificia intelligence tend to coalesce as the systems under investigation become larger. This explains why
there is such growing interest in Lisp outside of artificial intelligence.

As one would expect from its goals, artificial intelligence research generates many significant
programming problems. In other programming cultures this spate of problems spawns new languages.
Indeed, in any very large programming task a useful organizing principle isto control and isolate traffic
within the task modules via the invention of language. These languages tend to become less primitive as
one approaches the boundaries of the system where we humans interact most often. As aresult, such
systems contain complex language-processing functions replicated many times. Lisp has such asimple
syntax and semantics that parsing can be treated as an elementary task. Thus parsing technology plays
amost no role in Lisp programs, and the construction of language processorsis rarely an impediment to
the rate of growth and change of large Lisp systems. Finally, it isthis very simplicity of syntax and
semantics that is responsible for the burden and freedom borne by all Lisp programmers. No Lisp program
of any size beyond afew lines can be written without being saturated with discretionary functions. Invent
and fit; have fits and reinvent! We toast the Lisp programmer who pens his thoughts within nests of
parentheses.

Alan J. Perlis
New Haven, Connecticut

[Gotofirgt, previous, next page; contents; index]

[Gotofirdt, previous, next page; contents; index|

Preface to the Second Edition

Isit possible that softwareis not like anything else, that it is meant to be discarded:
that the whole point is to always see it as a soap bubble?

Alan J. Perlis

The material in this book has been the basis of MIT's entry-level computer science subject since 1980. We
had been teaching this material for four years when the first edition was published, and twelve more years
have elapsed until the appearance of this second edition. We are pleased that our work has been widely
adopted and incorporated into other texts. We have seen our students take the ideas and programsin this
book and build them in as the core of new computer systems and languages. In literal realization of an
ancient Talmudic pun, our students have become our builders. We are lucky to have such capable students
and such accomplished builders.

In preparing this edition, we have incorporated hundreds of clarifications suggested by our own teaching
experience and the comments of colleagues at MIT and el sewhere. We have redesigned most of the major
programming systems in the book, including the generic-arithmetic system, the interpreters, the register-
machine simulator, and the compiler; and we have rewritten all the program examples to ensure that any
Scheme implementation conforming to the |EEE Scheme standard (IEEE 1990) will be able to run the
code.

This edition emphasizes several new themes. The most important of these is the central role played by
different approaches to dealing with time in computational models. objects with state, concurrent
programming, functional programming, lazy evaluation, and nondeterministic programming. We have
included new sections on concurrency and nondeterminism, and we have tried to integrate this theme
throughout the book.

The first edition of the book closely followed the syllabus of our MIT one-semester subject. With all the
new materia in the second edition, it will not be possible to cover everything in asingle semester, so the
instructor will have to pick and choose. In our own teaching, we sometimes skip the section on logic
programming (section 4.4), we have students use the register-machine simulator but we do not cover its
implementation (section 5.2), and we give only acursory overview of the compiler (section 5.5). Even so,
thisisstill an intense course. Some instructors may wish to cover only the first three or four chapters,
leaving the other material for subsequent courses.

The World-Wide-Web sitewww i t press. m t. edu/ si cp provides support for users of this book.

This includes programs from the book, sample programming assignments, supplementary materials, and
downloadabl e implementations of the Scheme dialect of Lisp.

[Gotofirdt, previous, next page; contents; index|

[Gotofirdt, previous, next page; contents; index|

Preface to the First Edition

A compuiter islike aviolin. You can imagine a novice trying first a phonograph and
then aviolin. The latter, he says, sounds terrible. That is the argument we have
heard from our humanists and most of our computer scientists. Computer programs
are good, they say, for particular purposes, but they aren't flexible. Neither isa
violin, or atypewriter, until you learn how to useiit.

Marvin Minsky, ““Why Programming |s a Good
Medium for Expressing Poorly-Understood and Sloppily-Formulated | deas®

“"The Structure and Interpretation of Computer Programs” is the entry-level subject in computer science at
the Massachusetts I nstitute of Technology. It isrequired of all studentsat MIT who magjor in electrical
engineering or in computer science, as one-fourth of the *"common core curriculum,” which aso includes
two subjects on circuits and linear systems and a subject on the design of digital systems. We have been
involved in the development of this subject since 1978, and we have taught this material in its present
form since the fall of 1980 to between 600 and 700 students each year. Most of these students have had
little or no prior formal training in computation, although many have played with computers a bit and a
few have had extensive programming or hardware-design experience.

Our design of this introductory computer-science subject reflects two major concerns. First, we want to
establish the idea that a computer language is not just away of getting a computer to perform operations
but rather that it is anovel formal medium for expressing ideas about methodology. Thus, programs must
be written for people to read, and only incidentally for machines to execute. Second, we believe that the
essential material to be addressed by a subject at this level is not the syntax of particular programming-
language constructs, nor clever algorithms for computing particular functions efficiently, nor even the
mathematical analysis of algorithms and the foundations of computing, but rather the techniques used to
control the intellectual complexity of large software systems.

Our goal isthat students who complete this subject should have a good feel for the elements of style and
the aesthetics of programming. They should have command of the major techniques for controlling
complexity in alarge system. They should be capable of reading a 50-page-long program, if it iswritten in
an exemplary style. They should know what not to read, and what they need not understand at any
moment. They should feel secure about modifying a program, retaining the spirit and style of the original
author.

These skills are by no means unique to computer programming. The techniques we teach and draw upon
are common to all of engineering design. We control complexity by building abstractions that hide details
when appropriate. We control complexity by establishing conventional interfaces that enable usto
construct systems by combining standard, well-understood piecesin a " mix and match" way. We control
complexity by establishing new languages for describing a design, each of which emphasizes particular

aspects of the design and deemphasizes others.

Underlying our approach to this subject is our conviction that ~"computer science” is not a science and that
its significance has little to do with computers. The computer revolution is arevolution in the way we
think and in the way we express what we think. The essence of this change is the emergence of what might
best be called procedural epistemology -- the study of the structure of knowledge from an imperative point
of view, as opposed to the more declarative point of view taken by classical mathematical subjects.
Mathematics provides a framework for dealing precisely with notions of ““what is." Computation provides
aframework for dealing precisely with notions of ““how to."

In teaching our material we use adialect of the programming language Lisp. We never formally teach the
language, because we don't have to. We just use it, and students pick it up in afew days. Thisis one great
advantage of Lisp-like languages: They have very few ways of forming compound expressions, and
almost no syntactic structure. All of the formal properties can be covered in an hour, like the rules of
chess. After a short time we forget about syntactic details of the language (because there are none) and get
on with the real issues -- figuring out what we want to compute, how we will decompose problemsinto
manageabl e parts, and how we will work on the parts. Another advantage of Lisp isthat it supports (but
does not enforce) more of the large-scale strategies for modular decomposition of programs than any other
language we know. We can make procedural and data abstractions, we can use higher-order functionsto
capture common patterns of usage, we can model local state using assignment and data mutation, we can
link parts of a program with streams and delayed evaluation, and we can easily implement embedded
languages. All of thisis embedded in an interactive environment with excellent support for incremental
program design, construction, testing, and debugging. We thank all the generations of Lisp wizards,
starting with John M cCarthy, who have fashioned afine tool of unprecedented power and elegance.

Scheme, the dialect of Lisp that we use, is an attempt to bring together the power and elegance of Lisp and
Algol. From Lisp we take the metalinguistic power that derives from the simple syntax, the uniform
representation of programs as data objects, and the garbage-collected heap-allocated data. From Algol we
take lexical scoping and block structure, which are gifts from the pioneers of programming-language
design who were on the Algol committee. We wish to cite John Reynolds and Peter Landin for their
insights into the relationship of Church's lambda calculus to the structure of programming languages. We
also recognize our debt to the mathematicians who scouted out this territory decades before computers
appeared on the scene. These pioneers include Alonzo Church, Barkley Rosser, Stephen Kleene, and
Haskell Curry.

[Gotofirst, previous, next page; contents, index|

[Gotofirdt, previous, next page; contents; index|

Acknowledgments

We would like to thank the many people who have helped us devel op this book and this curriculum.

Our subject is aclear intellectual descendant of “"6.231," awonderful subject on programming linguistics
and the lambda calculus taught at MIT in the late 1960s by Jack Wozencraft and Arthur Evans, Jr.

We owe a great debt to Robert Fano, who reorganized MIT's introductory curriculum in electrical
engineering and computer science to emphasi ze the principles of engineering design. He led usin starting
out on this enterprise and wrote the first set of subject notes from which this book evolved.

Much of the style and aesthetics of programming that we try to teach were developed in conjunction with
Guy Lewis Steele Jr., who collaborated with Gerald Jay Sussman in the initial development of the Scheme
language. In addition, David Turner, Peter Henderson, Dan Friedman, David Wise, and Will Clinger have
taught us many of the techniques of the functional programming community that appear in this book.

Joel Moses taught us about structuring large systems. His experience with the Macsyma system for
symbolic computation provided the insight that one should avoid complexities of control and concentrate
on organizing the data to reflect the real structure of the world being model ed.

Marvin Minsky and Seymour Papert formed many of our attitudes about programming and its place in our
intellectual lives. To them we owe the understanding that computation provides a means of expression for
exploring ideas that would otherwise be too complex to deal with precisely. They emphasize that a
student's ability to write and modify programs provides a powerful medium in which exploring becomes a
natural activity.

We also strongly agree with Alan Perlis that programming is lots of fun and we had better be careful to
support the joy of programming. Part of thisjoy derives from observing great masters at work. We are
fortunate to have been apprentice programmers at the feet of Bill Gosper and Richard Greenblatt.

Itisdifficult to identify all the people who have contributed to the development of our curriculum. We
thank all the lecturers, recitation instructors, and tutors who have worked with us over the past fifteen
years and put in many extra hours on our subject, especialy Bill Siebert, Albert Meyer, Joe Stoy, Randy
Davis, Louis Braida, Eric Grimson, Rod Brooks, Lynn Stein, and Peter Szolovits. We would like to
specially acknowledge the outstanding teaching contributions of Franklyn Turbak, now at Wellesley; his
work in undergraduate instruction set a standard that we can all aspire to. We are grateful to Jerry Saltzer
and Jim Miller for helping us grapple with the mysteries of concurrency, and to Peter Szolovits and David
McAllester for their contributions to the exposition of nondeterministic evaluation in chapter 4.

Many people have put in significant effort presenting this material at other universities. Some of the

people we have worked closely with are Jacob Katzenelson at the Technion, Hardy Mayer at the
University of Californiaat Irvine, Joe Stoy at Oxford, Elisha Sacks at Purdue, and Jan Komorowski at the
Norwegian University of Science and Technology. We are exceptionally proud of our colleagues who
have received major teaching awards for their adaptations of this subject at other universities, including
Kenneth Yip at Yale, Brian Harvey at the University of California at Berkeley, and Dan Huttenlocher at
Cornell.

Al Moyé arranged for us to teach this material to engineers at Hewlett-Packard, and for the production of
videotapes of these lectures. We would like to thank the talented instructors -- in particular Jim Miller, Bill
Siebert, and Mike Eisenberg -- who have designed continuing education courses incorporating these tapes
and taught them at universities and industry all over the world.

Many educators in other countries have put in significant work trandating the first edition. Michel Briand,
Pierre Chamard, and André Pic produced a French edition; Susanne Daniels-Herold produced a German
edition; and Fumio Motoyoshi produced a Japanese edition. We do not know who produced the Chinese
edition, but we consider it an honor to have been selected as the subject of an " unauthorized" trandlation.

It is hard to enumerate all the people who have made technical contributions to the development of the
Scheme systems we use for instructional purposes. In addition to Guy Steele, principal wizards have
included Chris Hanson, Joe Bowbeer, Jim Miller, Guillermo Rozas, and Stephen Adams. Others who have
put in significant time are Richard Stallman, Alan Bawden, Kent Pitman, Jon Taft, Neil Mayle, John
Lamping, Gwyn Osnos, Tracy Larrabee, George Carrette, Soma Chaudhuri, Bill Chiarchiaro, Steven
Kirsch, Leigh Klotz, Wayne Noss, Todd Cass, Patrick O'Donnell, Kevin Theobald, Daniel Weise, Kenneth
Sinclair, Anthony Courtemanche, Henry M. Wu, Andrew Berlin, and Ruth Shyu.

Beyond the MIT implementation, we would like to thank the many people who worked on the |EEE
Scheme standard, including William Clinger and Jonathan Rees, who edited the R4RS, and Chris Haynes,
David Bartley, Chris Hanson, and Jim Miller, who prepared the |EEE standard.

Dan Friedman has been along-time leader of the Scheme community. The community's broader work
goes beyond issues of language design to encompass significant educational innovations, such as the high-
school curriculum based on EdScheme by Schemer's Inc., and the wonderful books by Mike Eisenberg
and by Brian Harvey and Matthew Wright.

We appreciate the work of those who contributed to making this areal book, especially Terry Ehling,
Larry Cohen, and Paul Bethge at the MIT Press. EllaMazel found the wonderful cover image. For the
second edition we are particularly grateful to Bernard and Ella Mazel for help with the book design, and to
David Jones, TEX wizard extraordinaire. We aso are indebted to those readers who made penetrating
comments on the new draft: Jacob Katzenelson, Hardy Mayer, Jim Miller, and especially Brian Harvey,
who did unto this book as Julie did unto his book Smply Scheme.

Finally, we would like to acknowledge the support of the organizations that have encouraged this work
over the years, including support from Hewlett-Packard, made possible by Ira Goldstein and Joel
Birnbaum, and support from DARPA, made possible by Bob Kahn.

[Gotofirdt, previous, next page; contents; index|

[Gotofirdt, previous, next page; contents; index|

Chapter 1

Building Abstractions with Procedures

The acts of the mind, wherein it exerts its power over simple ideas, are chiefly
these three: 1. Combining several simple ideas into one compound one, and thus all
complex ideas are made. 2. The second is bringing two ideas, whether simple or
complex, together, and setting them by one another so asto take a view of them at
once, without uniting them into one, by which it gets all itsideas of relations. 3.
The third is separating them from all other ideas that accompany them in their real
existence: thisis called abstraction, and thus all its general ideas are made.

John Locke, An Essay Concerning Human Under standing (1690)

We are about to study the idea of a computational process. Computational processes are abstract beings
that inhabit computers. Asthey evolve, processes manipulate other abstract things called data. The
evolution of aprocessisdirected by a pattern of rules called a program. People create programs to direct
processes. |n effect, we conjure the spirits of the computer with our spells.

A computational processisindeed much like a sorcerer's idea of a spirit. It cannot be seen or touched. Itis
not composed of matter at all. However, it isvery readl. It can perform intellectua work. It can answer
guestions. It can affect the world by disbursing money at a bank or by controlling arobot arm in afactory.
The programs we use to conjure processes are like a sorcerer's spells. They are carefully composed from
symbolic expressions in arcane and esoteric programming languages that prescribe the tasks we want our
processes to perform.

A computational process, in a correctly working computer, executes programs precisely and accurately.
Thus, like the sorcerer's apprentice, novice programmers must learn to understand and to anticipate the
consequences of their conjuring. Even small errors (usually called bugs or glitches) in programs can have
complex and unanticipated consequences.

Fortunately, learning to program is considerably |ess dangerous than learning sorcery, because the spirits
we deal with are conveniently contained in a secure way. Real-world programming, however, requires
care, expertise, and wisdom. A small bug in a computer-aided design program, for example, can lead to
the catastrophic collapse of an airplane or adam or the self-destruction of an industrial robot.

Master software engineers have the ability to organize programs so that they can be reasonably sure that
the resulting processes will perform the tasks intended. They can visualize the behavior of their systemsin
advance. They know how to structure programs so that unanticipated problems do not lead to catastrophic
consequences, and when problems do arise, they can debug their programs. Well-designed computational
systems, like well-designed automobiles or nuclear reactors, are designed in a modular manner, so that the
parts can be constructed, replaced, and debugged separately.

Programming in Lisp

We need an appropriate language for describing processes, and we will use for this purpose the
programming language Lisp. Just as our everyday thoughts are usually expressed in our natural language
(such as English, French, or Japanese), and descriptions of quantitative phenomena are expressed with
mathematical notations, our procedural thoughts will be expressed in Lisp. Lisp wasinvented in the late
1950s as aformalism for reasoning about the use of certain kinds of logical expressions, called recursion
equations, as amodel for computation. The language was conceived by John McCarthy and is based on
his paper " Recursive Functions of Symbolic Expressions and Their Computation by Machine" (McCarthy
1960).

Despite its inception as a mathematical formalism, Lisp isapractical programming language. A Lisp
interpreter isamachine that carries out processes described in the Lisp language. Thefirst Lisp interpreter
was implemented by McCarthy with the help of colleagues and studentsin the Artificial Intelligence
Group of the MIT Research Laboratory of Electronics and in the MIT Computation Center. Lisp, whose
nameis an acronym for L1St Processing, was designed to provide symbol-manipulating capabilities for
attacking programming problems such as the symbolic differentiation and integration of algebraic
expressions. It included for this purpose new data objects known as atoms and lists, which most strikingly
set it apart from all other languages of the period.

Lisp was not the product of a concerted design effort. Instead, it evolved informally in an experimental
manner in response to users needs and to pragmatic implementation considerations. Lisp's informal
evolution has continued through the years, and the community of Lisp users has traditionally resisted
attempts to promulgate any ““official" definition of the language. This evolution, together with the
flexibility and elegance of the initial conception, has enabled Lisp, which is the second oldest language in
widespread use today (only Fortran is older), to continually adapt to encompass the most modern ideas
about program design. Thus, Lisp isby now afamily of dialects, which, while sharing most of the original
features, may differ from one another in significant ways. The dialect of Lisp used in this book is called
Scheme.2

Because of its experimental character and its emphasis on symbol manipulation, Lisp was at first very
inefficient for numerical computations, at least in comparison with Fortran. Over the years, however, Lisp
compilers have been developed that trandate programs into machine code that can perform numerical
computations reasonably efficiently. And for special applications, Lisp has been used with great
effectiveness.3 Although Lisp has not yet overcome its old reputation as hopelessly inefficient, Lisp is now
used in many applications where efficiency is not the central concern. For example, Lisp has become a
language of choice for operating-system shell languages and for extension languages for editors and
computer-aided design systems.

If Lisp is not a mainstream language, why are we using it as the framework for our discussion of
programming? Because the language possesses unique features that make it an excellent medium for
studying important programming constructs and data structures and for relating them to the linguistic
features that support them. The most significant of these features is the fact that Lisp descriptions of
processes, called procedures, can themselves be represented and manipulated as Lisp data. The importance
of thisisthat there are powerful program-design techniques that rely on the ability to blur the traditional
distinction between ""passive" dataand " active" processes. Aswe shall discover, Lisp'sflexibility in
handling procedures as data makes it one of the most convenient languages in existence for exploring

these techniques. The ability to represent procedures as data also makes Lisp an excellent language for
writing programs that must manipulate other programs as data, such as the interpreters and compilers that
support computer languages. Above and beyond these considerations, programming in Lisp is great fun.

1 The Lisp 1 Programmer's Manual appeared in 1960, and the Lisp 1.5 Programmer's Manual (McCarthy 1965) was published in 1962. The
early history of Lisp is described in McCarthy 1978.

2 The two dialects in which most major Lisp programs of the 1970s were written are MacLisp (Moon 1978; Pitman 1983), developed at the
MIT Project MAC, and Interlisp (Teitelman 1974), developed at Bolt Beranek and Newman Inc. and the Xerox Palo Alto Research Center.
Portable Standard Lisp (Hearn 1969; Griss 1981) was a Lisp dialect designed to be easily portable between different machines. MacLisp
spawned a number of subdialects, such as Franz Lisp, which was developed at the University of California at Berkeley, and Zetalisp (Moon
1981), which was based on a special-purpose processor designed at the MIT Artificia Intelligence Laboratory to run Lisp very efficiently.
The Lisp dialect used in this book, called Scheme (Steele 1975), was invented in 1975 by Guy Lewis Steele Jr. and Gerald Jay Sussman of the
MIT Artificial Intelligence Laboratory and later reimplemented for instructional use at MIT. Scheme became an |IEEE standard in 1990 (IEEE
1990). The Common Lisp dialect (Steele 1982, Steele 1990) was developed by the Lisp community to combine features from the earlier Lisp
dialectsto make an industrial standard for Lisp. Common Lisp became an ANSI standard in 1994 (ANSI 1994).

3 One such special application was a breakthrough computation of scientific importance -- an integration of the motion of the Solar System
that extended previous results by nearly two orders of magnitude, and demonstrated that the dynamics of the Solar System is chaotic. This
computation was made possible by new integration algorithms, a special-purpose compiler, and a specia-purpose computer al implemented
with the aid of software toolswritten in Lisp (Abelson et al. 1992; Sussman and Wisdom 1992).

[Gotofirst, previous, next page; contents, index]

[Gotofirst, previous, next page; contents; index|

1.1 The Elements of Programming

A powerful programming language is more than just a means for instructing a computer to perform tasks.
The language also serves as a framework within which we organize our ideas about processes. Thus, when
we describe a language, we should pay particular attention to the means that the language provides for
combining simple ideas to form more complex ideas. Every powerful language has three mechanisms for
accomplishing this:

. primitive expressions, which represent the simplest entities the language is concerned with,
. means of combination, by which compound el ements are built from simpler ones, and
. means of abstraction, by which compound elements can be hamed and manipulated as units.

In programming, we deal with two kinds of elements. procedures and data. (Later we will discover that
they arereally not so distinct.) Informally, datais *stuff" that we want to manipulate, and procedures are
descriptions of the rules for manipulating the data. Thus, any powerful programming language should be
able to describe primitive data and primitive procedures and should have methods for combining and
abstracting procedures and data.

In this chapter we will deal only with simple numerical data so that we can focus on the rules for building

procedures.4 In later chapters we will see that these same rules allow usto build procedures to manipul ate
compound data as well.

1.1.1 Expressions

One easy way to get started at programming is to examine some typical interactions with an interpreter for
the Scheme dialect of Lisp. Imagine that you are sitting at a computer terminal. Y ou type an expression,
and the interpreter responds by displaying the result of its evaluating that expression.

One kind of primitive expression you might type is anumber. (More precisely, the expression that you
type consists of the numerals that represent the number in base 10.) If you present Lisp with a number

486
the interpreter will respond by printing2
486

Expressions representing numbers may be combined with an expression representing a primitive
procedure (such as + or *) to form a compound expression that represents the application of the procedure

to those numbers. For example:

(+ 137 349)

486
(- 1000 334)

666
(* 5 99)

495
(/ 10 5)

2
(+ 2.7 10)

12.7

Expressions such as these, formed by delimiting alist of expressions within parentheses in order to denote
procedure application, are called combinations. The leftmost element in the list is called the operator, and
the other elements are called operands. The value of acombination is obtained by applying the procedure
specified by the operator to the arguments that are the values of the operands.

The convention of placing the operator to the left of the operands is known as prefix notation, and it may
be somewhat confusing at first because it departs significantly from the customary mathematical
convention. Prefix notation has several advantages, however. One of them isthat it can accommodate
procedures that may take an arbitrary number of arguments, as in the following examples:

(+ 21 35 12 7)
75

(* 25 4 12)
1200

No ambiguity can arise, because the operator is always the leftmost element and the entire combination is
delimited by the parentheses.

A second advantage of prefix notation is that it extends in a straightforward way to allow combinations to
be nested, that is, to have combinations whose el ements are themselves combinations:

(+ (* 35 (- 10 06))
19

Thereisno limit (in principle) to the depth of such nesting and to the overall complexity of the expressions
that the Lisp interpreter can evaluate. It is we humans who get confused by still relatively simple
expressions such as

(+ (" 3(+(*24) (+353))) (+(-107) 6))

which the interpreter would readily evaluate to be 57. We can help ourselves by writing such an
expression in the form

(+(* 3

(+ (* 2 4)
(+35)))
(+ (- 10 7)

6))

following a formatting convention known as pretty-printing, in which each long combination is written so
that the operands are aligned vertically. The resulting indentations display clearly the structure of the

expression.8

Even with complex expressions, the interpreter aways operates in the same basic cycle: It reads an
expression from the terminal, evaluates the expression, and prints the result. This mode of operation is
often expressed by saying that the interpreter runsin aread-eval-print loop. Observe in particular that it is

not necessary to explicitly instruct the interpreter to print the value of the expression.”

1.1.2 Naming and the Environment

A critical aspect of a programming language is the meansit provides for using namesto refer to
computational objects. We say that the name identifies a variable whose value is the object.

In the Scheme dialect of Lisp, we name thingswith def i ne. Typing

(define size 2)

causes the interpreter to associate the value 2 with the name si ze.8 Oncethe name si ze has been
associated with the number 2, we can refer to the value 2 by name:

Si ze

2

(* 5 size)
10

Here are further examples of the use of def i ne:

(define pi 3.14159)

(define radius 10)

(* pi (* radius radius))

314. 159

(define circunference (* 2 pi radius))
ci rcunference

62. 8318

Def i ne isour language's simplest means of abstraction, for it allows us to use simple names to refer to
the results of compound operations, such asthe ci r cunf er ence computed above. In general,

computational objects may have very complex structures, and it would be extremely inconvenient to have
to remember and repeat their details each time we want to use them. Indeed, complex programs are
constructed by building, step by step, computational objects of increasing complexity. The interpreter
makes this step-by-step program construction particularly convenient because name-object associations
can be created incrementally in successive interactions. This feature encourages the incremental
development and testing of programs and is largely responsible for the fact that a Lisp program usually
consists of alarge number of relatively ssmple procedures.

It should be clear that the possibility of associating values with symbols and later retrieving them means
that the interpreter must maintain some sort of memory that keeps track of the name-object pairs. This
memory is called the environment (more precisely the global environment, since we will see later that a

computation may involve a number of different environments).2

1.1.3 Evaluating Combinations

One of our goalsin this chapter is to isolate issues about thinking procedurally. Asacasein point, let us
consider that, in evaluating combinations, the interpreter isitself following a procedure.

. To evauate a combination, do the following:
1. Evaluate the subexpressions of the combination.

2. Apply the procedure that is the value of the leftmost subexpression (the operator) to
the arguments that are the values of the other subexpressions (the operands).

Even thissimple rule illustrates some important points about processes in general. First, observe that the
first step dictates that in order to accomplish the evaluation process for a combination we must first
perform the evaluation process on each element of the combination. Thus, the evaluation rule isrecursive

in nature; that is, it includes, as one of its steps, the need to invoke the rule itself.10

Notice how succinctly the idea of recursion can be used to express what, in the case of a deeply nested
combination, would otherwise be viewed as a rather complicated process. For example, evaluating

(* (+2(* 46))
(+357)

requires that the evaluation rule be applied to four different combinations. We can obtain a picture of this
process by representing the combination in the form of atree, as shown in figure 1.1. Each combination is

represented by a node with branches corresponding to the operator and the operands of the combination
stemming from it. The terminal nodes (that is, nodes with no branches stemming from them) represent
either operators or numbers. Viewing evaluation in terms of the tree, we can imagine that the values of the
operands percolate upward, starting from the terminal nodes and then combining at higher and higher
levels. In general, we shall see that recursion is avery powerful technique for dealing with hierarchical,
treelike objects. In fact, the ““percolate values upward" form of the evaluation rule is an example of a
general kind of process known as tree accumulation.

230

o6 15

4

Figure 1.1: Tree representation, showing the value of each subcombination.

Next, observe that the repeated application of the first step brings us to the point where we need to
evaluate, not combinations, but primitive expressions such as numerals, built-in operators, or other names.
We take care of the primitive cases by stipulating that

. thevalues of numerals are the numbers that they name,

. thevalues of built-in operators are the machine instruction sequences that carry out the
corresponding operations, and

. thevalues of other names are the objects associated with those names in the environment.

We may regard the second rule as a special case of the third one by stipulating that symbols such as + and
* are aso included in the global environment, and are associated with the sequences of machine

instructions that are their ““values." The key point to notice is the role of the environment in determining
the meaning of the symbolsin expressions. In an interactive language such as Lisp, it is meaningless to
speak of the value of an expression suchas(+ x 1) without specifying any information about the

environment that would provide a meaning for the symbol x (or even for the symbol +). Aswe shall seein

chapter 3, the general notion of the environment as providing a context in which evaluation takes place
will play an important role in our understanding of program execution.

Notice that the evaluation rule given above does not handle definitions. For instance, evaluating (def i ne
x 3) doesnot apply def i ne to two arguments, one of which is the value of the symbol x and the other
of whichis 3, since the purpose of the def i ne isprecisely to associate x with avalue. (That is,
(define x 3) isnotacombination.)

Such exceptions to the general evaluation rule are called special forms. Def i ne isthe only example of a

special form that we have seen so far, but we will meet others shortly. Each special form hasits own
evauation rule. The various kinds of expressions (each with its associated evaluation rule) constitute the
syntax of the programming language. |n comparison with most other programming languages, Lisp hasa
very simple syntax; that is, the evaluation rule for expressions can be described by a simple general rule

together with specialized rules for a small number of special forms.11

1.1.4 Compound Procedures

We haveidentified in Lisp some of the elements that must appear in any powerful programming language:
. Numbers and arithmetic operations are primitive data and procedures.
. Nesting of combinations provides a means of combining operations.
. Definitions that associate names with values provide a limited means of abstraction.

Now we will learn about procedure definitions, a much more powerful abstraction technique by which a
compound operation can be given aname and then referred to as a unit.

We begin by examining how to express the idea of ““sgquaring.” We might say, ~ To sguare something,
multiply it by itself.” Thisis expressed in our language as

(define (square x) (* x X))

We can understand this in the following way:

(define (square x) (* X X))
T I T T T

To square something, multiply it by itself.

We have here a compound procedure, which has been given the name squar e. The procedure represents
the operation of multiplying something by itself. The thing to be multiplied is given alocal name, x, which
plays the same role that a pronoun plays in natural language. Evaluating the definition creates this
compound procedure and associates it with the name squar e.12

The general form of a procedure definition is

(define (<name> <fornmal paraneters>) <body>)

The <name> is asymbol to be associated with the procedure definition in the environment.13 The <formal
parameters> are the names used within the body of the procedure to refer to the corresponding arguments
of the procedure. The <body> is an expression that will yield the value of the procedure application when
the formal parameters are replaced by the actual arguments to which the procedure is applied.14 The

<name> and the <formal parameters> are grouped within parentheses, just as they would be in an actual
cal to the procedure being defined.

Having defined squar e, we can now useit:

(square 21)
441

(square (+ 2 5))
49

(square (square 3))
81

We can also use squar e as abuilding block in defining other procedures. For example, X2 + y2 can be
expressed as

(+ (square x) (square y))

We can easily define aprocedure sum of - squar es that, given any two numbers as arguments,
produces the sum of their squares:

(define (sumof-squares x y)
(+ (square x) (square y)))

(sum of -squares 3 4)
25
Now we can use sum of - squar es asahbuilding block in constructing further procedures:
(define (f a)
(sumof-squares (+ a l1l) (* a 2)))
(f 5)
136

Compound procedures are used in exactly the same way as primitive procedures. Indeed, one could not tell
by looking at the definition of sum of - squar es given above whether squar e was built into the

interpreter, like + and *, or defined as a compound procedure.

1.1.5 The Substitution Model for Procedure Application

To evaluate a combination whose operator names a compound procedure, the interpreter follows much the
same process as for combinations whose operators name primitive procedures, which we described in
section 1.1.3. That is, the interpreter eval uates the elements of the combination and applies the procedure

(which isthe value of the operator of the combination) to the arguments (which are the values of the
operands of the combination).

We can assume that the mechanism for applying primitive procedures to argumentsis built into the
interpreter. For compound procedures, the application processis as follows:

. To apply acompound procedure to arguments, evaluate the body of the procedure with each
formal parameter replaced by the corresponding argument.

Toillustrate this process, let's evaluate the combination
(f 5)
wheref isthe procedure defined in section 1.1.4. We begin by retrieving the body of f :

(sumof-squares (+ a 1) (* a 2))

Then we replace the formal parameter a by the argument 5:
(sumof-squares (+ 5 1) (* 5 2))

Thus the problem reduces to the evaluation of a combination with two operands and an operator sum of -
squar es. Evauating this combination involves three subproblems. We must evaluate the operator to get
the procedure to be applied, and we must evaluate the operands to get the arguments. Now (+ 5 1)
produces6and (* 5 2) produces 10, so we must apply the sum of - squar es procedureto 6 and 10.
These values are substituted for the formal parametersx and y in the body of sum of - squar es,
reducing the expression to

(+ (square 6) (square 10))
If we use the definition of squar e, thisreducesto
(+ (* 6 6) (* 10 10))

which reduces by multiplication to

(+ 36 100)

and finaly to

136

The process we have just described is called the substitution model for procedure application. It can be

taken as amodel that determines the ““meaning" of procedure application, insofar as the proceduresin this
chapter are concerned. However, there are two points that should be stressed:

. The purpose of the substitution is to help us think about procedure application, not to provide a
description of how the interpreter really works. Typical interpreters do not evaluate procedure
applications by manipulating the text of a procedure to substitute values for the formal parameters.
In practice, the ““substitution" is accomplished by using alocal environment for the formal
parameters. We will discuss this more fully in chapters 3 and 4 when we examine the
implementation of an interpreter in detail.

. Over the course of this book, we will present a sequence of increasingly elaborate models of how
interpreters work, culminating with a complete implementation of an interpreter and compiler in
chapter 5. The substitution model is only the first of these models -- away to get started thinking
formally about the evaluation process. In general, when modeling phenomenain science and
engineering, we begin with simplified, incomplete models. As we examine things in greater detail,
these simple model s become inadequate and must be replaced by more refined models. The
substitution model is no exception. In particular, when we address in chapter 3 the use of
procedures with ~“mutable data,” we will see that the substitution model breaks down and must be

replaced by a more complicated model of procedure application.12

Applicative order versus normal order

According to the description of evaluation given in section 1.1.3, the interpreter first evaluates the operator

and operands and then applies the resulting procedure to the resulting arguments. Thisis not the only way
to perform evaluation. An alternative evaluation model would not evaluate the operands until their values
were needed. Instead it would first substitute operand expressions for parameters until it obtained an
expression involving only primitive operators, and would then perform the evaluation. If we used this
method, the evaluation of

(f 5)

would proceed according to the sequence of expansions
(sumof-squares (+ 5 1) (* 5 2))
(+ (square (+ 5 1)) (square (* 5 2)))

(+ (* (+51) (+51)) (* (52 (*52))
followed by the reductions

(+ (* 6 6) (* 10 10))
(+ 36 100)

136

This gives the same answer as our previous evaluation model, but the process is different. In particular, the
evaluationsof (+ 5 1) and(* 5 2) areeach performed twice here, corresponding to the reduction of

the expression
(* x x)
with x replaced respectively by (+ 5 1) and(* 5 2).

This alternative " fully expand and then reduce" evaluation method is known as normal-order evaluation,
in contrast to the " evaluate the arguments and then apply" method that the interpreter actually uses, which
is called applicative-order evaluation. It can be shown that, for procedure applications that can be modeled
using substitution (including all the proceduresin the first two chapters of this book) and that yield
legitimate values, normal-order and applicative-order evaluation produce the same value. (See exercise 1.5

for an instance of an "illegitimate" value where normal-order and applicative-order evaluation do not give
the same resullt.)

Lisp uses applicative-order evaluation, partly because of the additional efficiency obtained from avoiding
multiple evaluations of expressions such asthoseillustrated with(+ 5 1) and(* 5 2) above and,
more significantly, because normal-order evaluation becomes much more complicated to deal with when
we leave the realm of procedures that can be modeled by substitution. On the other hand, normal -order
evaluation can be an extremely valuable tool, and we will investigate some of its implications in chapters 3
and 4.16

1.1.6 Conditional Expressions and Predicates

The expressive power of the class of procedures that we can define at this point is very limited, because
we have no way to make tests and to perform different operations depending on the result of atest. For
instance, we cannot define a procedure that computes the absolute value of a number by testing whether
the number is positive, negative, or zero and taking different actions in the different cases according to the
rule

r fr=0
|r|= 0 Hr=20
—r dr<10

This construct is called a case analysis, and there is a special formin Lisp for notating such a case
analysis. It iscaled cond (which stands for “"conditional"), and it is used as follows:

(define (abs x)
(cond ((> x 0) x)
((= x 0) 0)
((<x0) (- x))))

The general form of a conditional expression is

(cond (<p;> <e;>)
(<p2> <ey>)

(<Pr> <en>))

consisting of the symbol cond followed by parenthesized pairs of expressions (<p> <e>) called
clauses. Thefirst expression in each pair is a predicate -- that is, an expression whose value is interpreted
as either true or false.1’

Conditional expressions are evaluated as follows. The predicate <p,> is evaluated first. If itsvalue isfalse,
then <p,> isevaluated. If <p,>'svalueisalso false, then <pz> is evaluated. This process continues until a

predicate is found whose value is true, in which case the interpreter returns the value of the corresponding
consequent expression <e> of the clause as the value of the conditional expression. If none of the <p>'sis
found to be true, the value of the cond is undefined.

The word predicate is used for procedures that return true or false, aswell asfor expressions that evaluate
to true or false. The absolute-value procedure abs makes use of the primitive predicates >, <, and =.18

These take two numbers as arguments and test whether the first number is, respectively, greater than, less
than, or equal to the second number, returning true or false accordingly.

Another way to write the absolute-value procedureis

(define (abs x)
(cond ((< x 0) (- x))
(el'se x)))

which could be expressed in English as " If x isless than zero return - x; otherwise return x." El se isa
specia symbol that can be used in place of the <p> in the final clause of acond. This causesthe cond to

return as its value the value of the corresponding <e> whenever all previous clauses have been bypassed.
In fact, any expression that always evaluates to a true value could be used as the <p> here.

Hereisyet another way to write the absolute-val ue procedure:

(define (abs x)
(if (<x 0)
(- x)
X))

This usesthe special formi f , arestricted type of conditional that can be used when there are precisely
two casesin the case analysis. The general form of ani f expressionis

(i f <predicate> <consequent> <alternative>)

Toevaluateani f expression, the interpreter starts by evaluating the <predicate> part of the expression. If
the <predicate> evaluates to a true value, the interpreter then evaluates the <consequent> and returns its
value. Otherwise it eval uates the <alternative> and returns its value.19

In addition to primitive predicates such as <, =, and >, there are logical composition operations, which
enable us to construct compound predicates. The three most frequently used are these:

. (and <e,> ... <e,>
1 n

The interpreter evaluates the expressions <e> one at atime, in left-to-right order. If any <e>
evaluates to false, the value of the and expression isfalse, and the rest of the <e>'s are not

evauated. If all <e>'sevaluate to true values, the value of the and expression is the value of the
last one.

. (or <e> ... <e,>)

Theinterpreter evaluates the expressions <e> one at atime, in |eft-to-right order. If any <e>
evaluates to atrue value, that value is returned as the value of the or expression, and the rest of

the <e>'s are not evaluated. If all <e>'s evaluate to false, the value of the or expression isfalse.

. (not <e>)

Thevalue of anot expression is true when the expression <e> evaluates to false, and false
otherwise.

Noticethat and and or are special forms, not procedures, because the subexpressions are not necessarily
all evaluated. Not isan ordinary procedure.

As an example of how these are used, the condition that a number x be in the range 5 < x < 10 may be
expressed as

(and (> x 5) (< x 10))

As another example, we can define a predicate to test whether one number is greater than or equal to
another as

(define (>= x vy)
(or (> xy) (=x1Y)))

or aternatively as

(define (>= x vy)
(not (< x)))

Exercise 1.1. Below isasequence of expressions. What is the result printed by the interpreter in response
to each expression? Assume that the sequence is to be evaluated in the order in which it is presented.

10

(+ 5 3 4)

(- 91)

(/ 6 2)

(+ (* 24) (- 46))
(define a 3)
(define b (+ a 1))
(+ab(*ab))

(= ab)

(if (and (> b a) (< b (* ah)))
b
a)

(cond ((= a 4) 6)
((=b4) (+67 a))
(el se 25))

(+2 (if (> b a) ba))

(* (cond ((> a b) a)

((< ab) b)
(else -1))
(+ a 1))

Exercise 1.2. Trandate the following expression into prefix form

B4+ (2 f3-(643)))
A6 — (27

Exercise 1.3. Define aprocedure that takes three numbers as arguments and returns the sum of the
squares of the two larger numbers.

Exercise 1.4. Observe that our model of evaluation allows for combinations whose operators are
compound expressions. Use this observation to describe the behavior of the following procedure:

(define (a-plus-abs-b a b)
((if (>b 0) +-) ab))

Exercise 1.5. Ben Bitdiddle hasinvented atest to determine whether the interpreter heis faced with is
using applicative-order evaluation or normal-order evaluation. He defines the following two procedures:

(define (p) (p))

(define (test x vy)
(if (=x 0)
0

y))
Then he evaluates the expression
(test 0 (p))

What behavior will Ben observe with an interpreter that uses applicative-order evaluation? What behavior
will he observe with an interpreter that uses normal-order evaluation? Explain your answer. (Assume that
the evaluation rule for the special formi f isthe same whether the interpreter is using normal or
applicative order: The predicate expression is evaluated first, and the result determines whether to evaluate
the consequent or the alternative expression.)

1.1.7 Example: Square Roots by Newton's Method

Procedures, as introduced above, are much like ordinary mathematical functions. They specify a value that
is determined by one or more parameters. But there is an important difference between mathematical
functions and computer procedures. Procedures must be effective.

Asacasein point, consider the problem of computing square roots. We can define the square-root
function as

VI = theysuchthaty:_?ﬂandy?=r

This describes a perfectly legitimate mathematical function. We could use it to recognize whether one
number is the square root of another, or to derive facts about square roots in general. On the other hand,
the definition does not describe a procedure. Indeed, it tells us amost nothing about how to actually find
the square root of a given number. It will not help matters to rephrase this definition in pseudo-Lisp:

(define (sqgrt x)
(the y (and (>=vy 0)
(= (square y) x))))

This only begs the question.

The contrast between function and procedure is a reflection of the general distinction between describing
properties of things and describing how to do things, or, asit is sometimes referred to, the distinction
between declarative knowledge and imperative knowledge. In mathematics we are usually concerned with
declarative (what is) descriptions, whereas in computer science we are usually concerned with imperative

(how to) descriptions.29

How does one compute sgquare roots? The most common way is to use Newton's method of successive
approximations, which says that whenever we have aguessy for the value of the square root of a number
X, we can perform a simple manipulation to get a better guess (one closer to the actual square root) by
averaging y with x/y.21 For example, we can compute the square root of 2 as follows. Suppose our initial
guessis 1.

Guess Quotient Average

1 (211)=2 (2+1/2)=15

15 (215)=1.3333 ((1.3333+ 1.5)/2) = 1.4167
1.4167 (2/1.4167) = 1.4118 ((1.4167 + 1.4118)/2) = 1.4142

14142 . . .

Continuing this process, we obtain better and better approximations to the square root.

Now let's formalize the process in terms of procedures. We start with a value for the radicand (the number
whose sguare root we are trying to compute) and a value for the guess. If the guessis good enough for our
purposes, we are done; if not, we must repeat the process with an improved guess. We write this basic
strategy as a procedure:

(define (sqrt-iter guess Xx)
(1 f (good-enough? guess x)
guess
(sqgrt-iter (inprove guess X)

x)))

A guessisimproved by averaging it with the quotient of the radicand and the old guess:

(define (inprove guess Xx)
(average guess (/ x guess)))

where

(define (average x vy)
(/ (+xy) 2))

We also have to say what we mean by " good enough.” The following will do for illustration, but it is not
really avery good test. (See exercise 1.7.) Theideaisto improve the answer until it is close enough so that

its square differs from the radicand by less than a predetermined tolerance (here 0.001):22

(defi ne (good-enough? guess Xx)
(< (abs (- (square guess) x)) 0.001))

Finally, we need away to get started. For instance, we can always guess that the square root of any
number is 1:23

(define (sqgrt x)
(sqgrt-iter 1.0 x))

If we type these definitions to the interpreter, we can use sqr t just aswe can use any procedure:

(sqrt 9)

3.00009155413138
(sgrt (+ 100 37))

11. 704699917758145

(sgrt (+ (sqgrt 2) (sqgrt 3)))
1.7739279023207892

(square (sqrt 1000))

1000. 000369924366

Thesqrt program also illustrates that the simple procedural language we have introduced so far is

sufficient for writing any purely numerical program that one could write in, say, C or Pascal. This might
seem surprising, since we have not included in our language any iterative (looping) constructs that direct
the computer to do something over and over again. Sqrt - i t er, on the other hand, demonstrates how

iteration can be accomplished using no special construct other than the ordinary ability to call a
procedure.24

Exercise 1.6. AlyssaP. Hacker doesn't seewhy i f needsto be provided as a special form. ~"Why can't |
just defineit as an ordinary procedure in terms of cond?' she asks. Alyssas friend Eva Lu Ator claims
this can indeed be done, and she definesanew version of i f :

(define (newif predicate then-clause el se-cl ause)
(cond (predicate then-clause)
(el se el se-clause)))

Eva demonstrates the program for Alyssa:

(newif (=2 3) 05)
5

(newif (=1 1) 0 5)
0

Delighted, Alyssausesnew- i f to rewrite the square-root program:

(define (sqrt-iter guess Xx)
(newif (good-enough? guess Xx)
guess
(sqgrt-iter (inprove guess X)

x)))

What happens when Alyssa attempts to use this to compute square roots? Explain.

Exercise 1.7. Thegood- enough? test used in computing square roots will not be very effective for

finding the square roots of very small numbers. Also, in real computers, arithmetic operations are almost
always performed with limited precision. This makes our test inadequate for very large numbers. Explain
these statements, with examples showing how the test fails for small and large numbers. An aternative
strategy for implementing good- enough? isto watch how guess changes from one iteration to the

next and to stop when the change is a very small fraction of the guess. Design a square-root procedure that
uses thiskind of end test. Does this work better for small and large numbers?

Exercise 1.8. Newton's method for cube roots is based on the fact that if y is an approximation to the cube
root of X, then a better approximation is given by the value

iy 4y
3

Use this formula to implement a cube-root procedure analogous to the square-root procedure. (In
section 1.3.4 we will see how to implement Newton's method in general as an abstraction of these square-

root and cube-root procedures.)

1.1.8 Procedures as Black-Box Abstractions

Sqrt isour first example of aprocess defined by a set of mutually defined procedures. Notice that the
definitionof sqrt - i t er isrecursive; that is, the procedure is defined in terms of itself. The idea of

being able to define a procedure in terms of itself may be disturbing; it may seem unclear how such a
“circular” definition could make sense at all, much less specify awell-defined process to be carried out by
acomputer. Thiswill be addressed more carefully in section 1.2. But first let's consider some other

important pointsillustrated by thesqgr t example.

Observe that the problem of computing square roots breaks up naturally into a number of subproblems:
how to tell whether a guessis good enough, how to improve a guess, and so on. Each of these tasksis
accomplished by a separate procedure. The entiresqr t program can be viewed as a cluster of procedures

(shown in figure 1.2) that mirrors the decomposition of the problem into subproblems.

gt

sgrbt—iter
good—encugh improwve
BOUACE abs average

Figure 1.2: Procedural decomposition of thesqrt program.

The importance of this decomposition strategy is not simply that one is dividing the program into parts.
After al, we could take any large program and divide it into parts -- the first ten lines, the next ten lines,
the next ten lines, and so on. Rather, it is crucia that each procedure accomplishes an identifiable task that
can be used as amodule in defining other procedures. For example, when we define the good- enough?
procedure in terms of squar e, we are able to regard the squar e procedure asa "black box." We are not
at that moment concerned with how the procedure computes its result, only with the fact that it computes
the square. The details of how the square is computed can be suppressed, to be considered at alater time.
Indeed, asfar asthe good- enough? procedureis concerned, squar e is not quite a procedure but rather
an abstraction of a procedure, a so-called procedural abstraction. At thislevel of abstraction, any
procedure that computes the square is equally good.

Thus, considering only the values they return, the following two procedures for squaring a number should
be indistinguishable. Each takes a numerical argument and produces the square of that number as the
value.22

(define (square x) (* x X))

(define (square x)
(exp (double (log x))))

(define (double x) (+ x x))

So a procedure definition should be able to suppress detail. The users of the procedure may not have
written the procedure themselves, but may have obtained it from another programmer as a black box. A
user should not need to know how the procedure isimplemented in order to useit.

Local names

One detail of a procedure's implementation that should not matter to the user of the procedure isthe
implementer's choice of names for the procedure's formal parameters. Thus, the following procedures
should not be distinguishable:

(define (square x) (* x X))

(define (square y) (* vy vy))

This principle -- that the meaning of a procedure should be independent of the parameter names used by its
author -- seems on the surface to be self-evident, but its consequences are profound. The simplest
consequence is that the parameter names of a procedure must be local to the body of the procedure. For
example, we used squar e in the definition of good- enough? in our square-root procedure:

(defi ne (good-enough? guess Xx)
(< (abs (- (square guess) x)) 0.001))

The intention of the author of good- enough? isto determine if the square of the first argument is within
agiven tolerance of the second argument. We see that the author of good- enough? used the name
guess torefer to the first argument and x to refer to the second argument. The argument of squar e is
guess. If the author of squar e used x (as above) to refer to that argument, we see that the X in good-
enough? must be adifferent x than the onein squar e. Running the procedure squar e must not affect
the value of x that is used by good- enough?, because that value of x may be needed by good-
enough? after squar e is done computing.

If the parameters were not local to the bodies of their respective procedures, then the parameter X in
squar e could be confused with the parameter x in good- enough?, and the behavior of good-
enough? would depend upon which version of squar e we used. Thus, squar e would not be the black
box we desired.

A formal parameter of a procedure has avery specia role in the procedure definition, in that it doesn't
matter what name the formal parameter has. Such aname s called a bound variable, and we say that the
procedure definition bindsits formal parameters. The meaning of a procedure definition is unchanged if a
bound variable is consistently renamed throughout the definition.26 If avariable is not bound, we say that
itisfree. The set of expressions for which a binding defines anameis called the scope of that name. In a
procedure definition, the bound variables declared as the formal parameters of the procedure have the
body of the procedure as their scope.

In the definition of good- enough? above, guess and x are bound variables but <, - , abs, and

squar e arefree. The meaning of good- enough? should be independent of the names we choose for
guess and x so long asthey are distinct and different from <, - , abs, and squar e. (If we renamed
guess to abs we would have introduced a bug by capturing the variable abs. It would have changed
from free to bound.) The meaning of good- enough? is not independent of the names of itsfree
variables, however. It surely depends upon the fact (external to this definition) that the symbol abs names
aprocedure for computing the absolute value of a number. Good- enough? will compute a different
function if we substitute cos for abs inits definition.

Internal definitions and block structure

We have one kind of name isolation available to us so far: The formal parameters of a procedure are local
to the body of the procedure. The square-root program illustrates another way in which we would like to
control the use of names. The existing program consists of separate procedures:

(define (sqgrt x)
(sqrt-iter 1.0 x))
(define (sqgrt-iter guess Xx)
(i f (good-enough? guess x)
guess
(sqrt-iter (inprove guess X) X)))
(defi ne (good-enough? guess Xx)
(< (abs (- (square guess) x)) 0.001))
(define (inprove guess Xx)
(average guess (/ x guess)))

The problem with this program is that the only procedure that isimportant to usersof sqrt issqrt. The
other procedures (sqrt -i t er,good- enough?, andi npr ove) only clutter up their minds. They may
not define any other procedure called good- enough? as part of another program to work together with
the square-root program, because sqr t needsit. The problem is especially severe in the construction of
large systems by many separate programmers. For example, in the construction of alarge library of
numerical procedures, many numerical functions are computed as successive approximations and thus
might have procedures named good- enough? and i npr ove as auxiliary procedures. We would like to
localize the subprocedures, hiding them insidesqrt sothat sqrt could coexist with other successive
approximations, each having its own private good- enough? procedure. To make this possible, we allow

aprocedure to have internal definitions that are local to that procedure. For example, in the square-root
problem we can write

(define (sqgrt x)
(define (good-enough? guess x)
(< (abs (- (square guess) x)) 0.001))
(define (inprove guess Xx)
(average guess (/ x guess)))
(define (sqrt-iter guess Xx)
(i1 f (good-enough? guess x)
guess
(sqgrt-iter (inprove guess X) X)))
(sgrt-iter 1.0 x))

Such nesting of definitions, called block structure, is basically the right solution to the simplest name-
packaging problem. But there is a better idea lurking here. In addition to internalizing the definitions of the
auxiliary procedures, we can simplify them. Since x is bound in the definition of sqr t , the procedures

good- enough?,i nprove,andsqrt-iter,whicharedefined internally tosqrt , are in the scope of
X. Thus, it is not necessary to pass x explicitly to each of these procedures. Instead, we alow x to be afree

variablein the internal definitions, as shown below. Then x getsits value from the argument with which
the enclosing procedure sqr t iscalled. Thisdisciplineis called lexical scoping.2?

(define (sqgrt x)
(defi ne (good-enough? guess)
(< (abs (- (square guess) x)) 0.001))
(define (inprove guess)
(average guess (/ x guess)))
(define (sqrt-iter guess)
(i f (good-enough? guess)
guess
(sqgrt-iter (inprove guess))))
(sgrt-iter 1.0))

We will use block structure extensively to help us break up large programs into tractable pieces.28 The
idea of block structure originated with the programming language Algol 60. It appears in most advanced
programming languages and is an important tool for helping to organize the construction of large
programs.

4 The characterization of numbers as " simple data" is a barefaced bluff. In fact, the treatment of numbers is one of the trickiest and most
confusing aspects of any programming language. Some typical issues involved are these: Some computer systems distinguish integers, such as
2, fromreal numbers, such as 2.71. Is the real number 2.00 different from the integer 2? Are the arithmetic operations used for integers the
same as the operations used for real numbers? Does 6 divided by 2 produce 3, or 3.0? How large a number can we represent? How many
decimal places of accuracy can we represent? Is the range of integers the same as the range of real numbers? Above and beyond these
questions, of course, lies a collection of issues concerning roundoff and truncation errors -- the entire science of numerical analysis. Since our
focus in this book is on large-scale program design rather than on numerical techniques, we are going to ignore these problems. The numerical
examplesin this chapter will exhibit the usual roundoff behavior that one observes when using arithmetic operations that preserve alimited
number of decimal places of accuracy in noninteger operations.

5 Throughout this book, when we wish to emphasize the distinction between the input typed by the user and the response printed by the
interpreter, we will show the latter in slanted characters.

6 Lisp systems typically provide features to aid the user in formatting expressions. Two especially useful features are one that automatically
indents to the proper pretty-print position whenever anew lineis started and one that highlights the matching left parenthesis whenever aright
parenthesisis typed.

7 Lisp obeys the convention that every expression has avalue. This convention, together with the old reputation of Lisp as an inefficient
language, is the source of the quip by Alan Perlis (paraphrasing Oscar Wilde) that **Lisp programmers know the value of everything but the
cost of nothing."

8 |n this book, we do not show the interpreter's response to evaluating definitions, since this is highly implementation-dependent.

9 Chapter 3 will show that this notion of environment is crucial, both for understanding how the interpreter works and for implementing
interpreters.

10 |t may seem strange that the eval uation rule says, as part of the first step, that we should evaluate the leftmost element of a combination,
since at this point that can only be an operator such as + or * representing a built-in primitive procedure such as addition or multiplication. We
will seelater that it is useful to be able to work with combinations whose operators are themsel ves compound expressions.

11 gpecial syntactic forms that are simply convenient alternative surface structures for things that can be written in more uniform ways are
sometimes called syntactic sugar, to use a phrase coined by Peter Landin. In comparison with users of other languages, Lisp programmers, as
arule, are less concerned with matters of syntax. (By contrast, examine any Pascal manual and notice how much of it is devoted to
descriptions of syntax.) Thisdisdain for syntax is due partly to the flexibility of Lisp, which makesit easy to change surface syntax, and partly
to the observation that many " convenient” syntactic constructs, which make the language less uniform, end up causing more trouble than they
are worth when programs become large and complex. In the words of Alan Perlis, *Syntactic sugar causes cancer of the semicolon.”

12 Observe that there are two different operations being combined here: we are creating the procedure, and we are giving it the name
squar e. It ispossible, indeed important, to be able to separate these two notions -- to create procedures without naming them, and to give

names to procedures that have already been created. We will see how to do thisin section 1.3.2.

13 Throughout this book, we will describe the general syntax of expressions by using italic symbols delimited by angle brackets -- e.g.,
<name> -- to denote the “"slots" in the expression to be filled in when such an expression is actually used.

14 More generally, the body of the procedure can be a sequence of expressions. In this case, the interpreter eval uates each expression in the
sequence in turn and returns the value of the final expression as the value of the procedure application.

15 Despite the simplicity of the substitution idea, it turns out to be surprisingly complicated to give arigorous mathematical definition of the
substitution process. The problem arises from the possibility of confusion between the names used for the formal parameters of a procedure
and the (possibly identical) names used in the expressions to which the procedure may be applied. Indeed, there is along history of erroneous
definitions of substitution in the literature of logic and programming semantics. See Stoy 1977 for a careful discussion of substitution.

16 |n chapter 3 we will introduce stream processing, which is away of handling apparently “infinite" data structures by incorporating a
limited form of normal-order evaluation. In section 4.2 we will modify the Scheme interpreter to produce a normal-order variant of Scheme.

17 " Interpreted as either true or false” meansthis: In Scheme, there are two distinguished values that are denoted by the constants #t and #f .
When the interpreter checks a predicate's value, it interprets #f asfalse. Any other value istreated as true. (Thus, providing #t islogically
unnecessary, but it is convenient.) In this book we will use namest r ue and f al se, which are associated with the values #t and #f
respectively.

18 Abs also uses the “minus'" operator - , which, when used with asingle operand, asin (- x) , indicates negation.

19 A minor difference between i f and cond isthat the <e> part of each cond clause may be a sequence of expressions. If the corresponding

<p> isfound to be true, the expressions <e> are evaluated in sequence and the value of the final expression in the sequence is returned as the
valueof thecond. Inani f expression, however, the <consequent> and <alter native> must be single expressions.

20 Declarative and imperative descriptions are intimately related, as indeed are mathematics and computer science. For instance, to say that
the answer produced by a program is “correct” is to make a declarative statement about the program. There is alarge amount of research
aimed at establishing techniques for proving that programs are correct, and much of the technical difficulty of this subject hasto do with
negotiating the transition between imperative statements (from which programs are constructed) and declarative statements (which can be
used to deduce things). In arelated vein, an important current areain programming-language design is the exploration of so-called very high-
level languages, in which one actually programsin terms of declarative statements. The ideais to make interpreters sophisticated enough so
that, given “what is" knowledge specified by the programmer, they can generate ““how to" knowledge automatically. This cannot be donein
general, but there are important areas where progress has been made. We shall revisit thisideain chapter 4.

21 This square-root algorithm is actually a special case of Newton's method, which is a general technique for finding roots of equations. The
square-root algorithm itself was developed by Heron of Alexandriain thefirst century A.D. We will see how to express the general Newton's
method as a Lisp procedurein section 1.3.4.

22 We will usually give predicates names ending with question marks, to help us remember that they are predicates. Thisisjust astylistic
convention. Asfar asthe interpreter is concerned, the question mark isjust an ordinary character.

23 Observe that we express our initial guess as 1.0 rather than 1. This would not make any difference in many Lisp implementations. MIT
Scheme, however, distinguishes between exact integers and decimal values, and dividing two integers produces a rational number rather than

adecimal. For example, dividing 10 by 6 yields 5/3, while dividing 10.0 by 6.0 yields 1.6666666666666667. (\We will learn how to implement
arithmetic on rational numbersin section 2.1.1.) If we start with an initial guess of 1 in our square-root program, and x is an exact integer, all
subsequent values produced in the square-root computation will be rational numbers rather than decimals. Mixed operations on rational
numbers and decimals always yield decimals, so starting with an initial guess of 1.0 forces all subsequent values to be decimals.

24 Readers who are worried about the efficiency issues involved in using procedure calls to implement iteration should note the remarks on
“tail recursion” in section 1.2.1.

25|t js not even clear which of these proceduresis a more efficient implementation. This depends upon the hardware available. There are
machines for which the ““obvious" implementation is the less efficient one. Consider a machine that has extensive tables of logarithms and
antilogarithms stored in a very efficient manner.

26 The concept of consistent renaming is actually subtle and difficult to define formally. Famous logicians have made embarrassing errors
here.

27 |_exical scoping dictates that free variables in a procedure are taken to refer to bindings made by enclosing procedure definitions; that is,
they are looked up in the environment in which the procedure was defined. We will see how thisworksin detail in chapter 3 when we study
environments and the detailed behavior of the interpreter.

28 Embedded definitions must come first in a procedure body. The management is not responsible for the consequences of running programs
that intertwine definition and use.

[Gotofirdt, previous, next page; contents, index|

[Gotofirdt, previous, next page; contents; index|

1.2 Procedures and the Processes They Generate

We have now considered the elements of programming: We have used primitive arithmetic operations, we
have combined these operations, and we have abstracted these composite operations by defining them as
compound procedures. But that is not enough to enable us to say that we know how to program. Our
situation is analogous to that of someone who has learned the rules for how the pieces move in chess but
knows nothing of typical openings, tactics, or strategy. Like the novice chess player, we don't yet know the
common patterns of usage in the domain. We lack the knowledge of which moves are worth making
(which procedures are worth defining). We lack the experience to predict the consequences of making a
move (executing a procedure).

The ability to visualize the consequences of the actions under consideration is crucial to becoming an
expert programmer, just asit isin any synthetic, creative activity. In becoming an expert photographer, for
example, one must learn how to look at a scene and know how dark each region will appear on a print for
each possible choice of exposure and devel opment conditions. Only then can one reason backward,
planning framing, lighting, exposure, and development to obtain the desired effects. So it iswith
programming, where we are planning the course of action to be taken by a process and where we control
the process by means of a program. To become experts, we must learn to visualize the processes generated
by various types of procedures. Only after we have developed such a skill can we learn to reliably
construct programs that exhibit the desired behavior.

A procedure is a pattern for the local evolution of a computational process. It specifies how each stage of
the process is built upon the previous stage. We would like to be able to make statements about the
overall, or global, behavior of a process whose local evolution has been specified by a procedure. Thisis
very difficult to do in general, but we can at least try to describe some typical patterns of process
evolution.

In this section we will examine some common " “shapes' for processes generated by simple procedures.
We will also investigate the rates at which these processes consume the important computational resources
of time and space. The procedures we will consider are very simple. Their role is like that played by test
patterns in photography: as oversimplified prototypical patterns, rather than practical examplesin their
own right.

1.2.1 Linear Recursion and Iteration

(factorial &)
(* & (factorial 5})

(* & (* & (factorial 4}})

f* & (* 5§ (* 4 {factorial 2111}

f* 6§ (* B (v & (* 3 f(factorial 21)11)

f* & (* B (* 4 (* 3 (w 2 (factorial 133131113
(* & (* B (* 4 f* 2 (% 2 13131311]

f* & (* B (* 4 (¥ 2 Z111)

(¥ 6 (¥ 5 (% 4 G)})

(* 6 (* 5 3

(% & 120}

T

Figure 1.3. A linear recursive process for computing 6!.
We begin by considering the factorial function, defined by
Al=n-(n-1(n-2)...3.2.1

There are many ways to compute factorials. One way isto make use of the observation that n! isequal to n
times (n - 1)! for any positive integer n:

al=n[ln-11{(n-2 32 1]=n {n-1}

Thus, we can compute n! by computing (n - 1)! and multiplying the result by n. If we add the stipulation
that 1! isequal to 1, this observation translates directly into a procedure:

(define (factorial n)
(if (=n1l
1
(* n (factorial (- n 1)))))

We can use the substitution model of section 1.1.5 to watch this procedure in action computing 6!, as
shown in figure 1.3.

Now let's take a different perspective on computing factorials. We could describe a rule for computing n!
by specifying that we first multiply 1 by 2, then multiply the result by 3, then by 4, and so on until we
reach n. More formally, we maintain a running product, together with a counter that counts from 1 up to n.
We can describe the computation by saying that the counter and the product simultaneously change from
one step to the next according to the rule

product «— counter - product

counter — counter + 1

and stipulating that n! is the value of the product when the counter exceeds n.

(factorial &)

(fact—iter 1 1 &)
(fact—iter 1 & &)
(fact—iter & 3 &)
(fact—iter 6 4 &)
(fact—iter 24 5 &)
{fact—iter 120 & &)
{fact—iter 720 7 &)

T20

Figure1.4: A linear iterative process for computing 6!.

Once again, we can recast our description as a procedure for computing factorial s:29

(define (factorial n)
(fact-iter 1 1 n))

(define (fact-iter product counter nax-count)
(if (> counter max-count)
pr oduct
(fact-iter (* counter product)
(+ counter 1)
max- count)))

As before, we can use the substitution model to visualize the process of computing 6!, as shown in
figure 1.4.

Compare the two processes. From one point of view, they seem hardly different at al. Both compute the
same mathematical function on the same domain, and each requires a number of steps proportional to n to
compute n!. Indeed, both processes even carry out the same sequence of multiplications, obtaining the
same sequence of partial products. On the other hand, when we consider the ““shapes” of the two
processes, we find that they evolve quite differently.

Consider the first process. The substitution model reveals a shape of expansion followed by contraction,
indicated by the arrow in figure 1.3. The expansion occurs as the process builds up a chain of deferred
operations (in this case, a chain of multiplications). The contraction occurs as the operations are actually
performed. This type of process, characterized by a chain of deferred operations, is called arecursive
process. Carrying out this process requires that the interpreter keep track of the operations to be performed
later on. In the computation of n!, the length of the chain of deferred multiplications, and hence the
amount of information needed to keep track of it, grows linearly with n (is proportional to n), just like the
number of steps. Such aprocessis called alinear recursive process.

By contrast, the second process does not grow and shrink. At each step, all we need to keep track of, for

any n, are the current values of the variables pr oduct , count er, and nax- count . Wecall thisan

iterative process. In general, an iterative process is one whose state can be summarized by a fixed number
of state variables, together with afixed rule that describes how the state variables should be updated as the
process moves from state to state and an (optional) end test that specifies conditions under which the
process should terminate. In computing n!, the number of steps required grows linearly with n. Such a
processis called alinear iterative process.

The contrast between the two processes can be seen in another way. In the iterative case, the program
variables provide a complete description of the state of the process at any point. If we stopped the
computation between steps, al we would need to do to resume the computation is to supply the interpreter
with the values of the three program variables. Not so with the recursive process. In this case there is some
additional “"hidden" information, maintained by the interpreter and not contained in the program variables,
which indicates ““where the processis" in negotiating the chain of deferred operations. The longer the

chain, the more information must be maintained.30

In contrasting iteration and recursion, we must be careful not to confuse the notion of arecursive process
with the notion of arecursive procedure. When we describe a procedure as recursive, we are referring to
the syntactic fact that the procedure definition refers (either directly or indirectly) to the procedure itself.
But when we describe a process as following a pattern that is, say, linearly recursive, we are speaking
about how the process evolves, not about the syntax of how a procedure is written. It may seem disturbing
that we refer to arecursive procedure such asf act - i t er asgenerating an iterative process. However,
the processrealy isiterative: Its state is captured completely by its three state variables, and an interpreter
need keep track of only three variablesin order to execute the process.

One reason that the distinction between process and procedure may be confusing is that most
implementations of common languages (including Ada, Pascal, and C) are designed in such away that the
interpretation of any recursive procedure consumes an amount of memory that grows with the number of
procedure calls, even when the process described is, in principle, iterative. As a consegquence, these
languages can describe iterative processes only by resorting to special-purpose *looping constructs” such
asdo, repeat,until,for,andwhi | e. Theimplementation of Scheme we shall consider in chapter 5
does not share this defect. It will execute an iterative process in constant space, even if theiterative
process is described by arecursive procedure. An implementation with this property is called tail-
recursive. With atail-recursive implementation, iteration can be expressed using the ordinary procedure
call mechanism, so that special iteration constructs are useful only as syntactic sugar.31

Exercise 1.9. Each of the following two procedures defines a method for adding two positive integersin
terms of the proceduresi nc, which incrementsits argument by 1, and dec, which decrementsits

argument by 1.

(define (+ a b)
(if (=ao0)
b

(inc (+ (dec a) b))))
(define (+ a b)

(if (= a 0)
b

(+ (dec a) (inc b))))

Using the substitution model, illustrate the process generated by each procedurein evaluating (+ 4 5).
Are these processes iterative or recursive?

Exercise 1.10. The following procedure computes a mathematical function called Ackermann's function.

(define (A x vy)

(cond ((=y 0) 0)
((=x0) (*2Yy))
((=y 1) 2
(else (A (- x 1)

(Ax (-y 1))))))
What are the values of the following expressions?

(A1 10)
(A 2 4)

(A 3 3)
Consider the following procedures, where A is the procedure defined above:

(define (f n) (A0 n))
(define (g n) (A1n))
(define (h n) (A2 n))
(define (k n) (* 5 nn))

Give concise mathematical definitions for the functions computed by the proceduresf , g, and h for
positive integer values of n. For example, (k n) computes 5n2.

1.2.2 Tree Recursion

Another common pattern of computation is called tree recursion. As an example, consider computing the
sequence of Fibonacci numbers, in which each number is the sum of the preceding two:

0,1,1,7,3,58,13 21, ..

In general, the Fibonacci numbers can be defined by the rule

0 Hn=>0
Fib[ﬂ.j = 1 Hn=1
Fib[ﬂ. — 1:| + Fib{ﬂ. — E} otherwize

We can immediately trandate this definition into a recursive procedure for computing Fibonacci numbers:

(define (fib n)
(cond ((=n 0) 0)
((=n1) 1)

(else (+ (fib (- n 1))

(fib (- n2))))))

fibk &

NN

fib 4 fib =

AN

ANTZANTAIN

fib = £ib 1 £ib 1 fib O
£fib 1) [fib 0 1 1 o
1 0

Figure 1.5: Thetree-recursive process generated in computing (fi b 5).

Consider the pattern of this computation. To compute (fi b 5),wecompute(fib 4) and(fib 3).
Tocompute (fib 4),wecompute(fib 3) and(fib 2).Ingenera, the evolved processlooks like
atree, as shownin figure 1.5. Notice that the branches split into two at each level (except at the bottom);

this reflects the fact that the f i b procedure callsitself twice each timeit isinvoked.

This procedure isinstructive as a prototypical tree recursion, but it is aterrible way to compute Fibonacci
numbers because it does so much redundant computation. Notice in figure 1.5 that the entire computation

of (fi b 3) -- amost haf thework -- isduplicated. In fact, it is not hard to show that the number of
times the procedure will compute (fi b 1) or (fi b 0) (the number of leavesin the abovetree, in
generd) isprecisely Fib(n + 1). To get an idea of how bad thisis, one can show that the value of Fib(n)

grows exponentially with n. More precisely (see exercise 1.13), Fib(n) is the closest integer to gn /‘t-f 5,
where

d= (1452 16180

isthe golden ratio, which satisfies the equation

& =¢+1

Thus, the process uses a number of steps that grows exponentially with the input. On the other hand, the
space required grows only linearly with the input, because we need keep track only of which nodes are
above usin the tree at any point in the computation. In general, the number of steps required by atree-
recursive process will be proportional to the number of nodesin the tree, while the space required will be
proportional to the maximum depth of the tree.

We can also formulate an iterative process for computing the Fibonacci numbers. Theideaisto use apair
of integersa and b, initialized to Fib(1) = 1 and Fib(0) = 0, and to repeatedly apply the simultaneous
transformations

g — a+b

L — &

It is not hard to show that, after applying this transformation n times, a and b will be equal, respectively, to
Fib(n + 1) and Fib(n). Thus, we can compute Fibonacci numbers iteratively using the procedure

(define (fib n)
(fib-iter 1 0 n))

(define (fib-iter a b count)
(if (= count 0)
b
(fib-iter (+ a b) a (- count 1))))

This second method for computing Fib(n) is alinear iteration. The difference in number of steps required
by the two methods -- one linear in n, one growing as fast as Fib(n) itself -- is enormous, even for small
inputs.

One should not conclude from this that tree-recursive processes are useless. When we consider processes
that operate on hierarchically structured data rather than numbers, we will find that tree recursionisa
natural and powerful tool.32 But even in numerical operations, tree-recursive processes can be useful in
helping us to understand and design programs. For instance, although the first f i b procedure is much less
efficient than the second one, it is more straightforward, being little more than atrandlation into Lisp of the

definition of the Fibonacci sequence. To formulate the iterative algorithm required noticing that the
computation could be recast as an iteration with three state variables.

Example: Counting change

It takes only a bit of clevernessto come up with the iterative Fibonacci algorithm. In contrast, consider the
following problem: How many different ways can we make change of $ 1.00, given half-dollars, quarters,
dimes, nickels, and pennies? More generally, can we write a procedure to compute the number of waysto
change any given amount of money?

This problem has a simple solution as a recursive procedure. Suppose we think of the types of coins
available as arranged in some order. Then the following relation holds:

The number of ways to change amount a using n kinds of coins equals
. the number of ways to change amount a using all but the first kind of coin, plus

. the number of ways to change amount a - d using al n kinds of coins, where d is the denomination
of the first kind of coin.

To see why thisistrue, observe that the ways to make change can be divided into two groups: those that
do not use any of thefirst kind of coin, and those that do. Therefore, the total number of ways to make
change for some amount is equal to the number of ways to make change for the amount without using any
of thefirst kind of coin, plus the number of ways to make change assuming that we do use the first kind of
coin. But the latter number is equal to the number of ways to make change for the amount that remains
after using a coin of the first kind.

Thus, we can recursively reduce the problem of changing a given amount to the problem of changing
smaller amounts using fewer kinds of coins. Consider this reduction rule carefully, and convince yourself
that we can use it to describe an algorithm if we specify the following degenerate cases:33

. If aisexactly O, we should count that as 1 way to make change.
. If aislessthan 0, we should count that as 0 ways to make change.
. If nis0, we should count that as 0 ways to make change.

We can easily trandlate this description into a recursive procedure:

(defi ne (count-change anount)
(cc anount 5))
(define (cc anmount ki nds-of - coi ns)
(cond ((= anmount 0) 1)
((or (< anpbunt 0) (= kinds-of-coins 0)) 0)
(el se (+ (cc anount

(- kinds-of-coins 1))
(cc (- anount
(first-denom nati on ki nds-of-coins))
ki nds-of -coins)))))
(define (first-denom nation ki nds-of-coi ns)
(cond ((= kinds-of-coins 1) 1)
((= kinds-of-coins 2) 5)
((= kinds-of-coins 3) 10)
((= kinds-of-coins 4) 25)
((= kinds-of-coins 5) 50)))

(Thefirst-denom nati on procedure takes as input the number of kinds of coins available and

returns the denomination of the first kind. Here we are thinking of the coins as arranged in order from
largest to smallest, but any order would do as well.) We can now answer our original guestion about
changing adollar:

(count - change 100)
292

Count - change generates a tree-recursive process with redundancies similar to those in our first
implementation of f i b. (It will take quite awhile for that 292 to be computed.) On the other hand, it is

not obvious how to design a better algorithm for computing the result, and we leave this problem as a
challenge. The observation that atree-recursive process may be highly inefficient but often easy to specify
and understand has led people to propose that one could get the best of both worlds by designing a™ smart
compiler" that could transform tree-recursive procedures into more efficient procedures that compute the

same result.34

Exercise 1.11. A function f isdefined by the rule that f(n) = nif n<3 and f(n) = f(n - 1) + 2f(n - 2) + 3f(n -
3) if n> 3. Write a procedure that computes f by means of a recursive process. Write a procedure that
computes f by means of an iterative process.

Exercise 1.12. Thefollowing pattern of numbersis called Pascal'striangle.

1
11
1 21
1331
1 +6 11

The numbers at the edge of the triangle are all 1, and each number inside the triangle is the sum of the two

numbers above it.32 Write a procedure that computes elements of Pascal's triangle by means of arecursive
process.

Exercise 1.13. Provethat Fib(n) isthe closest integer to fim/"u“’f5, wheret = a+ %”5)/2. Hint: Let¥ = (a-

v 5)/2. Use induction and the definition of the Fibonacci numbers (see section 1.2.2) to prove that Fib(n) =

@n_¥n)ns,

1.2.3 Orders of Growth

The previous examplesillustrate that processes can differ considerably in the rates at which they consume
computational resources. One convenient way to describe this difference is to use the notion of order of
growth to obtain a gross measure of the resources required by a process as the inputs become larger.

Let n be a parameter that measures the size of the problem, and let R(n) be the amount of resources the
process requires for a problem of size n. In our previous examples we took n to be the number for which a
given function is to be computed, but there are other possibilities. For instance, if our goal isto compute
an approximation to the square root of a number, we might take n to be the number of digits accuracy
required. For matrix multiplication we might take n to be the number of rowsin the matrices. In general
there are anumber of properties of the problem with respect to which it will be desirable to analyze a
given process. Similarly, R(n) might measure the number of internal storage registers used, the number of
elementary machine operations performed, and so on. In computers that do only a fixed number of
operations at atime, the time required will be proportional to the number of elementary machine
operations performed.

We say that R(n) has order of growth €(f(n)), written R(n) = Ei(f(n)) (pronounced "“theta of f(n)"), if there
are positive constants k; and k, independent of n such that

kq _;F(ﬂ.:l < R(ﬂ.} < k-—_:f(ﬂ.}

for any sufficiently large value of n. (In other words, for large n, the value R(n) is sandwiched between
kqf(n) and kyf(n).)

For instance, with the linear recursive process for computing factorial described in section 1.2.1 the
number of steps grows proportionally to the input n. Thus, the steps required for this process grows as
£)(n). We also saw that the space required grows as £(n). For the iterative factorial, the number of stepsis
gtill £)(n) but the space is&)(1) -- that is, constant.3€ The tree-recursive Fibonacci computation requires £)(
f?-'?'“) steps and space £1(n), where tisthe golden ratio described in section 1.2.2.

Orders of growth provide only a crude description of the behavior of a process. For example, a process
requiring n? steps and a process requiring 1000n2 steps and a process requiring 3n2 + 10n + 17 steps all
have €(n?) order of growth. On the other hand, order of growth provides a useful indication of how we
may expect the behavior of the process to change as we change the size of the problem. For a&i(n) (linear)
process, doubling the size will roughly double the amount of resources used. For an exponential process,
each increment in problem size will multiply the resource utilization by a constant factor. In the remainder
of section 1.2 we will examine two algorithms whose order of growth islogarithmic, so that doubling the

problem size increases the resource requirement by a constant amount.

Exercise 1.14. Draw the treeillustrating the process generated by the count - change procedure of

section 1.2.2 in making change for 11 cents. What are the orders of growth of the space and number of
steps used by this process as the amount to be changed increases?

Exercise 1.15. The sine of an angle (specified in radians) can be computed by making use of the
approximation si n x== X if x is sufficiently small, and the trigonometric identity

r r
2nr = 3sin = — dsin® =
3 2

to reduce the size of the argument of si n. (For purposes of this exercise an angle is considered

“aufficiently small” if its magnitude is not greater than 0.1 radians.) These ideas are incorporated in the
following procedures:

(define (cube x) (* x x X))
(define (p x) (- (* 3 x) (* 4 (cube x))))
(define (sine angle)
(if (not (> (abs angle) 0.1))
angl e
(p (sine (/ angle 3.0)))))

a. How many timesisthe procedure p applied when (si ne 12. 15) isevaluated?

b. What isthe order of growth in space and number of steps (as afunction of a) used by the process
generated by the si ne procedure when (si ne a) isevauated?

1.2.4 Exponentiation

Consider the problem of computing the exponential of a given number. We would like a procedure that

takes as arguments a base b and a positive integer exponent n and computes b". One way to do thisisvia
the recursive definition

o= b
B =1

which trand ates readily into the procedure

(define (expt b n)
(if (=n0)
1
(* b (expt b (- n1)))))

Thisisalinear recursive process, which requires £)(n) steps and £)(n) space. Just as with factorial, we can
readily formulate an equivalent linear iteration:

(define (expt b n)
(expt-iter b n 1))

(define (expt-iter b counter product)
(i1f (= counter 0)
pr oduct
(expt-iter b
(- counter 1)
(* b product))))

This version requires €(n) steps and (1) space.

We can compute exponentials in fewer steps by using successive squaring. For instance, rather than
computing b8 as

befb (b (b (b (B (B- BN

we can compute it using three multiplications:

¥ = b b
o= P
o= 5

This method works fine for exponents that are powers of 2. We can also take advantage of successive
sguaring in computing exponentialsin general if we usetherule

it = i:bb-”j? if 77 1z even
Br=4 -l i 92 1z odd

We can express this method as a procedure:

(define (fast-expt b n)
(cond ((=n 0) 1)
((even? n) (square (fast-expt b (/ n 2))))
(else (* b (fast-expt b (- n 1))))))

where the predicate to test whether an integer is even is defined in terms of the primitive procedure
remai nder by

(define (even? n)
(= (remainder n 2) 0))

The process evolved by f ast - expt grows logarithmically with n in both space and number of steps. To
see this, observe that computing b2" using f ast - expt requires only one more multiplication than

computing b". The size of the exponent we can compute therefore doubles (approximately) with every new
multiplication we are allowed. Thus, the number of multiplications required for an exponent of n grows

about as fast as the logarithm of n to the base 2. The process has£(l og n) growth.37

The difference between (I og n) growth and £(n) growth becomes striking as n becomes large. For

example, f ast - expt for n= 1000 requires only 14 multiplications.38 It is also possible to use the idea
of successive squaring to devise an iterative algorithm that computes exponentials with alogarithmic
number of steps (see exercise 1.16), although, asis often the case with iterative algorithms, thisis not

written down so straightforwardly as the recursive algorithm.39

Exercise 1.16. Design aprocedure that evolves an iterative exponentiation process that uses successive
squaring and uses a logarithmic number of steps, asdoesf ast - expt . (Hint: Using the observation that
(b"2)2 = (h2)"'2, keep, along with the exponent n and the base b, an additional state variable a, and define
the state transformation in such away that the product a b" is unchanged from state to state. At the
beginning of the process a is taken to be 1, and the answer is given by the value of a at the end of the
process. In general, the technique of defining an invariant quantity that remains unchanged from state to
state is a powerful way to think about the design of iterative algorithms.)

Exercise 1.17. The exponentiation algorithmsin this section are based on performing exponentiation by
means of repeated multiplication. In asimilar way, one can perform integer multiplication by means of
repeated addition. The following multiplication procedure (in which it is assumed that our language can
only add, not multiply) is analogous to the expt procedure:

(define (* a b)
(if (=b 0
0
(+a(*a(-b1l)))))

This algorithm takes a number of stepsthat islinear in b. Now suppose we include, together with addition,
operationsdoubl e, which doubles an integer, and hal ve, which divides an (even) integer by 2. Using
these, design a multiplication procedure analogousto f ast - expt that uses alogarithmic number of

steps.

Exercise 1.18. Using the results of exercises 1.16 and 1.17, devise a procedure that generates an iterative
process for multiplying two integers in terms of adding, doubling, and halving and uses a logarithmic
number of steps.40

Exercise 1.19. Thereisaclever agorithm for computing the Fibonacci numbersin alogarithmic number
of steps. Recall the transformation of the state variablesa and binthefi b-i t er process of

section 1.2.2: a~— a+ b and b .— a. Call thistransformation T, and observe that applying T over and over
again n times, starting with 1 and O, produces the pair Fib(n + 1) and Fib(n). In other words, the Fibonacci
numbers are produced by applying T", the nth power of the transformation T, starting with the pair (1,0).
Now consider T to be the special case of p=0and = 1in afamily of transformations Ty, where Ty,

transforms the pair (a,b) according to a — bqg + aq + ap and b — bp + ag. Show that if we apply such a
transformation Ty, twice, the effect is the same as using a single transformation Ty, of the same form, and

compute p' and g' in terms of p and g. This gives us an explicit way to square these transformations, and
thus we can compute T" using successive squaring, asin thef ast - expt procedure. Put this all together

to complete the following procedure, which runs in alogarithmic number of steps;4L

(define (fib n)
(fib-iter 12 00 1 n))
(define (fib-iter a b p g count)
(cond ((= count 0) hb)
((even? count)

(fib-iter a
b
<??7> ; conpute p'
<??> ; conpute Q'

(/ count 2)))
(else (fib-iter (+ (* bqg) (* aq) (* ap))
(+ (* bp) (*aaq))
p
q
(- count 1)))))

1.2.5 Greatest Common Divisors

The greatest common divisor (GCD) of two integers a and b is defined to be the largest integer that
divides both a and b with no remainder. For example, the GCD of 16 and 28 is 4. In chapter 2, when we
investigate how to implement rational-number arithmetic, we will need to be able to compute GCDsin
order to reduce rational numbers to lowest terms. (To reduce arational number to lowest terms, we must
divide both the numerator and the denominator by their GCD. For example, 16/28 reducesto 4/7.) One
way to find the GCD of two integersisto factor them and search for common factors, but thereisa
famous algorithm that is much more efficient.

The idea of the algorithm is based on the observation that, if r isthe remainder when ais divided by b,
then the common divisors of a and b are precisely the same as the common divisors of b and r. Thus, we
can use the equation

GCD(a,b) = GCD(b, r)

to successively reduce the problem of computing a GCD to the problem of computing the GCD of smaller
and smaller pairs of integers. For example,

GCD(206,40) = GCD(40,6)

GCD(6,4)

— GCD(4,2)

GCD(2,0)
n

—_

reduces GCD(206,40) to GCD(2,0), which is 2. It is possible to show that starting with any two positive
integers and performing repeated reductions will always eventually produce a pair where the second
number is 0. Then the GCD is the other number in the pair. This method for computing the GCD is known

as Euclid's Algorithm.42

It is easy to express Euclid's Algorithm as a procedure:

(define (gcd a b)
(if (=b 0
a
(gcd b (remainder a b))))

This generates an iterative process, whose number of steps grows as the logarithm of the numbers
involved.

The fact that the number of steps required by Euclid's Algorithm has logarithmic growth bears an
interesting relation to the Fibonacci numbers:

Lamé's Theorem: If Euclid's Algorithm requires k steps to compute the GCD of some pair, then the
smaller number in the pair must be greater than or equal to the kth Fibonacci number.43

We can use this theorem to get an order-of-growth estimate for Euclid's Algorithm. Let n be the smaller of

the two inputs to the procedure. If the process takes k steps, then we must have n> Fib (k) == f?-'ﬁk/‘tf 5.

Therefore the number of steps k grows as the logarithm (to the base ti’) of n. Hence, the order of growth is
£l og n).

Exercise 1.20. The process that a procedure generatesis of course dependent on the rules used by the
interpreter. As an example, consider the iterative gcd procedure given above. Suppose we were to

interpret this procedure using normal-order evaluation, as discussed in section 1.1.5. (The normal-order-
evaluation rulefor i f isdescribed in exercise 1.5.) Using the substitution method (for normal order),
illustrate the process generated in evaluating (gcd 206 40) andindicatether emai nder operations
that are actually performed. How many r emai nder operations are actually performed in the normal-
order evaluation of (gcd 206 40) ?Inthe applicative-order evaluation?

1.2.6 Example: Testing for Primality

This section describes two methods for checking the primality of an integer n, one with order of growth £i(
v n), and a*“probabilistic" algorithm with order of growth (I og n). The exercises at the end of this
section suggest programming projects based on these algorithms.

Searching for divisors

Since ancient times, mathematicians have been fascinated by problems concerning prime numbers, and

many people have worked on the problem of determining ways to test if numbers are prime. One way to
test if anumber is prime isto find the number's divisors. The following program finds the smallest integral
divisor (greater than 1) of a given number n. It does thisin a straightforward way, by testing n for
divisibility by successive integers starting with 2.

(define (smallest-divisor n)
(find-divisor n 2))
(define (find-divisor n test-divisor)
(cond ((> (square test-divisor) n) n)
((divides? test-divisor n) test-divisor)
(else (find-divisor n (+ test-divisor 1)))))
(define (divides? a b)
(= (remainder b a) 0))

We can test whether anumber is prime asfollows: nisprimeif and only if nisits own smallest divisor.

(define (prime? n)
(= n (smallest-divisor n)))

Theendtest for f i nd- di vi sor isbased on the fact that if nisnot prime it must have a divisor less than

or equal to "'n'"'} n.44 This means that the algorithm need only test divisors between 1 and "uf n. Consequently,
the number of steps required to identify n as prime will have order of growth E'("u"'} n).

The Fermat test

The&)(l og n) primality test is based on aresult from number theory known as Fermat's Little Theorem.45

Fermat's Little Theorem: If nisaprime number and a is any positive integer less than n, then a raised to
the nth power is congruent to a modulo n.

(Two numbers are said to be congruent modulo n if they both have the same remainder when divided by n.
The remainder of a number a when divided by nisalso referred to as the remainder of a modulo n, or
simply asa modulo n.)

If nisnot prime, then, in general, most of the numbers a< n will not satisfy the above relation. This leads
to the following algorithm for testing primality: Given a number n, pick a random number a < n and
compute the remainder of a" modulo n. If the result is not equal to a, then niscertainly not prime. If itis
a, then chances are good that nis prime. Now pick another random number a and test it with the same
method. If it also satisfies the equation, then we can be even more confident that n is prime. By trying
more and more values of a, we can increase our confidence in the result. This agorithm is known as the
Fermat test.

To implement the Fermat test, we need a procedure that computes the exponential of a number modulo
another number:

(define (expnod base exp m
(cond ((= exp 0) 1)
((even? exp)
(remai nder (square (expnod base (/ exp 2) m)

m)

(el se

(remai nder (* base (expnod base (- exp 1) m)
m)))

Thisisvery similar tothef ast - expt procedure of section 1.2.4. It uses successive sguaring, so that the
number of steps grows logarithmically with the exponent.4€

The Fermat test is performed by choosing at random a number a between 1 and n - 1 inclusive and
checking whether the remainder modulo n of the nth power of aisequal to a. The random number a is
chosen using the procedure r andom which we assume is included as a primitive in Scheme. Random
returns a nonnegative integer less than its integer input. Hence, to obtain a random number between 1 and
n-1, wecal randomwith an input of n- 1 and add 1 to the result:

(define (fermat-test n)
(define (try-it a)
(= (expnod a n n) a))
(try-it (+ 1 (random (- n 1)))))

The following procedure runs the test a given number of times, as specified by a parameter. Itsvalueis
trueif the test succeeds every time, and false otherwise.

(define (fast-prinme? n tines)
(cond ((=times Q) true)
((fermat-test n) (fast-prime? n (- times 1)))
(el se false)))

Probabilistic methods

The Fermat test differsin character from most familiar algorithms, in which one computes an answer that
is guaranteed to be correct. Here, the answer obtained is only probably correct. More precisely, if n ever
fails the Fermat test, we can be certain that n is not prime. But the fact that n passes the test, while an
extremely strong indication, is still not a guarantee that nis prime. What we would like to say isthat for
any number n, if we perform the test enough times and find that n always passes the test, then the
probability of error in our primality test can be made as small aswelike.

Unfortunately, this assertion is not quite correct. There do exist numbers that fool the Fermat test: numbers
n that are not prime and yet have the property that a" is congruent to a modulo n for al integersa < n.
Such numbers are extremely rare, so the Fermat test is quite reliable in practice. 4/ There are variations of
the Fermat test that cannot be fooled. In these tests, as with the Fermat method, one tests the primality of
an integer n by choosing a random integer a<n and checking some condition that depends upon n and a.
(See exercise 1.28 for an example of such atest.) On the other hand, in contrast to the Fermat test, one can

prove that, for any n, the condition does not hold for most of the integers a<n unlessnisprime. Thus, if n
passes the test for some random choice of a, the chances are better than even that nis prime. If n passes
the test for two random choices of a, the chances are better than 3 out of 4 that nis prime. By running the
test with more and more randomly chosen values of a we can make the probability of error as small aswe
like.

The existence of tests for which one can prove that the chance of error becomes arbitrarily small has
sparked interest in algorithms of this type, which have come to be known as probabilistic algorithms.
Thereisagreat deal of research activity in this area, and probabilistic algorithms have been fruitfully

applied to many fields.48

Exercise 1.21. Usethesmal | est - di vi sor procedure to find the smallest divisor of each of the
following numbers: 199, 1999, 19999.

Exercise 1.22. Most Lisp implementations include a primitive called r unt i me that returns an integer
that specifies the amount of time the system has been running (measured, for example, in microseconds).
Thefollowingti med- pri me-t est procedure, when called with an integer n, prints n and checksto

seeif nisprime. If nis prime, the procedure prints three asterisks followed by the amount of time used in
performing the test.

(define (tinmed-prine-test n)

(new i ne)

(display n)

(start-prime-test n (runtine)))
(define (start-prine-test n start-tine)

(if (prinme? n)

(report-prime (- (runtine) start-tinme))))

(define (report-prinme elapsed-tine)

(display "™ *** ")

(di splay el apsed-tine))

Using this procedure, write aprocedure sear ch- f or - pri nes that checks the primality of consecutive
odd integersin a specified range. Use your procedure to find the three smallest primes larger than 1000;
larger than 10,000; larger than 100,000; larger than 1,000,000. Note the time needed to test each prime.
Since the testing algorithm has order of growth of EI(‘uf n), you should expect that testing for primes
around 10,000 should take about 10 times as long as testing for primes around 1000. Do your timing
data bear this out? How well do the data for 100,000 and 1,000,000 support the vn prediction? Is your

result compatible with the notion that programs on your machine run in time proportiona to the number of
steps required for the computation?

Exercise 1.23. Thesnal | est - di vi sor procedure shown at the start of this section does lots of

needless testing: After it checksto see if the number is divisible by 2 there is no point in checking to see if
itisdivisible by any larger even numbers. This suggests that the values used for t est - di vi sor should

nothe2, 3,4,56,...,butrather 2,3,5,7,9,....Toimplement this change, define a procedure next
that returns 3 if itsinput is equal to 2 and otherwise returnsitsinput plus 2. Modify thesmal | est -
di vi sor proceduretouse (next test-divisor) insteadof (+ test-divisor 1).With

ti med- pri me-test incorporating this modified version of smal | est - di vi sor, run the test for
each of the 12 primes found in exercise 1.22. Since this modification halves the number of test steps, you

should expect it to run about twice as fast. Is this expectation confirmed? If not, what is the observed ratio
of the speeds of the two algorithms, and how do you explain the fact that it is different from 2?

Exercise 1.24. Modify thet i med- pri nme-t est procedure of exercise 1.22tousef ast - pri nme? (the

Fermat method), and test each of the 12 primes you found in that exercise. Since the Fermat test has
£l og n) growth, how would you expect the time to test primes near 1,000,000 to compare with the time

needed to test primes near 10007 Do your data bear this out? Can you explain any discrepancy you find?

Exercise 1.25. Alyssa P. Hacker complains that we went to alot of extrawork in writing expnod. After
all, she says, since we already know how to compute exponentials, we could have simply written

(define (expnod base exp m
(remai nder (fast-expt base exp) m)

Is she correct? Would this procedure serve as well for our fast prime tester? Explain.

Exercise 1.26. Louis Reasoner is having great difficulty doing exercise 1.24. Hisf ast - pri nme? test
seems to run more slowly than hispr i me? test. Louis calls hisfriend EvaLu Ator over to help. When
they examine Louis's code, they find that he has rewritten the exprod procedure to use an explicit
multiplication, rather than calling squar e:

(define (expnod base exp m
(cond ((= exp 0) 1)
((even? exp)
(remai nder (* (expnod base (/ exp 2) m
(expnod base (/ exp 2) m)

m)

(el se

(remai nder (* base (expnod base (- exp 1) m)
m)))

| don't see what difference that could make," says Louis. "I do." says Eva. " By writing the procedure
like that, you have transformed the 2(I og n) process into a&i(n) process.”" Explain.

Exercise 1.27. Demonstrate that the Carmichael numbers listed in footnote 47 really do fool the Fermat

test. That is, write a procedure that takes an integer n and tests whether a" is congruent to a modulo n for
every a<n, and try your procedure on the given Carmichael numbers.

Exercise 1.28. One variant of the Fermat test that cannot be fooled is called the Miller-Rabin test (Miller
1976; Rabin 1980). This starts from an aternate form of Fermat's Little Theorem, which statesthat if nisa
prime number and a is any positive integer less than n, then a raised to the (n - 1)st power is congruent to 1
modulo n. To test the primality of a number n by the Miller-Rabin test, we pick a random number a<n and
raise ato the (n - 1)st power modulo n using the expnod procedure. However, whenever we perform the

sguaring step in expnod, we check to see if we have discovered a "nontrivial square root of 1 modulo n,”
that is, anumber not equal to 1 or n - 1 whose square isequal to 1 modulo n. It is possible to prove that if
such anontrivial square root of 1 exists, then nisnot prime. It is also possibleto provethat if nisan odd
number that is not prime, then, for at least half the numbers a<n, computing a1 in this way will reveal a
nontrivial square root of 1 modulo n. (Thisiswhy the Miller-Rabin test cannot be fooled.) Modify the
expnod procedure to signal if it discovers anontrivia square root of 1, and use this to implement the
Miller-Rabin test with a procedure analogousto f er mat - t est . Check your procedure by testing various
known primes and non-primes. Hint: One convenient way to make expnod signal isto haveit return O.

29 |n areal program we would probably use the block structure introduced in the last section to hide the definition of f act - i t er :

(define (factorial n)
(define (iter product counter)
(if (> counter n)
pr oduct
(iter (* counter product)
(+ counter 1))))
(iter 1 1))

We avoided doing this here so as to minimize the number of things to think about at once.

30 When we discuss the implementation of procedures on register machinesin chapter 5, we will see that any iterative process can be realized
“in hardware" as a machine that has a fixed set of registers and no auxiliary memory. In contrast, realizing a recursive process requires a
machine that uses an auxiliary data structure known as a stack.

31 Tail recursion has long been known as a compiler optimization trick. A coherent semantic basis for tail recursion was provided by Carl
Hewitt (1977), who explained it in terms of the “message-passing” model of computation that we shall discussin chapter 3. Inspired by this,
Gerald Jay Sussman and Guy Lewis Steele Jr. (see Steele 1975) constructed atail-recursive interpreter for Scheme. Steele later showed how
tail recursion is a consequence of the natural way to compile procedure calls (Steele 1977). The |IEEE standard for Scheme requires that
Scheme implementations be tail-recursive.

32 An example of thiswas hinted at in section 1.1.3: The interpreter itself evaluates expressions using a tree-recursive process.

33 For example, work through in detail how the reduction rule applies to the problem of making change for 10 cents using pennies and
nickels.

34 One approach to coping with redundant computations is to arrange matters so that we automatically construct atable of values asthey are
computed. Each time we are asked to apply the procedure to some argument, we first look to seeif the value is already stored in the table, in
which case we avoid performing the redundant computation. This strategy, known as tabulation or memoization, can be implemented in a

straightforward way. Tabulation can sometimes be used to transform processes that require an exponential number of steps (such ascount -

change) into processes whose space and time requirements grow linearly with the input. See exercise 3.27.

35 The elements of Pascal's triangle are called the binomial coefficients, because the nth row consists of the coefficients of the termsin the
expansion of (x + y)". This pattern for computing the coefficients appeared in Blaise Pascal's 1653 seminal work on probability theory, Traité
du triangle arithmétique. According to Knuth (1973), the same pattern appears in the Szu-yuen Yii-chien (" The Precious Mirror of the Four
Elements"), published by the Chinese mathematician Chu Shih-chieh in 1303, in the works of the twelfth-century Persian poet and
mathematician Omar Khayyam, and in the works of the twelfth-century Hindu mathematician Bhéscara Achérya.

36 These statements mask a great deal of oversimplification. For instance, if we count process steps as *“machine operations" we are making
the assumption that the number of machine operations needed to perform, say, amultiplication is independent of the size of the numbersto be

multiplied, which isfalse if the numbers are sufficiently large. Similar remarks hold for the estimates of space. Like the design and description
of aprocess, the analysis of aprocess can be carried out at various levels of abstraction.

37 More precisely, the number of multiplications required is equal to 1 less than the log base 2 of n plus the number of onesin the binary
representation of n. Thistotal is always less than twice the log base 2 of n. The arbitrary constants k; and k; in the definition of order notation

imply that, for alogarithmic process, the base to which logarithms are taken does not matter, so all such processes are described asE'(I og n).
38'Y ou may wonder why anyone would care about raising numbers to the 1000th power. See section 1.2.6.

39 Thisiterative algorithm is ancient. It appears in the Chandah-sutra by Achérya Pingala, written before 200 B.C. See Knuth 1981, section
4.6.3, for afull discussion and analysis of this and other methods of exponentiation.

40 This agorithm, which is sometimes known as the ~"Russian peasant method" of multiplication, is ancient. Examples of its use are found in
the Rhind Papyrus, one of the two oldest mathematical documents in existence, written about 1700 B.C. (and copied from an even older
document) by an Egyptian scribe named A'h-mose.

41 This exercise was suggested to us by Joe Stoy, based on an example in Kaldewaij 1990.

42 Eyclid's Algorithm is so called because it appears in Euclid's Elements (Book 7, ca. 300 B.C.). According to Knuth (1973), it can be
considered the oldest known nontrivia algorithm. The ancient Egyptian method of multiplication (exercise 1.18) is surely older, but, as Knuth

explains, Euclid's algorithm is the oldest known to have been presented as a general algorithm, rather than as a set of illustrative examples.

43 This theorem was proved in 1845 by Gabriel Lamé, a French mathematician and engineer known chiefly for his contributions to
mathematical physics. To prove the theorem, we consider pairs (a ,b,), where a,> by, for which Euclid's Algorithm terminates in k steps. The
proof is based on the claim that, if (a1, brs1) —* (8, b) —* (ay.1, by.1) are three successive pairs in the reduction process, then we must
have b.1> by + by_1. To verify the claim, consider that a reduction step is defined by applying the transformation ay_q = by, by.; = remainder
of a divided by by. The second eguation meansthat a, = qby + by_; for some positive integer g. And since g must be at least 1 we have a, =
gby + b1 > b + b,_1. But in the previous reduction step we have by, = &. Therefore, by,1 = a by + b_1. Thisverifies the claim. Now we
can prove the theorem by induction on k, the number of steps that the algorithm requires to terminate. Theresult istrue for k =1, since this
merely requiresthat b be at least aslarge as Fib(1) = 1. Now, assume that the result is true for all integers less than or equal to k and establish
the result for k + 1. Let (a1, br1) —F (84 b) —* (841, by.1) be successive pairsin the reduction process. By our induction hypotheses, we
have b,_1> Fib(k - 1) and b, > Fib(k). Thus, applying the claim we just proved together with the definition of the Fibonacci numbers gives by,
> by + b.1> Fib(K) + Fib(k - 1) = Fib(k + 1), which completes the proof of Lamés Theorem.

441f disadivisor of n, then soisn/d. But d and n/d cannot both be greater than "u"llln.

45 Pierre de Fermat (1601-1665) is considered to be the founder of modern number theory. He obtained many important number-theoretic
results, but he usually announced just the results, without providing his proofs. Fermat's Little Theorem was stated in a letter he wrote in 1640.
Thefirst published proof was given by Euler in 1736 (and an earlier, identical proof was discovered in the unpublished manuscripts of
Leibniz). The most famous of Fermat's results -- known as Fermat's Last Theorem -- was jotted down in 1637 in his copy of the book
Arithmetic (by the third-century Greek mathematician Diophantus) with the remark I have discovered atruly remarkable proof, but this
margin istoo small to contain it." Finding a proof of Fermat's Last Theorem became one of the most famous challengesin number theory. A
complete solution was finally given in 1995 by Andrew Wiles of Princeton University.

46 The reduction steps in the cases where the exponent e is greater than 1 are based on the fact that, for any integers x, y, and m, we can find
the remainder of x timesy modulo m by computing separately the remainders of x modulo m and y modulo m, multiplying these, and then
taking the remainder of the result modulo m. For instance, in the case where e is even, we compute the remainder of b2 modulo m, square
this, and take the remainder modulo m. This technique is useful because it means we can perform our computation without ever having to deal
with numbers much larger than m. (Compare exercise 1.25.)

47 Numbers that fool the Fermat test are called Carmichael numbers, and little is known about them other than that they are extremely rare.
There are 255 Carmichael numbers below 100,000,000. The smallest few are 561, 1105, 1729, 2465, 2821, and 6601. In testing primality of
very large numbers chosen at random, the chance of stumbling upon a value that fools the Fermat test is less than the chance that cosmic

radiation will cause the computer to make an error in carrying out a ~correct” algorithm. Considering an algorithm to be inadequate for the
first reason but not for the second illustrates the difference between mathematics and engineering.

48 One of the most striking applications of probabilistic prime testing has been to the field of cryptography. Although it is now
computationally infeasible to factor an arbitrary 200-digit number, the primality of such a number can be checked in afew seconds with the
Fermat test. This fact forms the basis of a technique for constructing **unbreakable codes" suggested by Rivest, Shamir, and Adleman (1977).
The resulting RSA algorithm has become awidely used technique for enhancing the security of electronic communications. Because of this
and related developments, the study of prime numbers, once considered the epitome of atopic in ““pure” mathematics to be studied only for its
own sake, now turns out to have important practical applications to cryptography, electronic funds transfer, and information retrieval.

[Gotofirst, previous, next page; contents, index]

[Go tofirst, previous, next page; contents;, index|

1.3 Formulating Abstractions with Higher-Order
Procedures

We have seen that procedures are, in effect, abstractions that describe compound operations on numbers
independent of the particular numbers. For example, when we

(define (cube x) (* x x X))

we are not talking about the cube of a particular number, but rather about a method for obtaining the cube
of any number. Of course we could get along without ever defining this procedure, by always writing
expressions such as

(* 3 3 3)
(* x x x)
(*vyvyy)

and never mentioning cube explicitly. Thiswould place us at a serious disadvantage, forcing usto work
always at the level of the particular operations that happen to be primitives in the language (multiplication,
in this case) rather than in terms of higher-level operations. Our programs would be able to compute cubes,
but our language would lack the ability to express the concept of cubing. One of the things we should
demand from a powerful programming language is the ability to build abstractions by assigning names to
common patterns and then to work in terms of the abstractions directly. Procedures provide this ability.
Thisiswhy al but the most primitive programming languages include mechanisms for defining
procedures.

Y et even in numerical processing we will be severely limited in our ability to create abstractions if we are
restricted to procedures whose parameters must be numbers. Often the same programming pattern will be
used with a number of different procedures. To express such patterns as concepts, we will need to construct
procedures that can accept procedures as arguments or return procedures as values. Procedures that
manipulate procedures are called higher-order procedures. This section shows how higher-order
procedures can serve as powerful abstraction mechanisms, vastly increasing the expressive power of our
language.

1.3.1 Procedures as Arguments

Consider the following three procedures. The first computes the sum of the integers from a through b:

(define (sumintegers a b)
(if (> ab)
0
(+ a (sumintegers (+ a 1) b))))

The second computes the sum of the cubes of the integersin the given range:

(define (sumcubes a b)
(if (> ab)
0
(+ (cube a) (sumcubes (+ a 1) b))))

The third computes the sum of a sequence of termsin the series

Tate s Ta T

which converges to ;/8 (very slowly):42

(define (pi-suma b)
(if (> ab)
0
(+ (/ 1.0 (* a (+a?2))) (pi-sum(+ a 4) b))))

These three procedures clearly share acommon underlying pattern. They are for the most part identical,
differing only in the name of the procedure, the function of a used to compute the term to be added, and

the function that provides the next value of a. We could generate each of the procedures by filling in slots
in the same templ ate:

(define (<nanme> a b)
(if (> ab)
0

(+ (<ternmr a)
(<nanme> (<next> a) b))))

The presence of such acommon pattern is strong evidence that there is a useful abstraction waiting to be
brought to the surface. Indeed, mathematicians long ago identified the abstraction of summation of a series
and invented "sigma notation,"” for example

> fa)= fa) + o+ £

n=a

to express this concept. The power of sigmanotation is that it allows mathematicians to deal with the
concept of summation itself rather than only with particular sums -- for example, to formulate general
results about sums that are independent of the particular series being summed.

Similarly, as program designers, we would like our language to be powerful enough so that we can write a
procedure that expresses the concept of summation itself rather than only procedures that compute
particular sums. We can do so readily in our procedural language by taking the common template shown
above and transforming the “slots" into formal parameters:

(define (sumterma next b)
(if (> ab)
0

(+ (terma)
(sumterm (next a) next b))))

Notice that sumtakes as its arguments the lower and upper bounds a and b together with the procedures
t er mand next . We can use sumjust as we would any procedure. For example, we can use it (along with
aprocedurei nc that incrementsits argument by 1) to definesum cubes:

(define (inc n) (+ n 1))
(define (sumcubes a b)
(sum cube a inc b))

Using this, we can compute the sum of the cubes of the integers from 1 to 10:

(sum cubes 1 10)
3025

With the aid of an identity procedure to compute the term, we can definesum i nt eger s in terms of
sum

(define (identity x) x)

(define (sumintegers a b)
(sumidentity a inc b))

Then we can add up the integers from 1 to 10:

(sumintegers 1 10)
55

We can also define pi - sumin the same way:20

(define (pi-suma b)
(define (pi-termx)
(/ 1.0 (* x (+ x 2))))
(define (pi-next x)
(+ x 4))
(sumpi-terma pi-next b))

Using these procedures, we can compute an approximation to r:

(* 8 (pi-sum 1 1000))
3.139592655589783

Once we have sum we can use it as a building block in formulating further concepts. For instance, the

definite integral of afunction f between the limits a and b can be approximated numerically using the
formula

b ’ o) d)
[f= lf[a.+TI)+f(u+dr+TI)+f(u+2dI+TI)+--- dr

for small values of dx. We can express this directly as a procedure:

(define (integral f a b dx)
(define (add-dx x) (+ x dx))
(* (sumf (+ a (/ dx 2.0)) add-dx b)
dx))
(integral cube 0 1 0.01)

. 24998750000000042
(integral cube 0 1 0.001)

. 249999875000001

(The exact value of the integral of cube betweenOand 1is1/4.)

Exercise 1.29. Simpson's Rule isamore accurate method of numerical integration than the method
illustrated above. Using Simpson's Rule, the integral of a function f between a and b is approximated as

[o+ 4 + 2o+ Lya+ 2+ 4 Zyns Ly + 3

Lo

where h = (b - a)/n, for some even integer n, and y = f(a + kh). (Increasing n increases the accuracy of the

approximation.) Define a procedure that takes as argumentsf, a, b, and n and returns the value of the
integral, computed using Simpson's Rule. Use your procedure to integrate cube between 0 and 1 (withn =

100 and n = 1000), and compare the results to those of thei nt egr al procedure shown above.

Exercise 1.30. The sumprocedure above generates a linear recursion. The procedure can be rewritten so

that the sum is performed iteratively. Show how to do this by filling in the missing expressionsin the
following definition:

(define (sumterma next b)
(define (iter a result)
(if <??2>
<??>
(iter <??> <?7>)))
(iter <??7> <?7>))

Exercise 1.31.

a. Thesumprocedureisonly the simplest of avast number of similar abstractions that can be captured as

higher-order procedures.1 Write an analogous procedure called pr oduct that returns the product of the
values of afunction at points over a given range. Show how to definef act ori al intermsof pr oduct .

Also use pr oduct to compute approximations to 7t using the formula22

o411
3.5,

7| o™

.68 -
BT

| o
L | 12

b. If your pr oduct procedure generates arecursive process, write one that generates an iterative process.
If it generates an iterative process, write one that generates a recursive process.

Exercise 1.32. a. Show that sumand pr oduct (exercise 1.31) are both special cases of a still more
genera notion called accunul at e that combines a collection of terms, using some general accumulation
function:

(accumul ate conbi ner null-value terma next b)

Accurnul at e takes as arguments the same term and range specifications as sumand pr oduct , together
with aconbi ner procedure (of two arguments) that specifies how the current term is to be combined
with the accumulation of the preceding termsand anul | - val ue that specifies what base value to use
when the terms run out. Writeaccunul at e and show how sumand pr oduct can both be defined as
simple callstoaccunul at e.

b. If your accunul at e procedure generates a recursive process, write one that generates an iterative
process. If it generates an iterative process, write one that generates a recursive process.

Exercise 1.33. You can obtain an even more general version of accunul at e (exercise 1.32) by

introducing the notion of afilter on the terms to be combined. That is, combine only those terms derived
from valuesin the range that satisfy a specified condition. Theresultingfi | t er ed- accunul at e

abstraction takes the same arguments as accumul ate, together with an additional predicate of one argument
that specifiesthefilter. Writef i | t er ed- accunul at e asaprocedure. Show how to express the

followingusingfi | t er ed- accunul at e:

a. the sum of the squares of the prime numbersin the interval ato b (assuming that you haveapri ne?
predicate already written)

b. the product of all the positive integers less than n that are relatively primeto n (i.e., al positive integersi
< nsuch that GCD(i,n) = 1).

1.3.2 Constructing Procedures Using Lanbda

Inusing sumasin section 1.3.1, it seems terribly awkward to have to define trivial procedures such as pi -
t er mand pi - next just so we can use them as arguments to our higher-order procedure. Rather than

definepi - next and pi -t er m it would be more convenient to have away to directly specify " "the

procedure that returns its input incremented by 4" and ""the procedure that returns the reciprocal of itsinput
timesitsinput plus 2." We can do this by introducing the special form | anbda, which creates procedures.

Using | ambda we can describe what we want as
(lambda (x) (+ x 4))

and

(lambda (x) (/ 1.0 (* x (+ x 2))))

Then our pi - sumprocedure can be expressed without defining any auxiliary procedures as

(define (pi-suma b)
(sum (lanmbda (x) (/ 1.0 (* x (+ x 2))))
a
(lambda (x) (+ x 4))

b))

Againusing | anbda, we can writethei nt egr al procedure without having to define the auxiliary
procedure add- dx:

(define (integral f a b dx)
(* (sumf
(+ a (/ dx 2.0))
(lanmbda (x) (+ x dx))
b)
dx))

In general, | anbda isused to create procedures in the same way asdef i ne, except that no nameis
specified for the procedure:

(I anbda (<formal - paraneters>) <body>)

The resulting procedure is just as much a procedure as one that is created using def i ne. The only
difference isthat it has not been associated with any name in the environment. In fact,

(define (plus4 x) (+ x 4))

Isequivalent to

(define plus4 (lanbda (x) (+ x 4)))

We canread al anbda expression as follows:

(1 anbda (x) (+ X 4))
T T 1 1

t he procedure of an argunment x that adds x and 4

Like any expression that has a procedure asits value, al anmbda expression can be used as the operator in
a combination such as

((lanbda (x y z) (+ x y (square z))) 1 2 3)
12

or, more generally, in any context where we would normally use a procedure name.23

Using | et to create local variables

Another use of | anbda isin creating local variables. We often need local variablesin our procedures

other than those that have been bound as formal parameters. For example, suppose we wish to compute the
function

flry) =+ i + ol -) + (14 rd(1 — o)
which we could also express as

o = 14 ry
b =1—y
flzr,y) = ra®4 yb+ab

In writing a procedure to compute f, we would like to include as local variables not only x and y but also
the names of intermediate quantities like a and b. One way to accomplish thisisto use an auxiliary
procedure to bind the local variables:

(define (f x vy)
(define (f-helper a b)
(+ (* x (square a))
(* y b)
(* ab)))
(f-helper (+ 1 (* xvy))
(- 1y)))

Of course, we could use al anmbda expression to specify an anonymous procedure for binding our local
variables. The body of f then becomes a single call to that procedure:

(define (f x vy)
((lambda (a b)

(+ (* x (square a))
(* y b)
(* ab)))
(+1(* xvy))
(- 1y)))

This construct is so useful that thereisaspecial form called | et to make its use more convenient. Using
| et , thef procedure could be written as

(define (f x vy)
(let ((a (+ 1 (* xy)))
(b (- 1y)))

(+ (* x (square a))
(* y b)
(* ab))))

The general form of al et expressionis

(let ((<var,> <exp;>)
(<vary> <expy>)

(<var > <exp,>))
<body>)

which can be thought of as saying

let <var,> have the value <exp,;> and

<var,> have the value <exp,> and

<var,> have the value <exp,>

in <body>

Thefirst part of thel et expressionisalist of name-expression pairs. Whenthel et isevaluated, each
name is associated with the value of the corresponding expression. The body of thel et isevaluated with
these names bound as local variables. The way this happensisthat thel et expressionisinterpreted as an
alternate syntax for

((lambda (<varq,> ...<var,>)
<body>)
<expi>

<exp,>)

No new mechanism is required in the interpreter in order to provide local variables. A | et expressionis
simply syntactic sugar for the underlying | ambda application.

We can see from this equivalence that the scope of avariable specified by al et expression isthe body of
thel et . Thisimplies that:

. Let alowsoneto bind variables aslocally as possible to where they are to be used. For example,
if the value of x is5, the value of the expression

(+ (let ((x 3))
(+ x (* x 10)))
X)

is 38. Here, the x inthe body of thel et is3, sothevalueof thel et expressionis33. On the
other hand, the x that is the second argument to the outermost + is still 5.

. Thevariables values are computed outside the | et . This matters when the expressions that

provide the values for the local variables depend upon variables having the same names as the
local variables themselves. For example, if the value of x is 2, the expression

(let ((x 3)
(y (+x 2)))
(* xy))

will have the value 12 because, inside the body of thel et , x will be 3 andy will be 4 (whichis
the outer x plus 2).

Sometimes we can use internal definitions to get the same effect aswith | et . For example, we could have
defined the procedure f above as

(define (f x vy)
(define a (+ 1 (* x vy)))
(define b (- 1vy))
(+ (* x (square a))
(* y b)
(* ab)))

We prefer, however, to usel et in situations like this and to use internal def i ne only for internal
procedures.24

Exercise 1.34. Suppose we define the procedure

(define (f 9)
(9 2))

Then we have

(f square)
4

(f (lambda (z) (* z (+ z 1))))
6

What happensif we (perversely) ask the interpreter to evaluate the combination (f f) ? Explain.

1.3.3 Procedures as General Methods

We introduced compound procedures in section 1.1.4 as a mechanism for abstracting patterns of numerical
operations so as to make them independent of the particular numbers involved. With higher-order
procedures, such asthei nt egr al procedure of section 1.3.1, we began to see a more powerful kind of
abstraction: procedures used to express general methods of computation, independent of the particular
functions involved. In this section we discuss two more elaborate examples -- general methods for finding
zeros and fixed points of functions -- and show how these methods can be expressed directly as
procedures.

Finding roots of equations by the half-interval method

The half-interval method is a simple but powerful technique for finding roots of an equation f(x) = 0, where
f isacontinuous function. The ideaisthat, if we are given points a and b such that f(a) < 0 < f(b), then f
must have at least one zero between aand b. To locate a zero, let x be the average of a and b and compute
f(x). If f(x) > O, then f must have a zero between a and x. If f(x) <0, then f must have a zero between x and
b. Continuing in this way, we can identify smaller and smaller intervals on which f must have a zero. When
we reach a point where the interval is small enough, the process stops. Since the interval of uncertainty is
reduced by half at each step of the process, the number of steps required grows as&X(l og(L/T)), where L
is the length of the original interval and T isthe error tolerance (that is, the size of the interval we will
consider ““small enough"). Here is a procedure that implements this strategy:

(define (search f neg-point pos-point)
(let ((mdpoint (average neg-point pos-point)))
(if (cl ose-enough? neg-poi nt pos-point)
m dpoi nt
(let ((test-value (f mdpoint)))
(cond ((positive? test-val ue)
(search f neg-point m dpoint))
((negative? test-val ue)
(search f m dpoi nt pos-point))
(el se mdpoint))))))

We assume that we are initialy given the function f together with points at which its values are negative
and positive. We first compute the midpoint of the two given points. Next we check to seeif the given

interval is small enough, and if so we simply return the midpoint as our answer. Otherwise, we compute as
atest value the value of f at the midpoint. If the test value is positive, then we continue the process with a
new interval running from the original negative point to the midpoint. If the test value is negative, we
continue with the interval from the midpoint to the positive point. Finally, thereis the possibility that the
test value is O, in which case the midpoint isitself the root we are searching for.

To test whether the endpoints are " close enough™” we can use a procedure similar to the one used in
section 1.1.7 for computing square roots:25

(define (close-enough? x vy)
(< (abs (- x y)) 0.001))

Sear ch isawkward to use directly, because we can accidentally give it points at which f's values do not
have the required sign, in which case we get awrong answer. Instead we will use sear ch viathe
following procedure, which checks to see which of the endpoints has a negative function value and which
has a positive value, and callsthe sear ch procedure accordingly. If the function has the same sign on the

two given points, the haf-interval method cannot be used, in which case the procedure signals an error.26

(define (half-interval-nethod f a b)
(let ((a-value (f a))
(b-value (f b)))
(cond ((and (negative? a-value) (positive? b-value))
(search f a b))
((and (negative? b-value) (positive? a-value))
(search f b a))
(el se
(error "Values are not of opposite sign" a b)))))

The following example uses the half-interval method to approximate =r as the root between 2 and 4 of si n
x=0:

(half-interval -method sin 2.0 4.0)
3.14111328125

Here is another example, using the half-interval method to search for aroot of the equation x3 - 2x-3=0
between 1 and 2:

(hal f-interval -nethod (lanbda (x) (- (* x x x) (* 2 x) 3))
1.0
2.0)

1. 89306640625

Finding fixed points of functions

A number x is called afixed point of afunction f if x satisfies the equation f(x) = x. For some functions f we
can locate afixed point by beginning with an initial guess and applying f repeatedly,

Fleh, FUFCE)), FUFLFCEN,

until the value does not change very much. Using thisidea, we can devise aproceduref i xed- poi nt

that takes as inputs a function and an initial guess and produces an approximation to afixed point of the
function. We apply the function repeatedly until we find two successive values whose difference isless
than some prescribed tolerance:

(define tol erance 0.00001)
(define (fixed-point f first-guess)
(define (close-enough? vl v2)
(< (abs (- vl v2)) tolerance))
(define (try guess)
(let ((next (f guess)))
(if (cl ose-enough? guess next)
next

(try next))))
(try first-guess))

For example, we can use this method to approximate the fixed point of the cosine function, starting with 1
asaninitia approximation:2/

(fixed-point cos 1.0)
. 7390822985224023

Similarly, we can find a solution to the equationy =si ny+ cos y:

(fixed-point (lanmbda (y) (+ (sin y) (cos y)))
1.0)

1. 2587315962971173

The fixed-point process is reminiscent of the process we used for finding square rootsin section 1.1.7.
Both are based on the idea of repeatedly improving a guess until the result satisfies some criterion. In fact,
we can readily formulate the square-root computation as a fixed-point search. Computing the square root
of some number x requires finding ay such that y2 = x. Putting this equation into the equivalent formy =
xly, we recognize that we are looking for a fixed point of the function®8 y — x/y, and we can therefore try
to compute square roots as

(define (sqrt x)
(fixed-point (lanmbda (y) (/ X y))
1.0))

Unfortunately, this fixed-point search does not converge. Consider an initial guessy;. The next guessisy-,
= xly; and the next guessisyz = x/y, = x/(x/y1) = y;. Thisresultsin an infinite loop in which the two
guesses y; and y, repeat over and over, oscillating about the answer.

One way to control such oscillationsisto prevent the guesses from changing so much. Since the answer is
always between our guess y and x/y, we can make a new guess that is not as far fromy as x/y by averaging
y with x/y, so that the next guess after y is (1/2)(y + x/y) instead of x/y. The process of making such a
sequence of guessesis simply the process of looking for afixed point of y — (1/2)(y + X/y):

(define (sqgrt x)
(fixed-point (lanbda (y) (average y (/ x vy)))
1.0))

(Notethat y = (1/2)(y + x/y) isasimple transformation of the equation y = x/y; to deriveit, add y to both
sides of the equation and divide by 2.)

With this modification, the square-root procedure works. In fact, if we unravel the definitions, we can see
that the sequence of approximations to the square root generated here is precisely the same as the one
generated by our original square-root procedure of section 1.1.7. This approach of averaging successive

approximations to a solution, a technique we that we call average damping, often aids the convergence of
fixed-point searches.

Exercise 1.35. Show that the golden ratio i (section 1.2.2) isafixed point of the transformation x — 1 +
1/x, and use this fact to computef?f? by means of thef i xed- poi nt procedure.

Exercise 1.36. Modify fi xed- poi nt sothat it prints the sequence of approximations it generates, using
thenew i ne and di spl ay primitives shown in exercise 1.22. Then find a solution to XX = 1000 by
finding afixed point of x| 0g(1000)/I og(x). (Use Scheme's primitive | og procedure, which computes

natural logarithms.) Compare the number of steps this takes with and without average damping. (Note that
you cannot start f i xed- poi nt with aguessof 1, asthiswould cause division by | og(1) =0.)

Exercise 1.37. a. Aninfinite continued fraction is an expression of the form

D?-l_—ﬂa—l—---

As an example, one can show that the infinite continued fraction expansion with the N; and the D; all equal

to 1 produces 1/, where # isthe golden ratio (described in section 1.2.2). One way to approximate an

infinite continued fraction is to truncate the expansion after a given number of terms. Such atruncation -- a
so-called k-term finite continued fraction -- has the form

Suppose that n and d are procedures of one argument (the term index i) that return the N; and D; of the
terms of the continued fraction. Define a procedure cont - f r ac such that evaluating (cont -frac n
d k) computesthe value of the k-term finite continued fraction. Check your procedure by approximating

1/ usi ng

(cont-frac (lanmbda (i) 1.0)
(lambda (i) 1.0)
k)

for successive values of k. How large must you make k in order to get an approximation that is accurate to
4 decimal places?

b. If your cont - f r ac procedure generates a recursive process, write one that generates an iterative
process. If it generates an iterative process, write one that generates a recursive process.

Exercise 1.38. In 1737, the Swiss mathematician Leonhard Euler published a memoir De Fractionibus
Continuis, which included a continued fraction expansion for e - 2, where e is the base of the natural
logarithms. In thisfraction, the N; are all 1, and the D; are successively 1, 2,1, 1,4,1,1,6,1,1,8,
Write aprogram that uses your cont - f r ac procedure from exercise 1.37 to approximate e, based on
Euler's expansion.

Exercise 1.39. A continued fraction representation of the tangent function was published in 1770 by the
German mathematician J.H. Lambert:

tanr = 3

where x isin radians. Define aprocedure (t an- cf x k) that computes an approximation to the tangent
function based on Lambert's formula. K specifies the number of terms to compute, asin exercise 1.37.

1.3.4 Procedures as Returned Values

The above examples demonstrate how the ability to pass procedures as arguments significantly enhances
the expressive power of our programming language. We can achieve even more expressive power by
creating procedures whose returned values are themselves procedures.

We can illustrate this idea by looking again at the fixed-point example described at the end of section 1.3.3.
We formulated a new version of the square-root procedure as a fixed-point search, starting with the
observation that %' is afixed-point of the function y — Xx/y. Then we used average damping to make the

approximations converge. Average damping is a useful general techniquein itself. Namely, given a
function f, we consider the function whose value at x is equal to the average of x and f(x).

We can express the idea of average damping by means of the following procedure:

(define (average-danp f)
(lanbda (x) (average x (f x))))

Aver age- danp isaprocedure that takes asits argument aproceduref and returnsasitsvalue a
procedure (produced by thel anbda) that, when applied to a number x, produces the average of x and (f
X) . For example, applying aver age- danp to the squar e procedure produces a procedure whose value
at some number x is the average of x and x2. Applying this resulting procedure to 10 returns the average of
10 and 100, or 55:59

((average-danp square) 10)
55

Using aver age- danp, we can reformulate the square-root procedure as follows:

(define (sqrt x)
(fixed-point (average-danmp (lanmbda (y) (/ x y)))
1.0))

Notice how this formulation makes explicit the three ideas in the method: fixed-point search, average
damping, and the function y — X/y. It isinstructive to compare this formulation of the square-root method
with the original version given in section 1.1.7. Bear in mind that these procedures express the same
process, and notice how much clearer the idea becomes when we express the process in terms of these
abstractions. In general, there are many ways to formulate a process as a procedure. Experienced
programmers know how to choose procedural formulations that are particularly perspicuous, and where
useful elements of the process are exposed as separate entities that can be reused in other applications. Asa
simple example of reuse, notice that the cube root of x is afixed point of the function y — x/y2, so we can
immediately generalize our square-root procedure to one that extracts cube roots:60

(define (cube-root x)
(fixed-point (average-danp (lanmbda (y) (/ x (square y))))
1.0))

Newton's method

When we first introduced the square-root procedure, in section 1.1.7, we mentioned that this was a special

case of Newton's method. If x — g(x) is a differentiable function, then a solution of the equation g(x) = 0is
afixed point of the function x — f(x) where

== 355

and Dg(x) isthe derivative of g evaluated at x. Newton's method is the use of the fixed-point method we
saw above to approximate a solution of the equation by finding a fixed point of the function f.61 For many
functions g and for sufficiently good initial guesses for x, Newton's method converges very rapidly to a
solution of g(x) = 0.62

In order to implement Newton's method as a procedure, we must first express the idea of derivative. Note
that "derivative," like average damping, is something that transforms a function into another function. For
instance, the derivative of the function x — x3 is the function x — 3x2. In general, if g isafunction and dx
isasmall number, then the derivative Dg of g is the function whose value at any number x is given (in the
limit of small dx) by

(r+dr) —glr)
Dy(z) = DT—L—F

Thus, we can express the idea of derivative (taking dx to be, say, 0.00001) as the procedure

(define (deriv Q)
(lambda (x)
(/ (- (g (+ x dx)) (g x))
dx)))

along with the definition

(define dx 0.00001)

Likeaver age- danp, deri v isaprocedure that takes a procedure as argument and returns a procedure

asvalue. For example, to approximate the derivative of x — x3 at 5 (whose exact value is 75) we can
evaluate

(define (cube x) (* x X X))
((deriv cube) 5)

75.00014999664018
With the aid of der i v, we can express Newton's method as a fixed-point process:

(define (newton-transform g)
(1 anbda (x)
(- x (/ (g x) ((deriv g) x)))))
(define (newtons-nethod g guess)
(fixed-point (newon-transform g) guess))

Thenewt on-t r ansf or mprocedure expresses the formula at the beginning of this section, and

newt ons- net hod isreadily defined in terms of this. It takes as arguments a procedure that computes the
function for which we want to find a zero, together with an initial guess. For instance, to find the square
root of x, we can use Newton's method to find a zero of the function y — y2 - x starting with an initial

guess of 1.63 This provides yet another form of the square-root procedure:

(define (sqgqrt x)

(newt ons-nethod (lanmbda (y) (- (square y) X))
1.0))

Abstractions and first-class procedures

We've seen two ways to express the square-root computation as an instance of a more general method,
once as a fixed-point search and once using Newton's method. Since Newton's method was itself expressed
as afixed-point process, we actually saw two ways to compute square roots as fixed points. Each method
begins with a function and finds a fixed point of some transformation of the function. We can express this
genera ideaitself as a procedure:

(define (fixed-point-of-transformg transform guess)
(fixed-point (transformg) guess))

Thisvery general procedure takes as its arguments a procedure g that computes some function, a procedure
that transforms g, and an initial guess. The returned result is afixed point of the transformed function.

Using this abstraction, we can recast the first square-root computation from this section (where we look for
afixed point of the average-damped version of y — x/y) as an instance of this general method:

(define (sqrt x)
(fixed-point-of-transform (lanbda (y) (/ x y))
aver age- danp
1.0))

Similarly, we can express the second square-root computation from this section (an instance of Newton's
method that finds a fixed point of the Newton transform of y — y2 - X) as

(define (sqgrt x)
(fixed-point-of-transform (lanbda (y) (- (square y) X))
newt on-transform
1.0))

We began section 1.3 with the observation that compound procedures are a crucial abstraction mechanism,
because they permit usto express general methods of computing as explicit elementsin our programming

language. Now we've seen how higher-order procedures permit us to manipulate these general methods to

create further abstractions.

As programmers, we should be alert to opportunities to identify the underlying abstractions in our
programs and to build upon them and generalize them to create more powerful abstractions. Thisis not to
say that one should always write programs in the most abstract way possible; expert programmers know
how to choose the level of abstraction appropriate to their task. But it isimportant to be able to think in
terms of these abstractions, so that we can be ready to apply them in new contexts. The significance of
higher-order proceduresis that they enable usto represent these abstractions explicitly as elementsin our
programming language, so that they can be handled just like other computational elements.

In general, programming languages impose restrictions on the ways in which computational elements can
be manipulated. Elements with the fewest restrictions are said to have first-class status. Some of the

“rights and privileges' of first-class elements are:64

. They may be named by variables.
. They may be passed as arguments to procedures.
. They may be returned as the results of procedures.

. They may beincluded in data structures.6>

Lisp, unlike other common programming languages, awards procedures full first-class status. This poses
challenges for efficient implementation, but the resulting gain in expressive power is enormous.56

Exercise 1.40. Define aprocedure cubi c that can be used together with the newt ons- net hod
procedure in expressions of the form

(newt ons-nethod (cubic a b c) 1)

to approximate zeros of the cubic x3 + ax2 + bx + c.

Exercise 1.41. Define aprocedure doubl e that takes a procedure of one argument as argument and
returns a procedure that applies the origina procedure twice. For example, if i nc isa procedure that adds
1 to itsargument, then (doubl e i nc) should be a procedure that adds 2. What value is returned by

(((doubl e (doubl e double)) inc) 5)

Exercise 1.42. Let f and g be two one-argument functions. The composition f after g is defined to be the
function x— f(g(x)). Define a procedure conpose that implements composition. For example, if i nc isa

procedure that adds 1 to its argument,

((conpose square inc) 6)
49

Exercise 1.43. If fisanumerical function and nis apositive integer, then we can form the nth repeated
application of f, which is defined to be the function whose value at x isf(f(. . . (f(x)). . .)). For example, if

fisthe function x — x + 1, then the nth repeated application of f isthe function x — x + n. If fisthe
operation of squaring a number, then the nth repeated application of f isthe function that raisesits
argument to the 2"th power. Write a procedure that takes as inputs a procedure that computes f and a

positive integer n and returns the procedure that computes the nth repeated application of f. Y our procedure
should be able to be used as follows:

((repeated square 2) 5)
625

Hint: Y ou may find it convenient to use conpose from exercise 1.42.

Exercise 1.44. Theideaof smoothing afunction is an important concept in signal processing. If fisa
function and dx is some small number, then the smoothed version of f is the function whose value at a point
x isthe average of f(x - dx), f(x), and f(x + dx). Write a procedure snoot h that takes as input a procedure
that computes f and returns a procedure that computes the smoothed f. It is sometimes valuable to
repeatedly smooth afunction (that is, smooth the smoothed function, and so on) to obtained the n-fold
smoothed function. Show how to generate the n-fold smoothed function of any given function using

snoot h andr epeat ed from exercise 1.43.

Exercise 1.45. We saw in section 1.3.3 that attempting to compute square roots by naively finding a fixed
point of y — X/y does not converge, and that this can be fixed by average damping. The same method
works for finding cube roots as fixed points of the average-damped y — x/y2. Unfortunately, the process
does not work for fourth roots -- a single average damp is not enough to make afixed-point search for y —
x/y3 converge. On the other hand, if we average damp twice (i.e., use the average damp of the average
damp of y — x/y3) the fixed-point search does converge. Do some experiments to determine how many
average damps are required to compute nth roots as a fixed-point search based upon repeated average
damping of y — x/y1. Use this to implement a simple procedure for computing nth rootsusing f i xed-
poi nt ,aver age- danp, andther epeat ed procedure of exercise 1.43. Assume that any arithmetic
operations you need are available as primitives.

Exercise 1.46. Severa of the numerical methods described in this chapter are instances of an extremely
general computational strategy known as iterative improvement. Iterative improvement says that, to
compute something, we start with aninitial guess for the answer, test if the guess is good enough, and
otherwise improve the guess and continue the process using the improved guess as the new guess. Write a
procedurei t er ati ve-i npr ove that takes two procedures as arguments. a method for telling whether a
guess is good enough and a method for improving aguess. | t er at i ve- i npr ove should return asits

value a procedure that takes a guess as argument and keeps improving the guess until it is good enough.
Rewritethesqrt procedure of section 1.1.7 and thef i xed- poi nt procedure of section 1.3.3 in terms

ofiterative-inprove.

49 This series, usually written in the equivalent form (3T/4) = 1 - (1/3) + (U/5) - (/7) + - - -, isdueto Leibniz. We'll see how to use this as the
basis for some fancy numerical tricksin section 3.5.3.

50 Notice that we have used block structure (section 1.1.8) to embed the definitions of pi - next and pi - t er mwithin pi - sum since these
procedures are unlikely to be useful for any other purpose. We will see how to get rid of them altogether in section 1.3.2.

51 The intent of exercises 1.31-1.33 is to demonstrate the expressive power that is attained by using an appropriate abstraction to consolidate

many seemingly disparate operations. However, though accumulation and filtering are elegant ideas, our hands are somewhat tied in using
them at this point since we do not yet have data structures to provide suitable means of combination for these abstractions. We will return to
theseideasin section 2.2.3 when we show how to use sequences as interfaces for combining filters and accumulators to build even more

powerful abstractions. We will see there how these methods really comeinto their own as a powerful and elegant approach to designing
programs.

52 This formulawas discovered by the seventeenth-century English mathematician John Wallis.

53 |t would be clearer and less intimidating to people learning Lisp if aname more obviousthan | anbda, such as make- pr ocedur e, were
used. But the convention is firmly entrenched. The notation is adopted from the A caleul us, amathematical formalism introduced by the
mathematical logician Alonzo Church (1941). Church devel oped the A calculusto provide arigorous foundation for studying the notions of

function and function application. The 4 calculus has become a basic tool for mathematical investigations of the semantics of programming
languages.

54 Understanding internal definitions well enough to be sure a program means what we intend it to mean requires a more elaborate model of
the evaluation process than we have presented in this chapter. The subtleties do not arise with internal definitions of procedures, however. We
will return to thisissue in section 4.1.6, after we learn more about evaluation.

55 We have used 0.001 as a representative “small" number to indicate atolerance for the acceptable error in a calculation. The appropriate
tolerance for areal calculation depends upon the problem to be solved and the limitations of the computer and the algorithm. Thisis often a
very subtle consideration, requiring help from a numerical analyst or some other kind of magician.

56 This can be accomplished using er r or , which takes as arguments a number of items that are printed as error messages.

S7 Try this during a boring lecture: Set your calculator to radians mode and then repeatedly press the cos button until you obtain the fixed
point.

S8 |— (pronounced “maps to") is the mathematician's way of writing | anbda. y — x/y means (1 anbda(y) (/ x y)),thatis, the
function whose value at y is x/y.

59 Observe that thisis a combination whose operator is itself a combination. Exercise 1.4 aready demonstrated the ability to form such

combinations, but that was only atoy example. Here we begin to see the real need for such combinations -- when applying a procedure that is
obtained as the value returned by a higher-order procedure.

60 See exercise 1.45 for afurther generalization.

61 Elementary cal culus books usually describe Newton's method in terms of the sequence of approximations X,.q = X, - 9(%,)/Dg(%y). Having
language for talking about processes and using the idea of fixed points simplifies the description of the method.

62 Newton's method does not always converge to an answer, but it can be shown that in favorable cases each iteration doubles the number-of-
digits accuracy of the approximation to the solution. In such cases, Newton's method will converge much more rapidly than the half-interval
method.

83 For finding square roots, Newton's method converges rapidly to the correct solution from any starting point.

64 The notion of first-class status of programming-language elements is due to the British computer scientist Christopher Strachey (1916-
1975).

85 We'll see examples of this after we introduce data structures in chapter 2.

66 The major implementation cost of first-class procedures is that allowing procedures to be returned as values requires reserving storage for a
procedure's free variables even while the procedure is not executing. In the Scheme implementation we will study in section 4.1, these

variables are stored in the procedure's environment.

[Go tofirst, previous, next page; contents; index|

[Gotofirdt, previous, next page; contents; index|

Chapter 2

Building Abstractions with Data

We now come to the decisive step of mathematical abstraction: we forget about
what the symbols stand for. . . . [The mathematician] need not beidle; there are

many operations which he may carry out with these symbols, without ever having
to look at the things they stand for.

Hermann Weyl, The Mathematical Way of Thinking

We concentrated in chapter 1 on computational processes and on the role of procedures in program design.
We saw how to use primitive data (numbers) and primitive operations (arithmetic operations), how to
combine procedures to form compound procedures through composition, conditionals, and the use of
parameters, and how to abstract procedures by using def i ne. We saw that a procedure can be regarded

as apattern for the local evolution of a process, and we classified, reasoned about, and performed simple
algorithmic analyses of some common patterns for processes as embodied in procedures. We also saw that
higher-order procedures enhance the power of our language by enabling us to manipulate, and thereby to
reason in terms of, general methods of computation. Thisis much of the essence of programming.

In this chapter we are going to look at more complex data. All the procedures in chapter 1 operate on
simple numerical data, and simple data are not sufficient for many of the problems we wish to address
using computation. Programs are typically designed to model complex phenomena, and more often than
not one must construct computational objects that have several partsin order to model real-world
phenomena that have several aspects. Thus, whereas our focus in chapter 1 was on building abstractions
by combining procedures to form compound procedures, we turn in this chapter to another key aspect of
any programming language: the means it provides for building abstractions by combining data objects to
form compound data.

Why do we want compound data in a programming language? For the same reasons that we want
compound procedures: to elevate the conceptual level at which we can design our programs, to increase
the modularity of our designs, and to enhance the expressive power of our language. Just as the ability to
define procedures enables us to deal with processes at a higher conceptual level than that of the primitive
operations of the language, the ability to construct compound data objects enables us to deal with dataat a
higher conceptual level than that of the primitive data objects of the language.

Consider the task of designing a system to perform arithmetic with rational numbers. We could imagine an
operation add- r at that takes two rational numbers and produces their sum. In terms of simple data, a
rational number can be thought of as two integers: a numerator and a denominator. Thus, we could design
aprogram in which each rational number would be represented by two integers (a numerator and a
denominator) and where add- r at would be implemented by two procedures (one producing the

numerator of the sum and one producing the denominator). But this would be awkward, because we would
then need to explicitly keep track of which numerators corresponded to which denominators. In a system
intended to perform many operations on many rational numbers, such bookkeeping details would clutter
the programs substantially, to say nothing of what they would do to our minds. It would be much better if
we could " glue together" a numerator and denominator to form a pair -- a compound data object -- that
our programs could manipulate in away that would be consistent with regarding a rational number as a
single conceptual unit.

The use of compound data also enables us to increase the modularity of our programs. If we can
manipulate rational numbers directly as objects in their own right, then we can separate the part of our
program that deals with rational numbers per se from the details of how rational numbers may be
represented as pairs of integers. The general technique of isolating the parts of a program that deal with
how data objects are represented from the parts of a program that deal with how data objects are used isa
powerful design methodology called data abstraction. We will see how data abstraction makes programs
much easier to design, maintain, and modify.

The use of compound data leads to areal increase in the expressive power of our programming language.
Consider the idea of forming a *"linear combination” ax + by. We might like to write a procedure that
would accept a, b, x, and y as arguments and return the value of ax + by. This presents no difficulty if the
arguments are to be numbers, because we can readily define the procedure

(define (linear-conbination a b x vy)
(+ (xax) (*f by)))

But suppose we are not concerned only with numbers. Suppose we would like to express, in procedural
terms, the idea that one can form linear combinations whenever addition and multiplication are defined --
for rational numbers, complex numbers, polynomials, or whatever. We could express this as a procedure
of theform

(define (linear-conbination a b x y)
(add (rmul a x) (mul b y)))

whereadd and nul are not the primitive procedures + and * but rather more complex things that will
perform the appropriate operations for whatever kinds of datawe passin asthe argumentsa, b, x, andy.
The key point isthat the only thing | i near - conbi nat i on should need to know about a, b, x, andy
isthat the procedures add and mul will perform the appropriate manipulations. From the perspective of
the procedurel i near - conbi nat i on, itisirrelevant what a, b, x, and y are and even more irrelevant

how they might happen to be represented in terms of more primitive data. This same example shows why
it isimportant that our programming language provide the ability to manipul ate compound objects
directly: Without this, there isno way for aprocedure such asl i near - conbi nat i on to passits
arguments along to add and mul without having to know their detailed structure.l We begin this chapter
by implementing the rational-number arithmetic system mentioned above. Thiswill form the background
for our discussion of compound data and data abstraction. As with compound procedures, the main issue
to be addressed is that of abstraction as a technique for coping with complexity, and we will see how data
abstraction enables us to erect suitable abstraction barriers between different parts of a program.

We will see that the key to forming compound data is that a programming language should provide some
kind of “"glue" so that data objects can be combined to form more complex data objects. There are many
possible kinds of glue. Indeed, we will discover how to form compound data using no specia "“data"
operations at al, only procedures. Thiswill further blur the distinction between ““procedure" and " data,"
which was aready becoming tenuous toward the end of chapter 1. We will also explore some conventional
techniques for representing sequences and trees. One key ideain dealing with compound data is the notion
of closure -- that the glue we use for combining data objects should allow us to combine not only primitive
data objects, but compound data objects as well. Another key ideais that compound data objects can serve
as conventional interfaces for combining program modules in mix-and-match ways. We illustrate some of
these ideas by presenting a simple graphics language that exploits closure.

We will then augment the representational power of our language by introducing symbolic expressions --
datawhose elementary parts can be arbitrary symbols rather than only numbers. We explore various
aternatives for representing sets of objects. We will find that, just as a given numerical function can be
computed by many different computationa processes, there are many ways in which a given data structure
can be represented in terms of simpler objects, and the choice of representation can have significant
impact on the time and space requirements of processes that manipulate the data. We will investigate these
ideas in the context of symbolic differentiation, the representation of sets, and the encoding of information.

Next we will take up the problem of working with data that may be represented differently by different
parts of a program. This leads to the need to implement generic operations, which must handle many
different types of data. Maintaining modularity in the presence of generic operations requires more
powerful abstraction barriers than can be erected with simple data abstraction alone. In particular, we
introduce data-directed programming as a technigue that allows individual data representations to be
designed in isolation and then combined additively (i.e., without modification). To illustrate the power of
this approach to system design, we close the chapter by applying what we have learned to the
implementation of a package for performing symbolic arithmetic on polynomials, in which the coefficients
of the polynomials can be integers, rational numbers, complex numbers, and even other polynomials.

1 The ability to directly manipulate procedures provides an analogous increase in the expressive power of a programming language. For
example, in section 1.3.1 we introduced the sumprocedure, which takes a proceduret er mas an argument and computes the sum of the

values of t er mover some specified interval. In order to define sum it is crucial that we be able to speak of aprocedure such ast er masan
entity in its own right, without regard for how t er mmight be expressed with more primitive operations. Indeed, if we did not have the notion
of “aprocedure,” it is doubtful that we would ever even think of the possibility of defining an operation such as sum Moreover, insofar as
performing the summation is concerned, the details of how t er mmay be constructed from more primitive operations are irrelevant.

[Gotofirdt, previous, next page; contents; index|

[Go tofirst, previous, next page; contents;, index|

2.1 Introduction to Data Abstraction

In section 1.1.8, we noted that a procedure used as an element in creating a more complex procedure could

be regarded not only as a collection of particular operations but also as a procedural abstraction. That is,
the details of how the procedure was implemented could be suppressed, and the particular procedure itself
could be replaced by any other procedure with the same overall behavior. In other words, we could make
an abstraction that would separate the way the procedure would be used from the details of how the
procedure would be implemented in terms of more primitive procedures. The anal ogous notion for
compound data is called data abstraction. Data abstraction is a methodology that enables us to isolate how
a compound data object is used from the details of how it is constructed from more primitive data objects.

The basic idea of data abstraction is to structure the programs that are to use compound data objects so that
they operate on abstract data." That is, our programs should use datain such away as to make no
assumptions about the data that are not strictly necessary for performing the task at hand. At the same time,
a concrete" data representation is defined independent of the programs that use the data. The interface
between these two parts of our system will be a set of procedures, called selectors and constructors, that
implement the abstract datain terms of the concrete representation. To illustrate this technique, we will
consider how to design a set of procedures for manipulating rational numbers.

2.1.1 Example: Arithmetic Operations for Rational Numbers

Suppose we want to do arithmetic with rational numbers. We want to be able to add, subtract, multiply,
and divide them and to test whether two rational numbers are equal.

L et us begin by assuming that we aready have away of constructing arational number from a numerator
and a denominator. We al so assume that, given arational number, we have away of extracting (or
selecting) its numerator and its denominator. Let us further assume that the constructor and selectors are
available as procedures:

. (make-rat <n> <d>) returnsthe rational number whose numerator isthe integer <n> and
whose denominator is the integer <d>.

« (numer <x>) returnsthe numerator of the rational number <x>.

. (denom <x>) returnsthe denominator of the rational number <x>.

We are using here a powerful strategy of synthesis: wishful thinking. We haven't yet said how arational
number is represented, or how the procedures nuner , denom and nmake- r at should be implemented.
Even so, if we did have these three procedures, we could then add, subtract, multiply, divide, and test
equality by using the following relations:

. e 78y + mady
gy da d1ds

7y e My dy — Mady

di da dda

4 d1 (5| Ei.'-'_.'n
“.".!--'_:I."Il':.!‘.-'_: E'.1.1?'.!.-'_:

B only if nids = nad)
dy ds

We can express these rules as procedures:

(define (add-rat x y)
(make-rat (+ (* (nunmer x) (denomy))
(* (nuner y) (denomx)))
(* (denom x) (denomy))))
(define (sub-rat x y)
(make-rat (- (* (nunmer x) (denomy))
(* (nuner y) (denomx)))
(* (denom x) (denomy))))
(define (mul-rat x vy)
(make-rat (* (numer x) (nuner y))
(* (denom x) (denomy))))
(define (div-rat x y)
(make-rat (* (nunmer x) (denomy))
(* (denom x) (numer y))))
(define (equal-rat? x vy)
(= (* (nunmer x) (denomy))
(* (nunmer y) (denomx))))

Now we have the operations on rational numbers defined in terms of the selector and constructor
procedures numrer , denom and make- r at . But we haven't yet defined these. What we need is some way

to glue together a numerator and a denominator to form arational number.

Pairs

To enable us to implement the concrete level of our data abstraction, our language provides a compound
structure called a pair, which can be constructed with the primitive procedure cons. This procedure takes

two arguments and returns a compound data object that contains the two arguments as parts. Given a pair,
we can extract the parts using the primitive procedures car and cdr .2 Thus, we can use cons, car , and

cdr asfollows:

(define x (cons 1 2))

(car x)
1

(cdr x)
2

Notice that apair is a data object that can be given a name and manipulated, just like a primitive data
object. Moreover, cons can be used to form pairs whose elements are pairs, and so on:

(define x (cons 1 2))
(define y (cons 3 4))
(define z (cons x vy))

(car (car z))
1

(car (cdr z))
3

In section 2.2 we will see how this ability to combine pairs means that pairs can be used as general-purpose

building blocks to create all sorts of complex data structures. The single compound-data primitive pair,
implemented by the procedurescons, car , and cdr , isthe only glue we need. Data objects constructed

from pairs are called list-structured data.

Representing rational numbers

Pairs offer anatural way to compl ete the rational-number system. Simply represent arational number as a
pair of two integers. a numerator and a denominator. Then make- r at , nuner , and denomare readily

implemented as follows:3

(define (make-rat n d) (cons n d))
(define (numer x) (car X))

(define (denom x) (cdr x))

Also, in order to display the results of our computations, we can print rational numbers by printing the
numerator, a slash, and the denominator:4

(define (print-rat x)
(new i ne)
(di splay (nuner x))
(display "/")

(di splay (denom x)))

Now we can try our rational-number procedures:

(define one-half (make-rat 1 2))

(print-rat one-half)
1/ 2

(define one-third (make-rat 1 3))
(print-rat (add-rat one-half one-third))

5/ 6

(print-rat (mul-rat one-half one-third))
1/6

(print-rat (add-rat one-third one-third))
6/ 9

Asthefinal example shows, our rational-number implementation does not reduce rational numbersto
lowest terms. We can remedy this by changing meke- r at . If we haveagcd procedure like the onein

section 1.2.5 that produces the greatest common divisor of two integers, we can use gcd to reduce the
numerator and the denominator to lowest terms before constructing the pair:

(define (make-rat n d)

(let ((g (gcd n d)))
(cons (/ ng) (/ dg))))

Now we have

(print-rat (add-rat one-third one-third))
2/ 3

as desired. This modification was accomplished by changing the constructor make- r at without changing
any of the procedures (such asadd- r at and mul - r at) that implement the actual operations.

Exercise 2.1. Define abetter version of make- r at that handles both positive and negative arguments.
Make- r at should normalize the sign so that if the rational number is positive, both the numerator and
denominator are positive, and if the rational number is negative, only the numerator is negative.

2.1.2 Abstraction Barriers

Before continuing with more examples of compound data and data abstraction, let us consider some of the
issues raised by the rational-number example. We defined the rational-number operationsin terms of a
constructor make- r at and selectorsnuner and denom In general, the underlying idea of data

abstraction isto identify for each type of data object a basic set of operationsin terms of which all

manipulations of data objects of that type will be expressed, and then to use only those operationsin
mani pulating the data.

We can envision the structure of the rational-number system as shown in figure 2.1. The horizontal lines
represent abstraction barriersthat isolate different ““levels' of the system. At each level, the barrier
separates the programs (above) that use the data abstraction from the programs (below) that implement the
data abstraction. Programs that use rational numbers manipulate them solely in terms of the procedures
supplied ““for public use" by the rational-number package: add- r at , sub-rat,mul -rat,di v-rat,
and equal - r at ?. These, in turn, are implemented solely in terms of the constructor and selectors make-
r at , nunmer , and denom which themselves are implemented in terms of pairs. The details of how pairs

are implemented are irrelevant to the rest of the rational-number package so long as pairs can be
manipulated by the use of cons, car , and cdr . In effect, procedures at each level are the interfaces that

define the abstraction barriers and connect the different levels.

—| Progmams that use cational numbers —

Rational numbers in problem domain

add—rat sub—rat

Ratiopal numbers as oumeratocs and denominators

make—rat rmumer denom

Rational numbes as pairs

cons carc cde

Howeyer pairs ac implcmcntcd

Figure 2.1: Data-abstraction barriersin the rationa -number package.

This simple idea has many advantages. One advantage is that it makes programs much easier to maintain
and to modify. Any complex data structure can be represented in a variety of ways with the primitive data
structures provided by a programming language. Of course, the choice of representation influences the
programs that operate on it; thus, if the representation were to be changed at some later time, all such
programs might have to be modified accordingly. This task could be time-consuming and expensive in the
case of large programs unless the dependence on the representation were to be confined by design to avery
few program modules.

For example, an aternate way to address the problem of reducing rational numbers to lowest termsisto
perform the reduction whenever we access the parts of arational number, rather than when we construct it.
This leads to different constructor and selector procedures:

(define (make-rat n d)
(cons n d))

(define (numer x)

(let ((g (gcd (car x) (cdr x))))

(/ (car x) 9)))
(define (denom x)

(let ((g (gcd (car x) (cdr x))))
(/ (cdr x) 9)))

The difference between this implementation and the previous one lies in when we compute the gcd. If in

our typical use of rational numbers we access the numerators and denominators of the same rational
numbers many times, it would be preferable to compute the gcd when the rational numbers are

constructed. If not, we may be better off waiting until access time to compute the gcd. In any case, when
we change from one representation to the other, the proceduresadd- r at , sub- r at , and so on do not
have to be modified at all.

Constraining the dependence on the representation to afew interface procedures helps us design programs
aswell as modify them, because it allows us to maintain the flexibility to consider alternate
implementations. To continue with our simple example, suppose we are designing a rational-number
package and we can't decide initially whether to perform the gcd at construction time or at selection time.

The data-abstraction methodology gives us away to defer that decision without losing the ability to make
progress on the rest of the system.

Exercise 2.2. Consider the problem of representing line segmentsin a plane. Each segment is represented
asapair of points: astarting point and an ending point. Define a constructor make- segnment and

selectorsst art - segnent and end- segnent that define the representation of segmentsin terms of

points. Furthermore, a point can be represented as a pair of numbers:. the x coordinate and the y coordinate.
Accordingly, specify a constructor make- poi nt and selectorsx- poi nt andy- poi nt that definethis

representation. Finally, using your selectors and constructors, define a procedure m dpoi nt - segnent

that takes a line segment as argument and returns its midpoint (the point whose coordinates are the average
of the coordinates of the endpoints). To try your procedures, you'll need away to print points:

(define (print-point p)

(new i ne)

(display "(")
(display (x-point p))
(display ",")

(display (y-point p))
(display ")"))

Exercise 2.3. Implement arepresentation for rectanglesin a plane. (Hint: Y ou may want to make use of
exercise 2.2.) Interms of your constructors and selectors, create procedures that compute the perimeter and
the area of a given rectangle. Now implement a different representation for rectangles. Can you design
your system with suitable abstraction barriers, so that the same perimeter and area procedures will work
using either representation?

2.1.3 What Is Meant by Data?

We began the rational-number implementation in section 2.1.1 by implementing the rational -number
operationsadd- r at , sub- r at , and so on in terms of three unspecified procedures: nake- r at ,
nuner , and denom At that point, we could think of the operations as being defined in terms of data

objects -- numerators, denominators, and rational numbers -- whose behavior was specified by the latter
three procedures.

But exactly what is meant by data? It is not enough to say ~“whatever isimplemented by the given
selectors and constructors.” Clearly, not every arbitrary set of three procedures can serve as an appropriate
basis for the rational-number implementation. We need to guarantee that, if we construct a rational number
x from apair of integers n and d, then extracting the nuner and the denomof x and dividing them

should yield the same result as dividing n by d. In other words, make- r at , nunmer , and denommust
satisfy the condition that, for any integer n and any non-zero integer d, if x is(make-rat n d), then

{IIU.IEIEI" Z.'{:l _ Il

{dennm :-:} T d

In fact, thisisthe only condition make- r at , nuner , and denommust fulfill in order to form a suitable

basis for arational-number representation. In general, we can think of data as defined by some collection
of selectors and constructors, together with specified conditions that these procedures must fulfill in order
to be avalid representation.2

This point of view can serve to define not only “"high-level" data objects, such as rational numbers, but
lower-level objects as well. Consider the notion of a pair, which we used in order to define our rational
numbers. We never actually said what a pair was, only that the language supplied procedurescons, car ,

and cdr for operating on pairs. But the only thing we need to know about these three operationsisthat if
we glue two objects together using cons we can retrieve the objectsusing car and cdr . That is, the
operations satisfy the condition that, for any objectsx andy, if zis(cons x y) then(car z) isx
and (cdr z) isy. Indeed, we mentioned that these three procedures are included as primitives in our

language. However, any triple of procedures that satisfies the above condition can be used as the basis for
implementing pairs. This point isillustrated strikingly by the fact that we could implement cons, car ,

and cdr without using any data structures at al but only using procedures. Here are the definitions:

(define (cons x y)
(define (dispatch m
(cond ((= mO0) x)
((=m1) vy)
(el se (error "Argunent not O or 1 -- CONS" m)))
di spat ch)

(define (car z) (z 0))
(define (cdr z) (z 1))
This use of procedures corresponds to nothing like our intuitive notion of what data should be.

Nevertheless, all we need to do to show that thisisavalid way to represent pairsisto verify that these
procedures satisfy the condition given above.

The subtle point to notice is that the value returned by (cons x y) isaprocedure -- namely the
internally defined procedure di spat ch, which takes one argument and returns either x or y depending on
whether the argument is 0 or 1. Correspondingly, (car z) isdefined to apply z to 0. Hence, if z isthe
procedure formed by (cons x y), thenz applied to O will yield x. Thus, we have shown that (car
(cons x y)) yieldsx, asdesired. Smilarly, (cdr (cons x y)) appliesthe procedure returned by
(cons x y) tol, whichreturnsy. Therefore, this procedural implementation of pairsisavalid
implementation, and if we access pairsusing only cons, car , and cdr we cannot distinguish this
implementation from one that uses " "real" data structures.

The point of exhibiting the procedural representation of pairsis not that our language works this way
(Scheme, and Lisp systemsin general, implement pairs directly, for efficiency reasons) but that it could
work thisway. The procedural representation, although obscure, is a perfectly adequate way to represent
pairs, sinceit fulfills the only conditions that pairs need to fulfill. This example also demonstrates that the
ability to manipulate procedures as objects automatically provides the ability to represent compound data.
This may seem a curiosity now, but procedural representations of data will play acentral rolein our
programming repertoire. This style of programming is often called message passing, and we will be using
it asabasic tool in chapter 3 when we address the issues of modeling and simulation.

Exercise 2.4. Hereisan alternative procedural representation of pairs. For this representation, verify that
(car (cons x y)) yieldsx for any objectsx andy.

(define (cons x y)
(lambda (m (mx y)))

(define (car z)
(z (lambda (p q) p)))

What is the corresponding definition of cdr ? (Hint: To verify that this works, make use of the substitution
model of section 1.1.5.)

Exercise 2.5. Show that we can represent pairs of nonnegative integers using only numbers and arithmetic

operations if we represent the pair a and b as the integer that is the product 22 3P. Give the corresponding
definitions of the procedurescons, car , and cdr .

Exercise 2.6. In case representing pairs as procedures wasn't mind-boggling enough, consider that, in a
language that can manipulate procedures, we can get by without numbers (at least insofar as nonnegative
integers are concerned) by implementing O and the operation of adding 1 as

(define zero (lanbda (f) (lanbda (x) x)))
(define (add-1 n)
(lambda (f) (lanmbda (x) (f ((n f) x)))))

This representation is known as Church numerals, after its inventor, Alonzo Church, the logician who
invented the A calculus.

Defineone and t wo directly (not in terms of zer o and add- 1). (Hint: Use substitution to evaluate
(add-1 zero)). Giveadirect definition of the addition procedure + (not in terms of repeated
application of add- 1).

2.1.4 Extended Exercise: Interval Arithmetic

Alyssa P. Hacker is designing a system to help people solve engineering problems. One feature she wants
to provide in her system is the ability to manipulate inexact quantities (such as measured parameters of
physical devices) with known precision, so that when computations are done with such approximate
guantities the results will be numbers of known precision.

Electrical engineers will be using Alyssa's system to compute electrical quantities. It is sometimes
necessary for them to compute the value of a parallel equivalent resistance R, of two resistors Ry and R,

using the formula

1
R, = .
F 1R1 + 1I.I'R'_:

Resistance values are usually known only up to some tolerance guaranteed by the manufacturer of the
resistor. For example, if you buy aresistor labeled ~ 6.8 ohms with 10% tolerance" you can only be sure
that the resistor has a resistance between 6.8 - 0.68 = 6.12 and 6.8 + 0.68 = 7.48 ohms. Thus, if you have a
6.8-ohm 10% resistor in parallel with a4.7-ohm 5% resistor, the resistance of the combination can range
from about 2.58 ohms (if the two resistors are at the lower bounds) to about 2.97 ohms (if the two resistors
are at the upper bounds).

Alyssasideaistoimplement “interval arithmetic" as a set of arithmetic operations for combining
“intervals' (objects that represent the range of possible values of an inexact quantity). The result of adding,
subtracting, multiplying, or dividing two intervalsisitself an interval, representing the range of the result.

Alyssa postul ates the existence of an abstract object called an “interval” that has two endpoints. alower
bound and an upper bound. She also presumes that, given the endpoints of an interval, she can construct
theinterval using the data constructor make- i nt er val . Alyssafirst writes a procedure for adding two
intervals. She reasons that the minimum value the sum could be is the sum of the two lower bounds and the
maximum value it could be is the sum of the two upper bounds:

(define (add-interval x vy)
(make-interval (+ (lower-bound x) (Il ower-bound y))
(+ (upper-bound x) (upper-bound y))))

Alyssa also works out the product of two intervals by finding the minimum and the maximum of the
products of the bounds and using them as the bounds of the resulting interval. (M n and max are primitives

that find the minimum or maximum of any number of arguments.)

(define (mul-interval x y)

(let ((pl (* (I ower-bound x) (lower-bound y)))
(p2 (* (I ower-bound x) (upper-bound y)))
(p3 (* (upper-bound x) (Il ower-bound y)))
(p4 (* (upper-bound x) (upper-bound y)))
(make-interval (mn pl p2 p3 p4b)
(mex pl p2 p3 p4))))

)

To divide two intervals, Alyssa multiplies the first by the reciprocal of the second. Note that the bounds of
the reciprocal interval are the reciprocal of the upper bound and the reciprocal of the lower bound, in that
order.

(define (div-interval x vy)
(rmul -interval Xx
(make-interval (/ 1.0 (upper-bound y))
(/ 1.0 (lower-bound y)))))

Exercise 2.7. Alyssas program isincomplete because she has not specified the implementation of the
interval abstraction. Here is a definition of the interval constructor:

(define (nake-interval a b) (cons a b))
Define selectorsupper - bound and | ower - bound to complete the implementation.

Exercise 2.8. Using reasoning analogous to Alyssa's, describe how the difference of two intervals may be
computed. Define a corresponding subtraction procedure, called sub-i nt er val .

Exercise 2.9. Thewidth of an interval is half of the difference between its upper and lower bounds. The
width is a measure of the uncertainty of the number specified by the interval. For some arithmetic
operations the width of the result of combining two intervalsis afunction only of the widths of the
argument intervals, whereas for others the width of the combination is not a function of the widths of the
argument intervals. Show that the width of the sum (or difference) of two intervalsis afunction only of the
widths of the intervals being added (or subtracted). Give examples to show that thisis not true for
multiplication or division.

Exercise 2.10. Ben Bitdiddle, an expert systems programmer, looks over Alyssa's shoulder and comments
that it isnot clear what it means to divide by an interval that spans zero. Modify Alyssa's code to check for
this condition and to signal an error if it occurs.

Exercise 2.11. In passing, Ben aso cryptically comments: ~ By testing the signs of the endpoints of the
intervals, it is possible to break mul - i nt er val into nine cases, only one of which requires more than

two multiplications." Rewrite this procedure using Ben's suggestion.

After debugging her program, Alyssa showsit to a potential user, who complains that her program solves
the wrong problem. He wants a program that can deal with numbers represented as a center value and an
additive tolerance; for example, he wants to work with intervals such as 3.5+ 0.15 rather than [3.35, 3.65].
Alyssareturnsto her desk and fixes this problem by supplying an alternate constructor and alternate

sdlectors:

(define (nmake-center-width c w)
(make-interval (- cw (+cw))
(define (center i)
(/ (+ (lower-bound i) (upper-bound i)) 2))
(define (width i)
(/ (- (upper-bound i) (lower-bound i)) 2))

Unfortunately, most of Alyssa's users are engineers. Real engineering situations usually involve
measurements with only a small uncertainty, measured as the ratio of the width of the interval to the
midpoint of theinterval. Engineers usually specify percentage tolerances on the parameters of devices, as
in the resistor specifications given earlier.

Exercise 2.12. Define a constructor make- cent er - per cent that takes a center and a percentage
tolerance and produces the desired interval. Y ou must also define a selector per cent that produces the
percentage tolerance for agiven interval. The cent er selector isthe same as the one shown above.

Exercise 2.13. Show that under the assumption of small percentage tolerances there isa simple formula
for the approximate percentage tolerance of the product of two intervalsin terms of the tolerances of the
factors. Y ou may simplify the problem by assuming that all numbers are positive.

After considerable work, Alyssa P. Hacker delivers her finished system. Several years later, after she has
forgotten all about it, she gets afrenzied call from an irate user, Lem E. Tweakit. It seemsthat Lem has
noticed that the formulafor parallel resistors can be written in two algebraically equivalent ways:

K Ks
i + ks

and

1
1/Ry + 1/ R>

He has written the following two programs, each of which computes the parallel-resistors formula
differently:

(define (parl rl r2)

(div-interval (mul-interval rl r2)

(add-interval rl1r2)))

(define (par2 rl r2)

(let ((one (make-interval 1 1)))

(div-interval one
(add-interval (div-interval one rl)
(div-interval one r2)))))

Lem complains that Alyssa's program gives different answers for the two ways of computing. Thisisa
serious complaint.

Exercise 2.14. Demonstrate that Lem isright. Investigate the behavior of the system on avariety of
arithmetic expressions. Make some intervals A and B, and use them in computing the expressions A/A and
A/B. You will get the most insight by using intervals whose width is a small percentage of the center value.
Examine the results of the computation in center-percent form (see exercise 2.12).

Exercise 2.15. Evalu Ator, another user, has also noticed the different intervals computed by different
but algebraically equivalent expressions. She says that aformulato compute with intervals using Alyssa's
system will produce tighter error bounds if it can be written in such aform that no variable that represents
an uncertain number is repeated. Thus, she says, par 2 isa " better" program for parallel resistances than

par 1. Issheright? Why?

Exercise 2.16. Explain, in general, why equivalent algebraic expressions may lead to different answers.
Can you devise an interval-arithmetic package that does not have this shortcoming, or is this task
impossible? (Warning: This problem is very difficult.)

2 The name cons stands for “construct.” The namescar and cdr derive from the original implementation of Lisp on the IBM 704. That
machine had an addressing scheme that allowed one to reference the “address” and ““decrement” parts of a memory location. Car stands for
““Contents of Address part of Register" and cdr (pronounced " could-er") stands for **Contents of Decrement part of Register."

3 Another way to define the selectors and constructor is

(define make-rat cons)
(define nuner car)
(define denom cdr)

Thefirst definition associates the name make- r at with the value of the expression cons, which is the primitive procedure that constructs
pairs. Thusnake- r at and cons are names for the same primitive constructor.

Defining selectors and constructorsin thisway is efficient: Instead of make-r at calling cons, make-r at iscons, so thereisonly one
procedure called, not two, when make- r at is called. On the other hand, doing this defeats debugging aids that trace procedure calls or put
breakpoints on procedure calls: Y ou may want to watch make- r at being called, but you certainly don't want to watch every call to cons.

We have chosen not to use this style of definition in this book.

4Di spl ay isthe Scheme primitive for printing data. The Scheme primitive newl i ne starts anew line for printing. Neither of these
procedures returns a useful value, sointheuses of pri nt - r at below, we show only what pri nt - r at prints, not what the interpreter prints
asthe valuereturned by pri nt -r at .

5 Surprisingly, thisideais very difficult to formulate rigorously. There are two approaches to giving such aformulation. One, pioneered by C.
A. R. Hoare (1972), is known as the method of abstract models. It formalizes the ““procedures plus conditions" specification as outlined in the
rational-number example above. Note that the condition on the rational-number representation was stated in terms of facts about integers
(equality and division). In general, abstract models define new kinds of data objects in terms of previously defined types of data objects.
Assertions about data objects can therefore be checked by reducing them to assertions about previously defined data objects. Another
approach, introduced by Zilles at MIT, by Goguen, Thatcher, Wagner, and Wright at IBM (see Thatcher, Wagner, and Wright 1978), and by

Guttag at Toronto (see Guttag 1977), is called algebraic specification. It regards the ““procedures” as elements of an abstract algebraic system
whose behavior is specified by axioms that correspond to our *“conditions,” and uses the techniques of abstract algebra to check assertions
about data objects. Both methods are surveyed in the paper by Liskov and Zilles (1975).

[Gotofirst, previous, next page; contents, index|

[Gotofirst, previous, next page; contents;, index|

2.2 Hierarchical Data and the Closure Property

Aswe have seen, pairs provide a primitive “"glue" that we can use to construct compound data objects.
Figure 2.2 shows a standard way to visualize a pair -- in this case, the pair formed by (cons 1 2).Inthis

representation, which is called box-and-pointer notation, each object is shown as a pointer to a box. The
box for a primitive object contains a representation of the object. For example, the box for a number
contains anumeral. The box for apair is actually a double box, the left part containing (a pointer to) the
car of the pair and the right part containing the cdr .

We have aready seen that cons can be used to combine not only numbers but pairs as well. (Y ou made
use of this fact, or should have, in doing exercises 2.2 and 2.3.) As a consequence, pairs provide a universal
building block from which we can construct all sorts of data structures. Figure 2.3 shows two ways to use
pairs to combine the numbers 1, 2, 3, and 4.

Figure 2.2: Box-and-pointer representationof (cons 1 2).

—_—| N i L | T —_—| — 4
]

I'n'l] F 1||||'
ali; tleT—={1]y
¥
1 z 1 = =

focone (conms 1 2} {ocone [cons 1

(ocons 2 43) (cons 2 32})

4}

Figure2.3: Twowaysto combine 1, 2, 3, and 4 using pairs.

The ability to create pairs whose elements are pairsis the essence of list structure'simportance as a
representational tool. We refer to this ability as the closure property of cons. In general, an operation for
combining data objects satisfies the closure property if the results of combining things with that operation
can themselves be combined using the same operation.€ Closure is the key to power in any means of

combination because it permits us to create hierarchical structures -- structures made up of parts, which
themselves are made up of parts, and so on.

From the outset of chapter 1, we've made essential use of closure in dealing with procedures, because al but

the very simplest programs rely on the fact that the elements of a combination can themselves be
combinations. In this section, we take up the consequences of closure for compound data. We describe
some conventional techniques for using pairs to represent sequences and trees, and we exhibit a graphics

language that illustrates closure in avivid way.”

2.2.1 Representing Sequences

|
-
-
-

Figure 2.4: The sequence l, 2, 3, 4 represented as a chain of pairs.

One of the useful structures we can build with pairsis a sequence -- an ordered collection of data objects.
There are, of course, many ways to represent sequences in terms of pairs. One particularly straightforward
representation isillustrated in figure 2.4, where the sequence 1, 2, 3, 4 isrepresented as a chain of pairs.

Thecar of each pair isthe corresponding item in the chain, and the cdr of the pair isthe next pair in the
chain. Thecdr of thefinal pair signals the end of the sequence by pointing to adistinguished value that is

not a pair, represented in box-and-pointer diagrams as a diagonal line and in programs as the value of the
variableni | . The entire sequence is constructed by nested cons operations:

(cons 1
(cons 2
(cons 3
(cons 4 nil))))

Such a sequence of pairs, formed by nested conses, iscalled alist, and Scheme provides a primitive called

| i st tohelpin constructing lists.8 The above sequence could be produced by (1ist 1 2 3 4).In
general,

(list <a;> <ay> ... <a,>)
isequivalent to
(cons <a;> (cons <a,> (cons ... (cons <ap,> nil) ...)))

Lisp systems conventionally print lists by printing the sequence of elements, enclosed in parentheses. Thus,
the dataobject infigure2.4 isprintedas(1 2 3 4):

(define one-through-four (list 1 2 3 4))

one-t hr ough- f our
(12 3 4)

Be careful not to confusethe expression (1 i st 1 2 3 4) withthelist(1 2 3 4), whichistheresult
obtained when the expression is evaluated. Attempting to evaluate the expression (1 2 3 4) will signa
an error when the interpreter tries to apply the procedure 1 to arguments 2, 3, and 4.

We can think of car as selecting thefirst item in thelist, and of cdr as selecting the sublist consisting of
al but the first item. Nested applications of car and cdr can be used to extract the second, third, and

subsequent items in the list.2 The constructor cons makes alist like the original one, but with an additional
item at the beginning.

(car one-through-four)

1

(cdr one-through-four)

(2 3 4)

(car (cdr one-through-four))
2

(cons 10 one-t hrough-four)
(10 1 2 3 4)

(cons 5 one-through-four)
(51 2 3 4

Thevaueof ni | , used to terminate the chain of pairs, can be thought of as a sequence of no elements, the
empty list. The word nil is a contraction of the Latin word nihil, which means **nothing."19

List operations

The use of pairsto represent sequences of elements aslistsis accompanied by conventional programming
techniques for manipulating lists by successively ““cdr ing down" the lists. For example, the procedure

I 'ist-ref takesasargumentsalist and a number n and returns the nth item of the list. It is customary to
number the elements of the list beginning with 0. The method for computing | i st - r ef isthe following:

. Forn=0,1i st-ref shouldreturnthecar of thelist.

. Otherwise, | i st - r ef should returnthe (n- 1)st item of thecdr of thelist.

(define (list-ref itens n)
(if (=no0)
(car itens)
(list-ref (cdr itens) (- n 1))))
(define squares (list 1 4 9 16 25))

(list-ref squares 3)
16

Often we cdr down thewholelist. To aid in this, Scheme includes a primitive predicate nul | ?, which
tests whether its argument is the empty list. The procedure| engt h, which returns the number of itemsin a
list, illustrates this typical pattern of use:

(define (length itens)
(if (null? itens)
0
(+ 1 (length (cdr itens)))))
(define odds (list 1 35 7))

(1 engt h odds)
4

Thel engt h procedure implements a simple recursive plan. The reduction step is:

. Thel engt h of any listis1 plusthel engt h of thecdr of thelist.

Thisis applied successively until we reach the base case:

. Thel engt h of theempty listisO.

We could also compute | engt h in an iterative style:

(define (length itens)
(define (length-iter a count)
(if (null? a)
count
(length-iter (cdr a) (+ 1 count))))
(length-iter itens 0))

Another conventional programming technique isto “"cons up" an answer list while cdr ing down alist, as
in the procedure append, which takes two lists as arguments and combines their elements to make a new
list:

(append squar es odds)
(14916 251 357)
(append odds squares)
(1357149 16 25

Append isalso implemented using arecursive plan. To append listsl i st 1 and | i st 2, do the
following:

. Ifl'istlistheempty list, thentheresultisjust!i st 2.

. Otherwise, append thecdr of I i st 1 andl i st2,andcons thecar of | i st 1 onto the result:

(define (append listl list2)
(if (null? listl)
list2
(cons (car listl) (append (cdr listl) list2))))

Exercise 2.17. Defineaprocedurel ast - pai r that returnsthe list that contains only the last element of a
given (nonempty) list:

(last-pair (list 23 72 149 34))
(34)

Exercise 2.18. Defineaprocedurer ever se that takes alist as argument and returns a list of the same
elementsin reverse order:

(reverse (list 1 4 9 16 25))
(25 16 9 4 1)

Exercise 2.19. Consider the change-counting program of section 1.2.2. It would be nice to be able to easily

change the currency used by the program, so that we could compute the number of ways to change a British
pound, for example. Asthe program is written, the knowledge of the currency is distributed partly into the
proceduref i r st - denom nat i on and partly into the procedure count - change (which knows that

there are five kinds of U.S. coins). It would be nicer to be able to supply alist of coinsto be used for
making change.

We want to rewrite the procedure cc so that its second argument is alist of the values of the coinsto use

rather than an integer specifying which coins to use. We could then have lists that defined each kind of
currency:

(define us-coins (list 50 25 10 5 1))
(define uk-coins (list 100 50 20 10 5 2 1 0.5))

We could then call cc asfollows:

(cc 100 us-coins)
292

To do thiswill require changing the program cc somewhat. It will still have the same form, but it will
access its second argument differently, asfollows:

(define (cc anpbunt coi n-val ues)
(cond ((= anobunt 0) 1)
((or (< amount 0) (no-nore? coin-values)) 0)
(el se

(+ (cc anopunt
(except-first-denom nation coin-val ues))
(cc (- anopunt
(first-denom nation coin-val ues))
coin-values)))))

Define the proceduresf i r st - denom nati on,except -first-denom nati on,andno- nore?
in terms of primitive operations on list structures. Does the order of thelist coi n- val ues affect the
answer produced by cc? Why or why not?

Exercise 2.20. The procedures+, *,and | i st take arbitrary numbers of arguments. One way to define
such proceduresisto use def i ne with dotted-tail notation. In a procedure definition, a parameter list that

has a dot before the last parameter name indicates that, when the procedure is called, theinitial parameters
(if any) will have as values theinitial arguments, as usual, but the final parameter's value will be alist of
any remaining arguments. For instance, given the definition

(define (f x y . z) <body>)
the procedure f can be called with two or more arguments. If we evaluate

(f 123 4 5 6)

thenin the body of f , x will be 1,y will be 2, and z will bethelist (3 4 5 6) . Given the definition
(define (g . w <body>)

the procedure g can be called with zero or more arguments. If we evaluate

(g 12345 86)
then in the body of g, wwill bethelist (1 2 3 4 5 6) .11

Use this notation to write a procedure sane- par i t y that takes one or more integers and returns alist of
al the arguments that have the same even-odd parity as the first argument. For example,

(same-parity 1 2 3456 7)
(1357

(sane-parity 2 3 45 6 7)
(2 4 6)

Mapping over lists

One extremely useful operation isto apply some transformation to each element in alist and generate the

list of results. For instance, the following procedure scales each number in alist by a given factor:

(define (scale-list itens factor)
(if (null? items)
ni |
(cons (* (car itens) factor)
(scale-list (cdr itenms) factor))))
(scale-list (list 1 2 3 45) 10)

(10 20 30 40 50)

We can abstract this general idea and capture it as a common pattern expressed as a higher-order procedure,
just asin section 1.3. The higher-order procedure hereis called map. Map takes as arguments a procedure

of one argument and alist, and returns alist of the results produced by applying the procedure to each
element inthe list:12

(define (map proc itens)
(if (null? itens)
ni |
(cons (proc (car itens))
(map proc (cdr itens)))))
(map abs (list -10 2.5 -11.6 17))

(10 2.5 11.6 17)

(map (lanbda (x) (* x X))
(list 1 2 3 4))

(1 4 9 16)

Now we can give anew definition of scal e- 1 i st interms of map:

(define (scale-list itens factor)
(map (lanmbda (x) (* x factor))
itens))

Map isan important construct, not only because it captures acommon pattern, but because it establishes a
higher level of abstraction in dealing with lists. In the original definition of scal e- 1 i st , therecursive
structure of the program draws attention to the element-by-element processing of thelist. Defining scal e-
[i st intermsof map suppressesthat level of detail and emphasizes that scaling transforms alist of

elementsto alist of results. The difference between the two definitionsis not that the computer is
performing a different process (it isn't) but that we think about the process differently. In effect, map helps

establish an abstraction barrier that isolates the implementation of procedures that transform lists from the
details of how the elements of the list are extracted and combined. Like the barriers shown in figure 2.1, this

abstraction gives us the flexibility to change the low-level details of how sequences are implemented, while
preserving the conceptual framework of operations that transform sequences to sequences. Section 2.2.3

expands on this use of sequences as aframework for organizing programs.

Exercise 2.21. Theproceduresquar e- | i st takesalist of numbers as argument and returns alist of the
sguares of those numbers.

(square-list (list 1 2 3 4))
(1 4 9 16)

Here are two different definitions of squar e- | i st . Complete both of them by filling in the missing
expressions:

(define (square-list itens)
(if (null? itemns)
ni |
(cons <??7> <?7>)))
(define (square-list itens)
(map <??> <??7>))

Exercise 2.22. Louis Reasoner triesto rewrite thefirst squar e- | i st procedure of exercise 2.21 so that
it evolves an iterative process.

(define (square-list itens)
(define (iter things answer)
(if (null? things)
answer
(iter (cdr things)
(cons (square (car things))
answer))))
(iter itenms nil))

Unfortunately, defining squar e- | i st thisway produces the answer list in the reverse order of the one
desired. Why?

Louisthen triesto fix his bug by interchanging the argumentsto cons:

(define (square-list itens)
(define (iter things answer)
(if (null? things)
answer
(iter (cdr things)
(cons answer
(square (car things))))))
(iter items nil))

This doesn't work either. Explain.

Exercise 2.23. The proceduref or - each issimilar to map. It takes as arguments a procedure and a list of
elements. However, rather than forming alist of theresults, f or - each just applies the procedure to each

of the elementsin turn, from left to right. The values returned by applying the procedure to the elements are
not used at al -- f or - each isused with procedures that perform an action, such as printing. For example,

(for-each (lanbda (x) (newine) (display x))
(list 57 321 88))

57
321
88

The value returned by the call tof or - each (not illustrated above) can be something arbitrary, such as
true. Give an implementation of f or - each.

2.2.2 Hierarchical Structures

The representation of sequencesin terms of lists generalizes naturally to represent sequences whose
elements may themselves be sequences. For example, we can regard theobject ((1 2) 3 4) constructed

by
(cons (list 1 2) (list 3 4))
asalist of threeitems, thefirst of whichisitself alist, (1 2) . Indeed, thisis suggested by the form in

which the result is printed by the interpreter. Figure 2.5 shows the representation of this structure in terms
of pairs.

(3 4
(12 3
— S | - T - ®
1 =2 l/
¢ %}" | = T / 3 4

Figure2.5: Structureformedby (cons (list 1 2) (list 3 4)).

Another way to think of sequences whose elements are sequencesis as trees. The elements of the sequence
are the branches of the tree, and elements that are themselves sequences are subtrees. Figure 2.6 shows the

structure in figure 2.5 viewed as atree.

(el =) 3 43

(L =}

1 2
Figure2.6: Thelist structure in figure 2.5 viewed as atree.
Recursion is anatural tool for dealing with tree structures, since we can often reduce operations on trees to

operations on their branches, which reduce in turn to operations on the branches of the branches, and so on,
until we reach the leaves of the tree. As an example, compare the| engt h procedure of section 2.2.1 with

thecount - | eaves procedure, which returns the total number of leaves of atree:

(define x (cons (list 1 2) (list 3 4)))
(l'ength x)

3
(count -1 eaves x)

4

(list x x)
(((12) 34) ((12) 34))

(length (list x x))
2

(count-1leaves (list x x))
8

Toimplement count - | eaves, recall the recursive plan for computing | engt h:
. Lengthof alistx islplusl engt h of thecdr of x.
. Lengt h of theempty listisO.

Count - | eaves issimilar. The value for the empty list isthe same:
. Count - | eaves of theempty listisO.

But in the reduction step, where we strip off the car of the list, we must take into account that the car
may itself be atree whose leaves we need to count. Thus, the appropriate reduction step is

. Count - | eaves of atreex iscount - | eaves of thecar of x pluscount - | eaves of the

cdr of x.
Finally, by taking car swe reach actual |eaves, so we need another base case:
. Count - | eaves of aleaf is 1.

To aid in writing recursive procedures on trees, Scheme provides the primitive predicate pai r ?, which
tests whether its argument is a pair. Here is the complete procedure: 13

(define (count-I|eaves x)
(cond ((null? x) 0)
((not (pair? x)) 1)
(el se (+ (count-|eaves (car x))
(count-1leaves (cdr x))))))

Exercise 2.24. Suppose we evauatetheexpresson(list 1 (list 2 (list 3 4))).Givethe

result printed by the interpreter, the corresponding box-and-pointer structure, and the interpretation of this
asatree (asinfigure 2.6).

Exercise 2.25. Give combinations of car sand cdr sthat will pick 7 from each of the following lists:

(13 (57) 9)
(7))
(1 (2 (3(4(5(67))))))

Exercise 2.26. Suppose we define x andy to be two lists:

(define x (list 1 2 3
(definey (list 456

N N

)
)
What result is printed by the interpreter in response to evaluating each of the following expressions:

(append x)

(cons x vy)

(list xvy)

Exercise 2.27. Modify your r ever se procedure of exercise 2.18 to produce adeep- r ever se

procedure that takes alist as argument and returns as its value the list with its elements reversed and with all
sublists deep-reversed as well. For example,

(define x (list (list 1 2) (list 3 4)))

X

((12) (34)

(reverse x)

((34) (12)

(deep-reverse x)

((43) (2 1)

Exercise 2.28. Write aproceduref r i nge that takes as argument atree (represented as alist) and returns a
list whose elements are all the leaves of the tree arranged in left-to-right order. For example,

(define x (list (list 1 2) (list 3 4)))

(fringe x)
(1 2 3 4)

(fringe (list x x))
(123412 34)

Exercise 2.29. A binary mobile consists of two branches, aleft branch and aright branch. Each branchisa
rod of a certain length, from which hangs either aweight or another binary mobile. We can represent a
binary mobile using compound data by constructing it from two branches (for example, using | i st):

(define (rmake-nobile left right)
(list left right))

A branch is constructed from al engt h (which must be a number) together with ast r uct ur e, which
may be either a number (representing a simple weight) or another mobile:

(define (make-branch | ength structure)
(list length structure))

a. Write the corresponding selectors| ef t - br anch and r i ght - br anch, which return the branches of a
mobile, and br anch- | engt h and br anch- st r uct ur e, which return the components of a branch.

b. Using your selectors, define aproceduret ot al - wei ght that returns the total weight of a mobile.

c. A mobileissaid to be balanced if the torque applied by itstop-left branch is equal to that applied by its
top-right branch (that is, if the length of the left rod multiplied by the weight hanging from that rod is equal
to the corresponding product for the right side) and if each of the submobiles hanging off its branchesis
balanced. Design a predicate that tests whether a binary mobile is balanced.

d. Suppose we change the representation of mobiles so that the constructors are

(define (make-nobile left right)

(cons left right))
(define (make-branch | ength structure)
(cons length structure))

How much do you need to change your programs to convert to the new representation?

Mapping over trees

Just as map is apowerful abstraction for dealing with sequences, map together with recursion is a powerful
abstraction for dealing with trees. For instance, thescal e-t r ee procedure, analogoustoscal e- | i st
of section 2.2.1, takes as arguments a numeric factor and a tree whose leaves are numbers. It returns atree
of the same shape, where each number is multiplied by the factor. Therecursiveplanfor scal e-tree is
similar to the onefor count - | eaves:

(define (scale-tree tree factor)
(cond ((null? tree) nil)
((not (pair? tree)) (* tree factor))
(el se (cons (scale-tree (car tree) factor)
(scale-tree (cdr tree) factor))))
(scale-tree (list 1 (list 2 (list 3 4) 5) (list 6 7))
10)
(10 (20 (30 40) 50) (60 70))

)

Another way to implement scal e-t r ee isto regard the tree as a sequence of sub-trees and use map. We

map over the sequence, scaling each sub-tree in turn, and return the list of results. In the base case, where
the treeisaleaf, we simply multiply by the factor:

(define (scale-tree tree factor)
(map (Il anbda (sub-tree)
(if (pair? sub-tree)
(scale-tree sub-tree factor)
(* sub-tree factor)))
tree))

Many tree operations can be implemented by similar combinations of sequence operations and recursion.

Exercise 2.30. Defineaproceduresquar e-tr ee analogoustothesquar e-1i st procedure of
exercise 2.21. That is, squar e- | i st should behave asfollows:

(square-tree

(list 1
(list 2 (list 3 4) 5)
(list 67)))

(1 (4 (9 16) 25) (36 49))

Definesquar e- t r ee both directly (i.e., without using any higher-order procedures) and aso by using

map and recursion.

Exercise 2.31. Abstract your answer to exercise 2.30 to produce a procedure t r ee- map with the property
that squar e- t r ee could be defined as

(define (square-tree tree) (tree-nmap square tree))

Exercise 2.32. We can represent aset asalist of distinct elements, and we can represent the set of all
subsets of the set asalist of lists. For example, if thesetis(1 2 3), thenthe set of all subsetsis(()

(3) (2) (23) (1) (13 (12 (1 2 3)).Completethefollowing definition of a procedure
that generates the set of subsets of a set and give a clear explanation of why it works:

(define (subsets s)
(if (null?s)
(list nil)
(let ((rest (subsets (cdr s))))
(append rest (map <??> rest)))))

2.2.3 Sequences as Conventional Interfaces

In working with compound data, we've stressed how data abstraction permits us to design programs without
becoming enmeshed in the details of data representations, and how abstraction preserves for us the
flexibility to experiment with alternative representations. In this section, we introduce another powerful
design principle for working with data structures -- the use of conventional interfaces.

In section 1.3 we saw how program abstractions, implemented as higher-order procedures, can capture
common patterns in programs that deal with numerical data. Our ability to formulate analogous operations
for working with compound data depends crucially on the style in which we manipulate our data structures.
Consider, for example, the following procedure, analogous to the count - | eaves procedure of

section 2.2.2, which takes a tree as argument and computes the sum of the squares of the leavesthat are
odd:

(define (sum odd-squares tree)
(cond ((null? tree) 0)
((not (pair? tree))
(if (odd? tree) (square tree) 0))
(el se (+ (sum odd-squares (car tree))
(sum odd-squares (cdr tree))))))

On the surface, this procedure is very different from the following one, which constructs alist of all the
even Fibonacci numbers Fib(k), where k is less than or equal to a given integer n:

(define (even-fibs n)
(define (next k)
(if (> k n)

ni |
(let ((f (fib k)))
(if (even? f)
(cons f (next (+ k 1)))

(next (+ k 1))))))
(next 0))

Despite the fact that these two procedures are structurally very different, a more abstract description of the
two computations reveals agreat deal of similarity. Thefirst program

. enumerates the leaves of atree;

. filtersthem, selecting the odd ones;

. sguares each of the selected ones; and

. accumulates the results using +, starting with O.

The second program

. enumerates the integersfrom O to n;

. computes the Fibonacci number for each integer;

. filtersthem, selecting the even ones; and

. accumulates the results using cons, starting with the empty list.

A signal-processing engineer would find it natural to conceptualize these processes in terms of signals
flowing through a cascade of stages, each of which implements part of the program plan, as shown in
figure2.7. Insum odd- squar es, we begin with an enumerator, which generatesa "“signal" consisting
of the leaves of agiven tree. Thissignal is passed through afilter, which eliminates all but the odd
elements. The resulting signal isin turn passed through a map, which isa ™ transducer” that applies the
squar e procedure to each element. The output of the map is then fed to an accumulator, which combines

the elements using +, starting from an initial 0. The plan for even- f i bs isanaogous.

gounaratae: filtaer: nap: accunulata:
——. — ——
tras leavaz odd? EqUars +, d
gonunAarata: nap: filter: accunulata:
. . ——. E—Y
integars= fib avan? cone, L)

Figure 2.7. The signa-flow plansfor the proceduressum odd- squar es (top) and even-fi bs
(bottom) reveal the commonality between the two programs.

Unfortunately, the two procedure definitions above fail to exhibit this signal-flow structure. For instance, if
we examine the sum odd- squar es procedure, we find that the enumeration isimplemented partly by

thenul | ? and pai r ? testsand partly by the tree-recursive structure of the procedure. Similarly, the
accumulation is found partly in the tests and partly in the addition used in the recursion. In general, there

are no distinct parts of either procedure that correspond to the elements in the signal-flow description. Our
two procedures decompose the computations in a different way, spreading the enumeration over the
program and mingling it with the map, the filter, and the accumulation. If we could organize our programs
to make the signal-flow structure manifest in the procedures we write, this would increase the conceptual
clarity of the resulting code.

Sequence Operations

The key to organizing programs so as to more clearly reflect the signal-flow structure is to concentrate on
the “"signals’ that flow from one stage in the process to the next. If we represent these signals aslists, then
we can use list operations to implement the processing at each of the stages. For instance, we can
implement the mapping stages of the signal-flow diagrams using the map procedure from section 2.2.1:

(map square (list 1 2 3 45))
(1 4 9 16 25)

Filtering a sequence to select only those elements that satisfy a given predicate is accomplished by

(define (filter predicate sequence)
(cond ((null? sequence) nil)
((predicate (car sequence))
(cons (car sequence)
(filter predicate (cdr sequence))))
(else (filter predicate (cdr sequence)))))

For example,

(filter odd? (list 1 2 3 4 5))
(1 3 5)

Accumulations can be implemented by

(define (accunulate op initial sequence)
(if (null? sequence)
initial
(op (car sequence)
(accumul ate op initial (cdr sequence)))))
(accumulate + 0 (list 1 2 3 405))

15

(accurmulate * 1 (list 1 2 3 4 5))

120

(accumul ate cons nil (list 1 2 3 45))
(12 3 4 5)

All that remains to implement signal-flow diagrams is to enumerate the sequence of elementsto be
processed. For even- f i bs, we need to generate the sequence of integersin a given range, which we can

do asfollows:

(define (enunerate-interval |ow high)
(if (> 1ow high)
ni |
(cons low (enunerate-interval (+ low 1) high))))
(enunerate-interval 2 7)

(23456 7)

To enumerate the leaves of atree, we can usel4

(define (enunerate-tree tree)
(cond ((null? tree) nil)
((not (pair? tree)) (list tree))
(el se (append (enunerate-tree (car tree))
(enunerate-tree (cdr tree))))))
(enunerate-tree (list 1 (list 2 (list 3 4)) 5))

(123 45)

Now we can reformulate sum odd- squar es and even- f i bs asin the signa-flow diagrams. For sum
odd- squar es, we enumerate the sequence of leaves of the tree, filter thisto keep only the odd numbers
in the sequence, square each element, and sum the results:

(define (sum odd-squares tree)
(accumul ate +
0
(map square
(filter odd?
(enunerate-tree tree)))))

For even-fi bs, we enumerate the integers from 0 to n, generate the Fibonacci number for each of these
integers, filter the resulting sequence to keep only the even elements, and accumulate the results into a list:

(define (even-fibs n)
(accumul ate cons
ni |
(filter even?
(map fib
(enunerate-interval 0 n)))))

The value of expressing programs as sequence operations is that this helps us make program designs that
are modular, that is, designs that are constructed by combining relatively independent pieces. We can
encourage modular design by providing alibrary of standard components together with a conventional
interface for connecting the componentsin flexible ways.

Modular construction is a powerful strategy for controlling complexity in engineering design. In real signal-
processing applications, for example, designers regularly build systems by cascading elements selected
from standardized families of filters and transducers. Similarly, sequence operations provide a library of

standard program elements that we can mix and match. For instance, we can reuse pieces from the sum
odd- squar es and even- f i bs proceduresin aprogram that constructs alist of the squares of thefirst n
+ 1 Fibonacci numbers:

(define (list-fib-squares n)
(accumul ate cons
ni |
(map square
(map fib
(enunerate-interval 0 n)))))

(list-fib-squares 10)
(01149 25 64 169 441 1156 3025)

We can rearrange the pieces and use them in computing the product of the odd integersin a sequence:

(define (product-of-squares-of-odd-el enents sequence)
(accumul ate *
1
(map square
(filter odd? sequence))))
(product - of - squares-of -odd-el enents (list 1 2 3 4 5))

225

We can also formulate conventional data-processing applicationsin terms of sequence operations. Suppose
we have a sequence of personnel records and we want to find the salary of the highest-paid programmer.
Assume that we have a selector sal ar y that returns the salary of arecord, and a predicate pr ogr anmer ?

that testsif arecord isfor aprogrammer. Then we can write

(define (sal ary-of - hi ghest - pai d- programmer records)
(accumul at e max
0
(map sal ary
(filter programrer? records))))

These examples give just a hint of the vast range of operations that can be expressed as sequence
operations.12

Sequences, implemented here as lists, serve as a conventional interface that permits usto combine
processing modules. Additionally, when we uniformly represent structures as sequences, we have localized
the data-structure dependenciesin our programs to a small number of sequence operations. By changing
these, we can experiment with alternative representations of sequences, while leaving the overall design of
our programs intact. We will exploit this capability in section 3.5, when we generalize the sequence-

processing paradigm to admit infinite sequences.

Exercise 2.33. Fill inthe missing expressions to complete the following definitions of some basic list-
mani pul ation operations as accumulations:

(define (map p sequence)

(accurmul ate (lanmbda (x y) <??>) nil sequence))
(define (append seql seq2)

(accumul ate cons <?7?7> <?7?7>))
(define (length sequence)

(accumul ate <??> 0 sequence))

Exercise 2.34. Evaluating a polynomial in x at a given value of x can be formulated as an accumulation.
We evauate the polynomial

g, r” +a, " dagr +oag

using awell-known algorithm called Horner's rule, which structures the computation as
(" f{emrdan_gjr+- 4+ a)r+ag

In other words, we start with a,,, multiply by x, add a,, 1, multiply by X, and so on, until we reach a,.16 Fill

in the following template to produce a procedure that evaluates a polynomial using Horner's rule. Assume
that the coefficients of the polynomial are arranged in a sequence, from ag through a,.

(define (horner-eval x coefficient-sequence)

(accumul ate (|l anbda (this-coeff higher-terns) <??>)
0
coef fici ent-sequence))

For example, to compute 1 + 3x + 5x3 + x° at x = 2 you would evaluate

(horner-eval 2 (list 13050 1))

Exercise 2.35. Redefinecount - | eaves from section 2.2.2 as an accumul ation:

(define (count-I|eaves t)
(accumul ate <??> <??> (map <??7> <?7?7>)))

Exercise 2.36. The procedureaccunul at e- nissimilar toaccumnul at e except that it takes asitsthird

argument a sequence of sequences, which are all assumed to have the same number of elements. It applies
the designated accumulation procedure to combine all the first elements of the sequences, all the second
elements of the sequences, and so on, and returns a sequence of the results. For instance, if s is asequence

containing four sequences, ((1 2 3) (4 56) (7 8 9) (10 11 12)), thenthevaueof
(accumul ate-n + 0 s) should bethesequence (22 26 30). Fill inthe missing expressionsin the
following definition of accunul at e- n:

(define (accunulate-n op init seqs)
(if (null? (car seqs))

ni
(cons (accunulate op init <??>)
(accunul ate-n op init <??>))))

Exercise 2.37. Suppose we represent vectors v = (V;) as sequences of numbers, and matrices m= (m;) as
sequences of vectors (the rows of the matrix). For example, the matrix

—
-] OT L3
[T . Y o
oo

isrepresented asthesequence ((1 2 3 4) (4 5 6 6) (6 7 8 9)).Withthisrepresentation, we

can use sequence operations to concisely express the basic matrix and vector operations. These operations
(which are described in any book on matrix algebra) are the following:

(dot-product u w) retirns the sum ;v

(matrix—*-vector mm) returns the vector {, where £, = ©; my;u;
(matrix—+*-matrix = ») returns the matnx p, where p;; = T mang;:
(transpoze m) returns the matrx n, where n; =m ;.

We can define the dot product asl’

(define (dot-product v w)
(accumulate + O (map * v w)))

Fill in the missing expressions in the following procedures for computing the other matrix operations. (The
procedure accunul at e- n isdefined in exercise 2.36.)

(define (matrix-*-vector myv)
(map <??> M)

(define (transpose mat)
(accunmul ate-n <??> <??> mat))

(define (matrix-*-matri x m n)
(let ((cols (transpose n)))

(map <??> m))

Exercise 2.38. Theaccunul at e procedureisalso known asf ol d-ri ght , because it combines the
first element of the sequence with the result of combining all the elementsto theright. Thereisalso af ol d-
| eft,whichissimilartof ol d-ri ght, except that it combines elements working in the opposite
direction:

(define (fold-left op initial sequence)
(define (iter result rest)
(if (null? rest)
result
(iter (op result (car rest))
(cdr rest))))
(iter initial sequence))

What are the values of

(fold-right / 1 (list 1 2 3))
(fold-left / 1 (list 1 2 3))
(fold-right list nil (list 1 2 3))
(fold-left list nil (list 1 2 3))

Give aproperty that op should satisfy to guarantee that f ol d-ri ght andf ol d- 1 ef t will produce the
same values for any sequence.

Exercise 2.39. Complete the following definitions of r ever se (exercise 2.18) intermsof f ol d-ri ght
andf ol d- | eft from exercise 2.38:

(define (reverse sequence)

(fold-right (lanmbda (x y) <??>) nil sequence))
(define (reverse sequence)

(fold-left (lanmbda (x y) <??>) nil sequence))

Nested Mappings

We can extend the sequence paradigm to include many computations that are commonly expressed using
nested loops.18 Consider this problem: Given a positive integer n, find all ordered pairs of distinct positive
integersi and j, where 1< j<i<n, such that i +j is prime. For example, if nis 6, then the pairs are the
following:

i |23 4156 6
j[12132158
i+j[3 5577711

A natural way to organize this computation is to generate the sequence of all ordered pairs of positive
integers less than or equal to n, filter to select those pairs whose sum is prime, and then, for each pair (i, j)
that passes through the filter, produce the triple (i,j,i +).

Here isaway to generate the sequence of pairs. For each integer i< n, enumerate the integers j<i, and for
each such i and j generate the pair (i,j). In terms of sequence operations, we map aong the sequence
(enunerate-interval 1 n).Foreachiinthissequence, we map along the sequence (enuner at e-

interval 1 (- i 1)).Foreachjinthislatter sequence, we generatethepair (1i st i j).This
gives us a sequence of pairsfor each i. Combining all the sequencesfor al thei (by accumulating with
append) produces the required sequence of pairs:19

(accunul ate append
ni |
(map (I anbda (i)
(map (lanmbda (j) (list i j))
(enunerate-interval 1 (- i 1))))
(enunerate-interval 1 n)))

The combination of mapping and accumulating with append is so common in this sort of program that we
will isolate it as a separate procedure:

(define (flatmap proc seq)
(accumul ate append nil (map proc seq)))

Now filter this sequence of pairsto find those whose sum is prime. The filter predicateis called for each
element of the sequence; its argument isapair and it must extract the integers from the pair. Thus, the
predicate to apply to each element in the sequenceis

(define (prime-sun? pair)
(prime? (+ (car pair) (cadr pair))))

Finally, generate the sequence of results by mapping over the filtered pairs using the following procedure,
which constructs a triple consisting of the two elements of the pair along with their sum:

(define (make-pair-sum pair)
(list (car pair) (cadr pair) (+ (car pair) (cadr pair))))

Combining all these steps yields the complete procedure:

(define (prine-sumpairs n)
(map meke- pair-sum
(filter prime-sun?

(fl atmap
(lanmbda (i)
(map (lanbda (j) (list i j))
(enunerate-interval 1 (- i 1))))

(enunerate-interval 1 n)))))

Nested mappings are also useful for sequences other than those that enumerate intervals. Suppose we wish
to generate al the permutations of aset S that is, al the ways of ordering the itemsin the set. For instance,
the permutations of {1,2,3} are{1,2,3},{ 1,3,2},{2,1,3},{ 2,3,1},{ 3,1,2}, and { 3,2,1}. Hereisaplan for
generating the permutations of S. For each item x in S recursively generate the sequence of permutations of
S- x,20 and adjoin x to the front of each one. Thisyields, for each x in S, the sequence of permutations of S

that begin with x. Combining these sequences for all x gives all the permutations of S:21

(define (pernutations s)
(if (null? s) ; enpty set?
(list nil) ; sequence containing enpty set
(flatmap (I anbda (x)
(map (lanbda (p) (cons x p))
(permutations (renove x s))))

s)))

Notice how this strategy reduces the problem of generating permutations of Sto the problem of generating
the permutations of sets with fewer elementsthan S. In the terminal case, we work our way down to the
empty list, which represents a set of no elements. For this, we generate (1 i st ni |), which isasequence

with one item, namely the set with no elements. Ther enbve procedure used in per nut at i ons returns
all theitemsin agiven sequence except for agiven item. This can be expressed as asimplefilter:

(define (renobve item sequence)
(filter (lanmbda (x) (not (= x item))
sequence))

Exercise 2.40. Define aprocedure uni que- pai r s that, given an integer n, generates the sequence of
pairs (i,j)) with 1< j<i<n. Useuni que- pai r s to simplify the definition of pri me- sum pai r s given
above.

Exercise 2.41. Write aprocedureto find all ordered triples of distinct positive integersi, j, and k less than
or equal to agiven integer n that sum to a given integer s.

Exercise 2.42.

M

Y

Figure 2.8: A solution to the eight-queens puzzle.

The ““eight-queens puzzle" asks how to place eight queens on a chessboard so that no queen isin check
from any other (i.e., no two queens are in the same row, column, or diagonal). One possible solution is
shown in figure 2.8. One way to solve the puzzle is to work across the board, placing aqueen in each
column. Once we have placed k - 1 queens, we must place the kth queen in a position where it does not
check any of the queens already on the board. We can formulate this approach recursively: Assume that we
have already generated the sequence of all possible waysto placek - 1 queensin thefirst k - 1 columns of
the board. For each of these ways, generate an extended set of positions by placing a queen in each row of
the kth column. Now filter these, keeping only the positions for which the queen in the kth column is safe
with respect to the other queens. This produces the sequence of al waysto place k queensin thefirst k
columns. By continuing this process, we will produce not only one solution, but all solutions to the puzzle.

We implement this solution as a procedure queens, which returns a sequence of all solutions to the
problem of placing n queens on an nx n chessboard. Queens has an internal procedure queen- col s that
returns the sequence of all ways to place queensin the first k columns of the board.

(define (queens board-size)
(define (queen-cols k)
(if (= k 0)
(list enpty-board)
(filter
(lanmbda (positions) (safe? k positions))
(flatmap
(1 anbda (rest-of-qgueens)
(map (I anbda (newrow)
(adj oi n-position newrow k rest-of-queens))
(enunerate-interval 1 board-size)))

(queen-cols (- k 1))))))
(queen-col s board-size))

In thisprocedurer est - of - queens isaway to placek - 1 queensin thefirst k - 1 columns, and new-

r owis aproposed row in which to place the queen for the kth column. Complete the program by
implementing the representation for sets of board positions, including the procedure adj oi n- posi ti on,
which adjoins a new row-column position to a set of positions, and enpt y- boar d, which represents an
empty set of positions. Y ou must also write the procedure saf e?, which determines for a set of positions,

whether the queen in the kth column is safe with respect to the others. (Note that we need only check
whether the new queen is safe -- the other queens are aready guaranteed safe with respect to each other.)

Exercise 2.43. Louis Reasoner is having aterrible time doing exercise 2.42. Hisqueens procedure seems
to work, but it runs extremely slowly. (Louis never does manage to wait long enough for it to solve even the
6% 6 case.) When Louis asks EvaLu Ator for help, she points out that he has interchanged the order of the
nested mappingsinthef | at map, writing it as

(flatmap
(1 ambda (newrow)
(map (Il anbda (rest-of-queens)
(adj oi n-position newrow k rest-of-queens))
(queen-cols (- k 1))))
(enunerate-interval 1 board-size))

Explain why this interchange makes the program run slowly. Estimate how long it will take Louis's
program to solve the eight-queens puzzle, assuming that the program in exercise 2.42 solves the puzzlein

timeT.

2.2.4 Example: A Picture Language

This section presents a simple language for drawing pictures that illustrates the power of data abstraction
and closure, and also exploits higher-order procedures in an essential way. The language is designed to
make it easy to experiment with patterns such as the onesin figure 2.9, which are composed of repeated

elements that are shifted and scaled.22 In this language, the data objects being combined are represented as
procedures rather than aslist structure. Just as cons, which satisfies the closure property, allowed us to

easily build arbitrarily complicated list structure, the operations in this language, which also satisfy the
closure property, allow usto easily build arbitrarily complicated patterns.

Figure 2.9: Designs generated with the picture language.

The picture language

When we began our study of programming in section 1.1, we emphasized the importance of describing a

language by focusing on the language's primitives, its means of combination, and its means of abstraction.
Wel'l follow that framework here.

Part of the elegance of this picture language is that there is only one kind of element, called a painter. A
painter draws an image that is shifted and scaled to fit within a designated parall el ogram-shaped frame. For
example, there's a primitive painter we'll call wave that makes a crude line drawing, as shown in

figure 2.10. The actual shape of the drawing depends on the frame -- all four imagesin figure 2.10 are
produced by the samewav e painter, but with respect to four different frames. Painters can be more
elaborate than this: The primitive painter called r oger s paints a picture of MIT's founder, William Barton
Rogers, as shown in figure 2.11.23 The four imagesin figure 2.11 are drawn with respect to the same four
frames asthe wave imagesin figure 2.10.

To combine images, we use various operations that construct new painters from given painters. For
example, thebesi de operation takes two painters and produces a new, compound painter that draws the

first painter'simage in the left half of the frame and the second painter'simage in the right half of the frame.
Similarly, bel owtakes two painters and produces a compound painter that draws the first painter'simage

below the second painter's image. Some operations transform a single painter to produce a new painter. For
example, f | i p- vert takesapainter and produces a painter that draws itsimage upside-down, and f | i p-
hor i z produces a painter that draws the original painter'simage left-to-right reversed.

—— = = =
- o

-

s

- -

-
R -~
-
™.
"
-
-,

' I| |
1 1
' \ I
1 1
. | |
1 1 |
1 1
1 ! I
- .
L i ' |
[} -
' L |
S0 -
k 3 —
v | . | 1 e
] : .
-__l' | -~ 1 1, _":
1 o .
1 Y
II I| k I ! . - -
. 1 na = .
oo s ! PR \
h ' . \ . E \
oy - . E -
1 ! ' M‘| ! : . -
o | s .
1 " 1 ; RS .
R | | - .
' 1 1 -
SRS SN S DD SRR | h S - .

Figure 2.10: Images produced by the wav e painter, with respect to four different frames. The frames,
shown with dotted lines, are not part of the images.

Figure2.11: Images of William Barton Rogers, founder and first president of MIT, painted with respect
to the same four frames asin figure 2.10 (original image reprinted with the permission of the MIT

Museum).

Figure 2.12 shows the drawing of a painter called wave4 that is built up in two stages starting from wave:

(define wave2 (beside wave (flip-vert wave)))
(define wave4 (bel ow wave2 wave2))

1 . 1 ; f . \)
II II |I | I| , i K _.-"-\._. . I.I
I ! T ' - g .
et I I 1 II "._ i _I-r P
.":I'- i _.'I"-_I II b ; ; ' .'-... """ .
1 .-'.l I|
[, ' L
| 1 | | _'l I'_ v _.-".
1 1 - . " A &
! II| 1 1‘" II II - ’ .\'. h 4
| |I ' I. .'-\.x _.' 1 1 - 1 " . ‘-
1 o 1 . 1 I' 1 "‘"-.\. 1 [
! 'I I| 1 1 1 e
1 I' ' 1 \ 1 ,
(define wave2 (define waved
(besi de wave (flip-vert wave))) (bel ow wave2 wave?2))

Figure 2.12: Creating acomplex figure, starting from the wave painter of figure 2.10.

In building up acomplex image in this manner we are exploiting the fact that painters are closed under the
language's means of combination. Thebesi de or bel owof two paintersisitself a painter; therefore, we

can useit as an element in making more complex painters. Aswith building up list structure using cons,
the closure of our data under the means of combination is crucial to the ability to create complex structures
while using only afew operations.

Once we can combine painters, we would like to be able to abstract typical patterns of combining painters.
We will implement the painter operations as Scheme procedures. This means that we don't need a special
abstraction mechanism in the picture language: Since the means of combination are ordinary Scheme
procedures, we automatically have the capability to do anything with painter operations that we can do with
procedures. For example, we can abstract the pattern inwave4 as

(define (flipped-pairs painter)
(let ((painter2 (beside painter (flip-vert painter))))
(bel ow painter2 painter2)))

and define wave4 as an instance of this pattern:

(define wave4 (fli pped-pairs wave))

We can aso define recursive operations. Here's one that makes painters split and branch towards the right
asshowninfigures2.13 and 2.14:

(define (right-split painter n)
(if (=no0)
pai nter

(let ((smaller (right-split painter (- n 1))))
(beside painter (below smaller smaller)))))
up— up—
Tight-zplit geplit [=plit coroer-split
-l =1 n-1 n-1
identity
right-=plit
ight-=plit -l
right-=pli identity
AL Tight-zplit
n—L
right-split n corner-split n

Figure2.13: Recursiveplansforri ght-split andcorner-split.

We can produce balanced patterns by branching upwards as well as towards the right (see exercise 2.44 and
figures2.13 and 2.14):

(define (corner-split painter n)
(if (=n0)
pai nt er
(let ((up (up-split painter (- n 1)))
(right (right-split painter (- n 1))))
(let ((top-left (beside up up))
(bottomright (belowright right))
(corner (corner-split painter (- n 1))))
(besi de (bel ow painter top-left)
(bel ow bottomright corner))))))

]
}
it
3
7 E:Tl
§
1

=/ 3

TN TR TR N T TR T TR TR TR

(right-split rogers 4)

(corner-split wave 4) (corner-split rogers 4)

Figure 2.14: Therecursive operationsri ght - split andcor ner-split appliedto the painters
wave andr oger s. Combining four cor ner - spl i t figures produces symmetricsquare-1imt
designs as shown in figure 2.9.

By placing four copiesof acor ner - spl i t appropriately, we obtain apattern called square-1im t,
whose application towave and r oger s isshown in figure 2.9:

(define (square-limt painter n)
(let ((quarter (corner-split painter n)))
(let ((half (beside (flip-horiz quarter) quarter)))
(below (flip-vert half) half))))

Exercise 2.44. Definethe procedureup- spl it usedby corner-split.ltissmilartori ght -
spl i t, except that it switches the roles of bel owand besi de.

Higher-order operations

In addition to abstracting patterns of combining painters, we can work at a higher level, abstracting patterns
of combining painter operations. That is, we can view the painter operations as elements to manipulate and
can write means of combination for these elements -- procedures that take painter operations as arguments
and create new painter operations.

For example, f | i pped- pai rs andsquar e-1i m t each arrange four copies of a painter'simagein a
square pattern; they differ only in how they orient the copies. One way to abstract this pattern of painter
combination iswith the following procedure, which takes four one-argument painter operations and
produces a painter operation that transforms a given painter with those four operations and arranges the
resultsinasquare. Tl ,tr, bl , and br are the transformations to apply to the top left copy, the top right
copy, the bottom left copy, and the bottom right copy, respectively.

(define (square-of-four tl tr bl br)
(I anbda (painter)
(let ((top (beside (tl painter) (tr painter)))
(bottom (beside (bl painter) (br painter))))
(bel ow bottomtop))))

Thenfl i pped- pai rs can be defined in terms of squar e- of - f our asfollows:24

(define (flipped-pairs painter)
(let ((conbined4 (square-of-four identity flip-vert
identity flip-vert)))
(conbi ne4 painter)))

andsquare- i mit can beexpressed as2

(define (square-limt painter n)
(let ((conbined4 (square-of-four flip-horiz identity
rotatel80 flip-vert)))
(conbi ne4 (corner-split painter n))))

Exercise2.45. Ri ght -spl it andup-spl it canbe expressed as instances of ageneral splitting
operation. Define aprocedure spl i t with the property that evaluating

(define right-split (split beside bel ow))
(define up-split (split bel ow beside))

produces proceduresr i ght - spl i t and up- spl i t with the same behaviors as the ones already defined.
Frames

Before we can show how to implement painters and their means of combination, we must first consider
frames. A frame can be described by three vectors -- an origin vector and two edge vectors. The origin
vector specifies the offset of the frame's origin from some absolute origin in the plane, and the edge vectors
specify the offsets of the frame's corners from its origin. If the edges are perpendicular, the frame will be
rectangular. Otherwise the frame will be a more general parallelogram.

Figure 2.15 shows a frame and its associated vectors. In accordance with data abstraction, we need not be
specific yet about how frames are represented, other than to say that there is a constructor make- f r ane,
which takes three vectors and produces a frame, and three corresponding selectorsor i gi n-f r ane,
edgel-frane, and edge2- f r ane (see exercise 2.47).

frame

edogez

vector

frame

sEIgLn (0,0} point

vector .
on display sceeen

Figure2.15: A frameisdescribed by three vectors -- an origin and two edges.

We will use coordinates in the unit square (0< x,y< 1) to specify images. With each frame, we associate a
frame coordinate map, which will be used to shift and scale imagesto fit the frame. The map transforms the
unit square into the frame by mapping the vector v = (x,y) to the vector sum

Crigin(Frame) + r - Edge; (Frame) 4+ y - Edges{Frame)

For example, (0,0) is mapped to the origin of the frame, (1,1) to the vertex diagonally opposite the origin,

and (0.5,0.5) to the center of the frame. We can create a frame's coordinate map with the following
procedure: 26

(define (frame-coord-map frane)
(lambda (v)
(add- vect
(origin-frame framne)
(add-vect (scal e-vect (xcor-vect v)
(edgel-frame frane))
(scal e-vect (ycor-vect v)
(edge2-frame frane))))))

Observe that applying f r ane- coor d- map to aframe returns a procedure that, given a vector, returns a
vector. If the argument vector isin the unit square, the result vector will be in the frame. For example,

((frame-coord-map a-frane) (nake-vect 0 0))

returns the same vector as

(origin-franme a-frane)

Exercise 2.46. A two-dimensional vector v running from the origin to a point can be represented as a pair
consisting of an x-coordinate and a y-coordinate. Implement a data abstraction for vectors by giving a
constructor make- vect and corresponding selectorsxcor - vect andycor - vect . Intermsof your

selectors and constructor, implement procedures add- vect , sub- vect ,and scal e- vect that perform
the operations vector addition, vector subtraction, and multiplying a vector by a scalar:

(r1,0) +(r2,02) = (r14+ 13,1+ 1)
(r1,m) — (13,2} = (r1—12,0n — 3}
s (r,y) = (s1,sy)

Exercise 2.47. Here aretwo possible constructors for frames:

(define (make-frame origin edgel edge?2)
(list origin edgel edge2))

(define (make-frame origin edgel edge2)
(cons origin (cons edgel edge2?)))

For each constructor supply the appropriate selectors to produce an implementation for frames.

Painters

A painter is represented as a procedure that, given aframe as argument, draws a particular image shifted
and scaled to fit the frame. That isto say, if p isapainter and f isaframe, then we produce p'simagein f

by calling p withf as argument.

The details of how primitive painters are implemented depend on the particular characteristics of the
graphics system and the type of image to be drawn. For instance, suppose we have a procedure dr aw-

| i ne that draws aline on the screen between two specified points. Then we can create painters for line
drawings, such as thewave painter in figure 2.10, from lists of line segments as follows:2?

(define (segnents->painter segnment-|ist)
(lanbda (frane)
(for-each
(1 anbda (segnent)
(draw-1i ne
((frame-coord-map frane) (start-segnent segnent))
((frame-coord-map frane) (end-segnent segnent))))
segnent-list)))

The segments are given using coordinates with respect to the unit square. For each segment in the list, the
painter transforms the segment endpoints with the frame coordinate map and draws aline between the
transformed points.

Representing painters as procedures erects a powerful abstraction barrier in the picture language. We can
create and intermix all sorts of primitive painters, based on a variety of graphics capabilities. The details of
their implementation do not matter. Any procedure can serve as a painter, provided that it takes aframe as
argument and draws something scaled to fit the frame.28

Exercise 2.48. A directed line segment in the plane can be represented as a pair of vectors -- the vector
running from the origin to the start-point of the segment, and the vector running from the origin to the end-
point of the segment. Use your vector representation from exercise 2.46 to define a representation for

segments with a constructor make- segnent and selectorsst art - segnent and end- segnent .
Exercise 2.49. Usesegnent s- >pai nt er to define the following primitive painters:

a. The painter that draws the outline of the designated frame.
b. The painter that draws an X" by connecting opposite corners of the frame.
c. The painter that draws a diamond shape by connecting the midpoints of the sides of the frame.

d. Thewave painter.

Transforming and combining painters

An operation on painters (such asf | i p- vert or besi de) works by creating a painter that invokes the
original painters with respect to frames derived from the argument frame. Thus, for example, f | i p- vert
doesn't have to know how a painter worksin order to flip it -- it just has to know how to turn aframe upside

down: The flipped painter just uses the original painter, but in the inverted frame.

Painter operations are based on the proceduret r ansf or m pai nt er , which takes as arguments a painter
and information on how to transform a frame and produces a new painter. The transformed painter, when
called on aframe, transforms the frame and calls the original painter on the transformed frame. The
argumentstot r ansf or m pai nt er are points (represented as vectors) that specify the corners of the
new frame: When mapped into the frame, the first point specifies the new frame's origin and the other two
specify the ends of its edge vectors. Thus, arguments within the unit square specify a frame contained
within the original frame.

(define (transform painter painter origin cornerl corner2)
(lanbda (frane)
(let ((m(frame-coord-map frane)))
(let ((neworigin (morigin)))

(pai nter

(rmake-frame neworigin
(sub-vect (mcornerl) new-origin)
(sub-vect (mcorner2) neworigin)))))))

Here's how to flip painter images vertically:

(define (flip-vert painter)
(transform pai nter painter
(make-vect 0.0 1.0) ; new origin
(make-vect 1.0 1.0) ; new end of edgel
(make-vect 0.0 0.0))) ; new end of edge2

Usingt ransf or m pai nt er , we can easily define new transformations. For example, we can define a
painter that shrinks its image to the upper-right quarter of the frameit is given:

(define (shrink-to-upper-right painter)
(transform pai nter painter
(make-vect 0.5 0.5)
(rmake-vect 1.0 0.5)
(make-vect 0.5 1.0)))

Other transformations rotate images counterclockwise by 90 degrees29

(define (rotate90 painter)
(transform pai nter painter
(rmake-vect 1.0 0.0)
(make-vect 1.0 1.0)
(make-vect 0.0 0.0)))

or sguash images towards the center of the frame;30

(define (squash-inwards painter)
(transform pai nter painter
(rmake-vect 0.0 0.0)
(make-vect 0.65 0.35)
(make-vect 0.35 0.65)))

Frame transformation is also the key to defining means of combining two or more painters. The besi de
procedure, for example, takes two painters, transforms them to paint in the left and right halves of an
argument frame respectively, and produces a new, compound painter. When the compound painter is given
aframe, it callsthefirst transformed painter to paint in the left half of the frame and calls the second
transformed painter to paint in the right half of the frame:

(define (beside painterl painter?2)
(let ((split-point (make-vect 0.5 0.0)))
(let ((paint-left
(transform painter painterl
(make-vect 0.0 0.0)
split-point
(make-vect 0.0 1.0)))
(paint-right
(transform pai nter painter?2
split-point
(rmake-vect 1.0 0.0)
(make-vect 0.5 1.0))))
(I anbda (frame)
(paint-left frame)
(paint-right franme)))))

Observe how the painter data abstraction, and in particular the representation of painters as procedures,
makesbesi de easy toimplement. Thebesi de procedure need not know anything about the details of

the component painters other than that each painter will draw something in its designated frame.

Exercise 2.50. Definethetransformationf | i p- hori z, which flips painters horizontally, and
transformations that rotate painters counterclockwise by 180 degrees and 270 degrees.

Exercise 2.51. Definethebel owoperation for painters. Bel owtakes two painters as arguments. The

resulting painter, given aframe, draws with the first painter in the bottom of the frame and with the second
painter in the top. Define bel owin two different ways -- first by writing a procedure that is analogous to

thebesi de procedure given above, and again in terms of besi de and suitable rotation operations (from
exercise 2.50).

Levels of language for robust design

The picture language exercises some of the critical ideas we've introduced about abstraction with
procedures and data. The fundamental data abstractions, painters, are implemented using procedural
representations, which enables the language to handle different basic drawing capabilitiesin a uniform way.
The means of combination satisfy the closure property, which permits us to easily build up complex

designs. Finally, all the tools for abstracting procedures are available to us for abstracting means of
combination for painters.

We have also obtained a glimpse of another crucial idea about languages and program design. Thisisthe
approach of stratified design, the notion that a complex system should be structured as a sequence of levels
that are described using a sequence of languages. Each level is constructed by combining parts that are
regarded as primitive at that level, and the parts constructed at each level are used as primitives at the next
level. The language used at each level of a stratified design has primitives, means of combination, and
means of abstraction appropriate to that level of detail.

Stratified design pervades the engineering of complex systems. For example, in computer engineering,
resistors and transistors are combined (and described using alanguage of analog circuits) to produce parts

such as and-gates and or-gates, which form the primitives of alanguage for digital-circuit design.3L These
parts are combined to build processors, bus structures, and memory systems, which are in turn combined to
form computers, using languages appropriate to computer architecture. Computers are combined to form
distributed systems, using languages appropriate for describing network interconnections, and so on.

Asatiny example of stratification, our picture language uses primitive elements (primitive painters) that are
created using a language that specifies points and lines to provide the lists of line segmentsfor segnent s-

>pai nt er, or the shading details for apainter liker oger s. The bulk of our description of the picture
language focused on combining these primitives, using geometric combiners such asbesi de and bel ow.
We aso worked at ahigher level, regarding besi de and bel owas primitivesto be manipulated in a
language whose operations, such assquar e- of - f our , capture common patterns of combining
geometric combiners.

Stratified design helps make programs robust, that is, it makesit likely that small changes in a specification
will require correspondingly small changes in the program. For instance, suppose we wanted to change the
image based on wave shown in figure 2.9. We could work at the lowest level to change the detailed

appearance of thewave element; we could work at the middle level to change theway cor ner - spl it
replicates the wav e; we could work at the highest level to change how squar e- 1 i m t arranges the four

copies of the corner. In general, each level of a stratified design provides a different vocabulary for
expressing the characteristics of the system, and a different kind of ability to change it.

Exercise 2.52. Make changesto the square limit of wave shown in figure 2.9 by working at each of the
levels described above. In particular:

a. Add some segments to the primitive wave painter of exercise 2.49 (to add asmile, for example).

b. Change the pattern constructed by cor ner - spl i t (for example, by using only one copy of the up-
split andri ght-split imagesinstead of two).

c. Modify theversion of squar e- | i m t that usessquar e- of - f our so asto assemblethe cornersin a

different pattern. (For example, you might make the big Mr. Rogers look outward from each corner of the
square.)

6 The use of the word “closure" here comes from abstract algebra, where a set of elementsis said to be closed under an operation if applying
the operation to elementsin the set produces an element that is again an element of the set. The Lisp community also (unfortunately) uses the
word ““closure" to describe atotally unrelated concept: A closure is an implementation technique for representing procedures with free
variables. We do not use the word "“closure” in this second sense in this book.

7 The notion that a means of combination should satisfy closure is a straightforward idea. Unfortunately, the data combiners provided in many
popular programming languages do not satisfy closure, or make closure cumbersome to exploit. In Fortran or Basic, one typically combines
data elements by assembling them into arrays -- but one cannot form arrays whose elements are themselves arrays. Pascal and C admit
structures whose elements are structures. However, this reguires that the programmer manipulate pointers explicitly, and adhere to the
restriction that each field of a structure can contain only elements of a prespecified form. Unlike Lisp with its pairs, these languages have no
built-in general-purpose glue that makes it easy to manipulate compound datain a uniform way. This limitation lies behind Alan Perlis's
comment in his foreword to this book: “*In Pascal the plethora of declarable data structures induces a specialization within functions that
inhibits and penalizes casual cooperation. It is better to have 100 functions operate on one data structure than to have 10 functions operate on 10
data structures.”

8 In this book, we use list to mean a chain of pairs terminated by the end-of-list marker. In contrast, the term list structure refers to any data
structure made out of pairs, not just to lists.

9 Since nested applications of car and cdr are cumbersome to write, Lisp dialects provide abbreviations for them -- for instance,

(cadr {arg)) = (car (cdr {arg)))

The names of all such procedures start with ¢ and end with r . Each a between them stands for acar operation and each d for acdr operation,
to be applied in the same order in which they appear in the name. The names car and cdr persist because simple combinations like cadr are
pronounceable.

10 |t's remarkable how much energy in the standardization of Lisp dialects has been dissipated in arguments that are literally over nothing:
Should ni | be an ordinary name? Should the value of ni | be asymbol? Should it be alist? Should it be apair? In Scheme, ni | isan ordinary

name, which we use in this section as a variable whose value is the end-of -list marker (just ast r ue isan ordinary variable that has atrue
value). Other dialects of Lisp, including Common Lisp, treat ni | asaspecia symbol. The authors of this book, who have endured too many
language standardization brawls, would like to avoid the entire issue. Once we have introduced quotation in section 2.3, we will denote the
empty listas' () and dispense with the variableni | entirely.

11 To definef and g using | anbda we would write

(define f (lanmbda (x y . z) <body>))
(define g (lanmbda w <body>))

12 scheme standardly provides amap procedure that is more general than the one described here. This more general map takes a procedure of n
arguments, together with n lists, and applies the procedure to all the first elements of thelists, al the second elements of the lists, and so on,
returning alist of the results. For example:

(map + (list 1 2 3) (list 40 50 60) (list 700 800 900))
(741 852 963)

(mep (lanmbda (x y) (+ x (* 2)))

(list 12 3)
(list 4 586))
(9 12 15)

13 The order of the first two clauses in the cond matters, since the empty list satisfiesnul | ? and also is not a pair.

14 Thisis, infact, precisely thef r i nge procedure from exercise 2.28. Here we've renamed it to emphasize that it is part of afamily of general
sequence-manipulation procedures.

15 Richard Waters (1979) developed a program that automatically analyzes traditional Fortran programs, viewing them in terms of maps, filters,
and accumulations. He found that fully 90 percent of the code in the Fortran Scientific Subroutine Package fits neatly into this paradigm. One of
the reasons for the success of Lisp as a programming language is that lists provide a standard medium for expressing ordered collections so that
they can be manipulated using higher-order operations. The programming language APL owes much of its power and appeal to a similar choice.
In APL all data are represented as arrays, and there isa universal and convenient set of generic operators for all sorts of array operations.

16 According to Knuth (1981), this rule was formulated by W. G. Horner early in the nineteenth century, but the method was actually used by
Newton over ahundred years earlier. Horner's rule evaluates the polynomial using fewer additions and multiplications than does the
straightforward method of first computing a,, X", then adding a,, 1x*1, and so on. In fact, it is possible to prove that any algorithm for evaluating
arbitrary polynomials must use at least as many additions and multiplications as does Horner's rule, and thus Horner's rule is an optimal
algorithm for polynomial evaluation. This was proved (for the number of additions) by A. M. Ostrowski in a 1954 paper that essentially
founded the modern study of optimal algorithms. The analogous statement for multiplications was proved by V. Y. Pan in 1966. The book by
Borodin and Munro (1975) provides an overview of these and other results about optimal algorithms.

17 This definition uses the extended version of map described in footnote 12.

18 This approach to nested mappings was shown to us by David Turner, whose languages KRC and Miranda provide elegant formalisms for
dealing with these constructs. The examplesin this section (see also exercise 2.42) are adapted from Turner 1981. In section 3.5.3, we'll see

how this approach generalizes to infinite sequences.

19 we're representing apair here as alist of two elements rather than as a Lisp pair. Thus, the “pair” (i,j) isrepresented as (1 i st i j), not
(cons i j).

20 The set S- x isthe set of al elements of S, excluding x.

21 Semicolonsin Scheme code are used to introduce comments. Everything from the semicolon to the end of the lineis ignored by the
interpreter. In this book we don't use many comments; we try to make our programs self-documenting by using descriptive names.

22 The picture language is based on the language Peter Henderson created to construct images like M.C. Escher's *Square Limit" woodcut (see
Henderson 1982). The woodcut incorporates a repeated scaled pattern, similar to the arrangements drawn using the squar e- | i mi t procedure
in this section.

23 William Barton Rogers (1804-1882) was the founder and first president of MIT. A geologist and talented teacher, he taught at William and
Mary College and at the University of Virginia. In 1859 he moved to Boston, where he had more time for research, worked on aplan for
establishing a ™" polytechnic institute," and served as Massachusetts's first State Inspector of Gas Meters.

When MIT was established in 1861, Rogers was elected itsfirst president. Rogers espoused an ideal of “"useful learning” that was different
from the university education of the time, with its overemphasis on the classics, which, as he wrote, ““stand in the way of the broader, higher
and more practical instruction and discipline of the natural and social sciences." This education was likewise to be different from narrow trade-
school education. In Rogers's words:

The world-enforced distinction between the practical and the scientific worker is utterly futile, and the whole experience
of modern times has demonstrated its utter worthlessness.

Rogers served as president of MIT until 1870, when he resigned due to ill health. In 1878 the second president of MIT, John Runkle, resigned
under the pressure of afinancial crisis brought on by the Panic of 1873 and strain of fighting off attempts by Harvard to take over MIT. Rogers
returned to hold the office of president until 1881.

Rogers collapsed and died while addressing MIT's graduating class at the commencement exercises of 1882. Runkle quoted Rogers's last words
in amemoria address delivered that same year:

“As| stand here today and see what the Ingtituteis, . . . | call to mind the beginnings of science. | remember one

hundred and fifty years ago Stephen Hales published a pamphlet on the subject of illuminating gas, in which he stated that
his researches had demonstrated that 128 grains of bituminous coal -- "

“*Bituminous coal," these were his last words on earth. Here he bent forward, as if consulting some notes on the table
before him, then slowly regaining an erect position, threw up his hands, and was translated from the scene of his earthly
labors and triumphs to *“the tomorrow of death," where the mysteries of life are solved, and the disembodied spirit finds
unending satisfaction in contemplating the new and still unfathomable mysteries of the infinite future.

In the words of Francis A. Walker (MIT's third president):

All hislife he had borne himself most faithfully and heroically, and he died as so good a knight would surely have
wished, in harness, at his post, and in the very part and act of public duty.

24 Equivalently, we could write

(define flipped-pairs
(square-of-four identity flip-vert identity flip-vert))

25 Rot at €180 rotates a painter by 180 degrees (see exercise 2.50). Instead of r ot at e180 we could say (conpose flip-vert flip-
hori z), using the conpose procedure from exercise 1.42.

26 Fr amre- coor d- map uses the vector operations described in exercise 2.46 below, which we assume have been implemented using some

representation for vectors. Because of data abstraction, it doesn't matter what this vector representation is, so long as the vector operations
behave correctly.

27 Segmrent s- >pai nt er usesthe representation for line segments described in exercise 2.48 below. It also usesthe f or - each procedure
described in exercise 2.23.

28 For example, ther oger s painter of figure 2.11 was constructed from a gray-level image. For each point in a given frame, ther oger s

painter determines the point in the image that is mapped to it under the frame coordinate map, and shades it accordingly. By allowing different
types of painters, we are capitalizing on the abstract data idea discussed in section 2.1.3, where we argued that a rational-number representation

could be anything at all that satisfies an appropriate condition. Here we're using the fact that a painter can be implemented in any way at al, so
long as it draws something in the designated frame. Section 2.1.3 also showed how pairs could be implemented as procedures. Painters are our

second example of a procedural representation for data.

29 Rot at €90 isapure rotation only for square frames, because it also stretches and shrinks the image to fit into the rotated frame.
30 The diamond-shaped images in figures 2.10 and 2.11 were created with squash- i nwar ds applied towave andr oger s.

31 Section 3.3.4 describes one such language.

[Gotofirst, previous, next page; contents;, index]

[Go tofirst, previous, next page; contents, index|

2.3 Symbolic Data

All the compound data objects we have used so far were constructed ultimately from numbers. In this
section we extend the representational capability of our language by introducing the ability to work with
arbitrary symbols as data.

2.3.1 Quotation

If we can form compound data using symbols, we can have lists such as

(a bcd
(23 45 17)
((Norah 12) (Molly 9) (Anna 7) (Lauren 6) (Charlotte 4))

Lists containing symbols can ook just like the expressions of our language:

(* (+ 23 45) (+ x 9))

(define (fact n) (if (=n 1) 1 (* n (fact (- n 1)))))

In order to manipulate symbols we need a new element in our language: the ability to quote a data object.
Suppose we want to construct thelist (a b) . We can't accomplishthiswith (11 st a b), becausethis
expression constructs alist of the values of a and b rather than the symbols themselves. Thisissue iswell

known in the context of natural languages, where words and sentences may be regarded either as semantic
entities or as character strings (syntactic entities). The common practice in natural languagesisto use
guotation marks to indicate that aword or a sentence isto be treated literally as a string of characters. For
instance, the first letter of “"John" isclearly ~"J." If we tell somebody " say your name aloud,” we expect to
hear that person's name. However, if wetell somebody ““say "your name' aloud,” we expect to hear the
words “your name." Note that we are forced to nest quotation marks to describe what somebody el se might

say 32

We can follow this same practice to identify lists and symbols that are to be treated as data objects rather
than as expressions to be evaluated. However, our format for quoting differs from that of natural languages
in that we place a quotation mark (traditionally, the single quote symbol ') only at the beginning of the

object to be quoted. We can get away with thisin Scheme syntax because we rely on blanks and
parentheses to delimit objects. Thus, the meaning of the single quote character is to quote the next object.33

Now we can distinguish between symbols and their values:

(define a 1)

(define b 2)

(list a b)

(12)
(list "a 'b)
(a b)
(list "a b)
(a 2)

Quotation also alows usto type in compound objects, using the conventional printed representation for
lists:34

(car '"(a b c))
a

(cdr "(a b c))
(b c)

In keeping with this, we can obtain the empty list by evaluating ' () , and thus dispense with the variable
nil.

One additional primitive used in manipulating symbolsiseq?, which takes two symbols as arguments and

tests whether they are the same.35 Using eq?, we can implement a useful procedure called menyg. This
takes two arguments, a symbol and alist. If the symbol isnot contained in the list (i.e., isnot eq? to any
item in the list), then menq returns false. Otherwise, it returns the sublist of the list beginning with the first
occurrence of the symbol:

(define (nmeng item x)
(cond ((null? x) fal se)

((eq? item (car X)) Xx)
(else (menmg item (cdr x)))))

For example, the value of

(menmg " appl e ' (pear banana prune))

isfalse, whereas the value of
(menmg "apple ' (x (apple sauce) y apple pear))
is(appl e pear).

Exercise 2.53. What would the interpreter print in response to evaluating each of the following
expressions?

(list "a'b 'c)

(list (list "george))
(cdr " ((x1 x2) (yly2)))

(cadr "((x1 x2) (yl y2)))
(pair? (car '(a short list)))
(memg "red ' ((red shoes) (blue socks)))

(meng 'red ' (red shoes bl ue socks))

Exercise 2.54. Two listsare said to beequal ? if they contain equal elements arranged in the same order.
For example,

(equal? "(this is alist) "(thisis alist))

istrue, but
(equal? "(this is alist) '"(this (is a) list))
isfalse. To be more precise, we can define equal ? recursively in terms of the basic eq? equality of

symbols by saying that a and b are equal ? if they are both symbols and the symbolsare eq?, or if they
areboth listssuchthat (car a) isequal ?to(car b) and(cdr a) isequal ?to(cdr b).Usng

thisidea, implement equal ? as a procedure.36

Exercise 2.55. EvalLu Ator typesto the interpreter the expression

(car ''abracadabra)

To her surprise, the interpreter prints back quot e. Explain.

2.3.2 Example: Symbolic Differentiation

Asan illustration of symbol manipulation and afurther illustration of data abstraction, consider the design
of a procedure that performs symbolic differentiation of algebraic expressions. We would like the
procedure to take as arguments an algebraic expression and a variable and to return the derivative of the
expression with respect to the variable. For example, if the arguments to the procedure are ax2 + bx + ¢ and
X, the procedure should return 2ax + b. Symbolic differentiation is of specia historical significance in Lisp.
It was one of the motivating examples behind the development of a computer language for symbol
manipulation. Furthermore, it marked the beginning of the line of research that led to the development of
powerful systems for symbolic mathematical work, which are currently being used by a growing number of
applied mathematicians and physicists.

In developing the symbolic-differentiation program, we will follow the same strategy of data abstraction
that we followed in developing the rational-number system of section 2.1.1. That is, we will first define a

differentiation algorithm that operates on abstract objects such as “sums,” “"products,” and “variables’
without worrying about how these are to be represented. Only afterward will we address the representation
problem.

The differentiation program with abstract data

In order to keep things simple, we will consider a very simple symbolic-differentiation program that
handles expressions that are built up using only the operations of addition and multiplication with two
arguments. Differentiation of any such expression can be carried out by applying the following reduction
rules:

? = [{or r a constant or a variable diferent from r
T
gx
— =1
dF
diu 4+ u) _ d_u_l_ E
gr C dr | dr
d{uuj i du di
=) (d_)

Observe that the latter two rules are recursive in nature. That is, to obtain the derivative of asum we first
find the derivatives of the terms and add them. Each of the terms may in turn be an expression that needs to
be decomposed. Decomposing into smaller and smaller pieces will eventually produce pieces that are either
constants or variables, whose derivatives will be either O or 1.

To embody these rulesin a procedure we indulge in alittle wishful thinking, as we did in designing the
rational-number implementation. If we had a means for representing algebraic expressions, we should be
able to tell whether an expression is a sum, a product, a constant, or a variable. We should be able to
extract the parts of an expression. For a sum, for example we want to be able to extract the addend (first
term) and the augend (second term). We should aso be able to construct expressions from parts. Let us
assume that we already have procedures to implement the following selectors, constructors, and predicates.

(vari abl e? e) Ise avariable?

(same-variabl e? vl v2) Arevl andv2 the samevariable?

(sunf e) Ise asum?

(addend e) Addend of the sum e.
(augend e) Augend of thesum e.
(make-sum al a2) Construct the sum of al and a2.
(product? e) Ise aproduct?

(multiplier e) Multiplier of the product e.

(rmul tiplicand e) Multiplicand of the product e.
(make- product nml nR) Construct the product of il and n2.

Using these, and the primitive predicate nunber ?, which identifies numbers, we can express the
differentiation rules as the following procedure:

(define (deriv exp var)
(cond ((nunber? exp) 0)
((vari abl e? exp)
(if (sane-variable? exp var) 1 0))
((sun®? exp)
(make-sum (deriv (addend exp) var)
(deriv (augend exp) var)))
((product ? exp)
(make-sum
(make- product (nultiplier exp)
(deriv (multiplicand exp) var))
(make- product (deriv (rmultiplier exp) var)
(multiplicand exp))))
(el se
(error "unknown expression type -- DERIV' exp))))

Thisder i v procedure incorporates the complete differentiation algorithm. Since it is expressed in terms

of abstract data, it will work no matter how we choose to represent algebraic expressions, aslong aswe
design a proper set of selectors and constructors. Thisis the issue we must address next.

Representing algebraic expressions

We can imagine many waysto use list structure to represent algebraic expressions. For example, we could
use lists of symbolsthat mirror the usual algebraic notation, representing ax + b asthelist(a * x + b).

However, one especially straightforward choice is to use the same parenthesized prefix notation that Lisp
uses for combinations; that is, to representax + bas(+ (* a x) b). Thenour datarepresentation for

the differentiation problem is as follows:
. Thevariables are symbols. They are identified by the primitive predicate sy nbol ?:
(define (variable? x) (synbol? x))
. Two variables are the same if the symbols representing them are eq?:

(define (sane-variable? vl v2)
(and (variable? v1) (variable? v2) (eq? vl v2)))

. Sums and products are constructed as lists:

(define (rmake-sumal a2) (list '+ al a2))

(define (make-product miL nR) (list "* mlL nR))

. A sumisalist whosefirst element is the symbol +:

(define (sun? x)
(and (pair? x) (eq? (car x) '+)))

. Theaddend is the second item of the sum list:

(define (addend s) (cadr s))

. Theaugend isthethird item of the sum list:

(define (augend s) (caddr s))

. A product isalist whosefirst element is the symbol * :

(define (product? x)
(and (pair? x) (eq? (car x) '*)))

. Themultiplier isthe second item of the product list:

(define (nmultiplier p) (cadr p))

. Themultiplicand is the third item of the product list:

(define (nmultiplicand p) (caddr p))

Thus, we need only combine these with the algorithm as embodied by der i v in order to have aworking
symbolic-differentiation program. Let uslook at some examples of its behavior:

(deriv '"(+ x 3) '"Xx)
(+ 1 0)
(deriv "(* xvy) "x)
(+ (* x0) (* 1y))
(deriv "(* (* xy) (+x 3)) "x)
(+ (* (* xy) (+10))

(* (+ (*x0) (¥ 1y))

(+ x3)))

The program produces answers that are correct; however, they are unsimplified. It istrue that

d{ry)
By na1.
dr ' +tiy

but we would like the program to know that x -0=0,1 -y =y, and 0 + y = y. The answer for the second
example should have been simply y. Asthe third example shows, this becomes a serious issue when the

expressions are complex.

Our difficulty is much like the one we encountered with the rational-number implementation: we haven't
reduced answers to simplest form. To accomplish the rational-number reduction, we needed to change only
the constructors and the selectors of the implementation. We can adopt a similar strategy here. We won't
changeder i v at al. Instead, we will change make- sumso that if both summands are numbers, make-
sumwill add them and return their sum. Also, if one of the summandsis O, then make- sumwill return the

other summand.

(define (make-sum al a2)
(cond ((=nunber? al 0) a2)
((=nunber? a2 0) al)
((and (nunmber? al) (nunber? a2)) (+ al a2))
(else (list "+ al a2))))

This uses the procedure =nunber ?, which checks whether an expression is equal to a given number:

(define (=nunber? exp num
(and (nunber? exp) (= exp num))

Similarly, we will change make- pr oduct to buildinthe rulesthat O times anything is 0 and 1 times
anything is the thing itself:

(define (nmake-product nmlL nR)
(cond ((or (=nunber? nl 0) (=nunber? n2 0)) 0)
((=nunmber? nl 1) nR)
((=nunmber? n2 1) nil)
((and (nunber? nl) (nunber? n2)) (* nl nR))
(else (list "* nl nR))))

Here is how this version works on our three examples:

(deriv "(+ x 3) "x)
1
(deriv '"(* x y) "X)

{deriv "(* (* xy) (+x3)) '"x)
(+(*xy) (*y (+x3)))

Although thisis quite an improvement, the third example shows that there is still along way to go before
we get a program that puts expressions into aform that we might agreeis "simplest.” The problem of

algebraic simplification is complex because, among other reasons, aform that may be simplest for one
purpose may not be for another.

Exercise 2.56. Show how to extend the basic differentiator to handle more kinds of expressions. For
instance, implement the differentiation rule

) _ e (22
\dr

by adding anew clauseto theder i v program and defining appropriate procedures exponent i at i on?,
base, exponent , and make- exponenti at i on. (You may use the symbol ** to denote

exponentiation.) Build in the rules that anything raised to the power 0 is 1 and anything raised to the power
1 isthething itself.

Exercise 2.57. Extend the differentiation program to handle sums and products of arbitrary numbers of
(two or more) terms. Then the last example above could be expressed as

(deriv "(* xy (+ x 3)) "x)

Try to do this by changing only the representation for sums and products, without changing theder i v
procedure at all. For example, the addend of a sum would be the first term, and the augend would be the
sum of the rest of the terms.

Exercise 2.58. Suppose we want to modify the differentiation program so that it works with ordinary
mathematical notation, in which + and * are infix rather than prefix operators. Since the differentiation

program is defined in terms of abstract data, we can modify it to work with different representations of
expressions solely by changing the predicates, selectors, and constructors that define the representation of
the algebraic expressions on which the differentiator isto operate.

a. Show how to do thisin order to differentiate algebraic expressions presented in infix form, suchas(x +
(3 * (x + (y + 2)))).Tosmplify thetask, assume that + and * always take two arguments and
that expressions are fully parenthesized.

b. The problem becomes substantially harder if we allow standard algebraic notation, suchas(x + 3 *
(x +y + 2)),whichdropsunnecessary parentheses and assumes that multiplication is done before

addition. Can you design appropriate predicates, selectors, and constructors for this notation such that our
derivative program still works?

2.3.3 Example: Representing Sets

In the previous examples we built representations for two kinds of compound data objects: rational
numbers and algebraic expressions. In one of these examples we had the choice of simplifying (reducing)
the expressions at either construction time or selection time, but other than that the choice of a
representation for these structures in terms of lists was straightforward. When we turn to the representation
of sets, the choice of arepresentation is not so obvious. Indeed, there are a number of possible

representations, and they differ significantly from one another in several ways.

Informally, a set is ssimply a collection of distinct objects. To give a more precise definition we can employ
the method of data abstraction. That is, we define ““set" by specifying the operations that are to be used on
sets. Theseareuni on-set ,i ntersecti on-set, el enent - of - set ?, and adj oi n-set.

El enent - of - set ? isapredicate that determines whether a given element isa member of a set.

Adj oi n- set takesan object and a set as arguments and returns a set that contains the elements of the
original set and also the adjoined element. Uni on- set computes the union of two sets, which is the set
containing each element that appears in either argument. | nt er sect i on- set computes the intersection

of two sets, which is the set containing only elements that appear in both arguments. From the viewpoint of
data abstraction, we are free to design any representation that implements these operations in away

consistent with the interpretations given above.3’

Sets as unordered lists

One way to represent aset isas alist of its elements in which no element appears more than once. The
empty set is represented by the empty list. In this representation, el enment - of - set ? issimilar to the

procedure menq of section 2.3.1. It usesequal ? instead of eq? so that the set elements need not be
symbols:

(define (el enent-of-set? x set)
(cond ((null? set) fal se)
((equal ? x (car set)) true)
(el se (elenment-of-set? x (cdr set)))))

Using this, we can write adj oi n- set . If the object to be adjoined is already in the set, we just return the
set. Otherwise, we use cons to add the object to the list that represents the set:

(define (adjoin-set x set)
(if (elenment-of-set? x set)
set
(cons x set)))

Fori nt er secti on- set we can use arecursive strategy. If we know how to form the intersection of
set 2 andthecdr of set 1, we only need to decide whether to includethecar of set 1 inthis. But this
dependson whether (car set 1) isasoinset 2. Hereisthe resulting procedure:

(define (intersection-set setl set?2)
(cond ((or (null? setl) (null? set2)) "())
((el ement-of -set? (car setl) set?2)
(cons (car setl)
(intersection-set (cdr setl) set2)))
(el se (intersection-set (cdr setl) set2))))

In designing a representation, one of the issues we should be concerned with is efficiency. Consider the

number of steps required by our set operations. Since they all use el enent - of - set ?, the speed of this

operation has a major impact on the efficiency of the set implementation as awhole. Now, in order to
check whether an object isamember of aset, el enment - of - set ? may have to scan the entire set. (In

the worst case, the object turns out not to be in the set.) Hence, if the set has n elements, el enent - of -
set ? might take up to n steps. Thus, the number of steps required grows as €(n). The number of steps
required by adj oi n- set , which uses this operation, also grows as&)(n). For i nt er sect i on- set,
which does an el enent - of - set ? check for each element of set 1, the number of steps required grows

as the product of the sizes of the setsinvolved, or £(n?) for two sets of size n. The same will be true of
uni on- set.

Exercise 2.59. Implement theuni on- set operation for the unordered-list representation of sets.

Exercise 2.60. We specified that a set would be represented as a list with no duplicates. Now suppose we
allow duplicates. For instance, the set {1,2,3} could be represented asthelist (2 3 2 1 3 2 2).

Design procedures el enent - of - set ?, adj oi n-set,uni on-set,andi ntersecti on-set that

operate on this representation. How does the efficiency of each compare with the corresponding procedure
for the non-duplicate representation? Are there applications for which you would use this representation in
preference to the non-duplicate one?

Sets as ordered lists

One way to speed up our set operations is to change the representation so that the set elements are listed in
increasing order. To do this, we need some way to compare two objects so that we can say which is bigger.
For example, we could compare symbols lexicographically, or we could agree on some method for
assigning a unigue number to an object and then compare the elements by comparing the corresponding
numbers. To keep our discussion ssimple, we will consider only the case where the set elements are
numbers, so that we can compare elements using > and <. We will represent a set of numbers by listing its
elementsin increasing order. Whereas our first representation above allowed us to represent the set
{1,3,6,10} by listing the elementsin any order, our new representation allowsonly thelist (1 3 6 10).

One advantage of ordering showsup in el enent - of - set ?: In checking for the presence of an item, we

no longer have to scan the entire set. If we reach a set element that is larger than the item we are looking
for, then we know that the item is not in the set:

(define (element-of-set? x set)
(cond ((null? set) false)
((= x (car set)) true)
((< x (car set)) false)
(el se (elenment-of-set? x (cdr set)))))

How many steps does this save? In the worst case, the item we are looking for may be the largest one in the
set, so the number of stepsisthe same as for the unordered representation. On the other hand, if we search
for items of many different sizes we can expect that sometimes we will be able to stop searching at a point
near the beginning of the list and that other times we will still need to examine most of the list. On the
average we should expect to have to examine about half of the itemsin the set. Thus, the average number
of steps required will be about n/2. Thisis still €)(n) growth, but it does save us, on the average, a factor of

2 in number of steps over the previous implementation.

We obtain a more impressive speedup withi nt er sect i on- set . In the unordered representation this
operation required £)(n2) steps, because we performed a complete scan of set 2 for each element of set 1.

But with the ordered representation, we can use a more clever method. Begin by comparing the initial
elements, x1 and x2, of the two sets. If x1 equals x2, then that gives an element of the intersection, and

the rest of the intersection is the intersection of the cdr s of the two sets. Suppose, however, that x1 isless
than x2. Since x2 isthe smallest element in set 2, we can immediately conclude that x 1 cannot appear
anywherein set 2 and henceis not in the intersection. Hence, the intersection is equal to the intersection
of set 2 withthecdr of set 1. Similarly, if x2 islessthan x 1, then the intersection is given by the
intersection of set 1 withthecdr of set 2. Hereisthe procedure:

(define (intersection-set setl set?2)
(if (or (null? setl) (null? set2))
()
(let ((x1 (car setl)) (x2 (car set2)))
(cond ((= x1 x2)
(cons x1
(intersection-set (cdr setl)
(cdr set2))))
((< x1 x2)
(intersection-set (cdr setl) set2))
((< x2 x1)
(intersection-set setl (cdr set2)))))))

To estimate the number of steps required by this process, observe that at each step we reduce the
intersection problem to computing intersections of smaller sets -- removing the first element fromset 1 or

set 2 or both. Thus, the number of stepsrequired is at most the sum of the sizesof set 1 and set 2, rather
than the product of the sizes as with the unordered representation. Thisis &(n) growth rather than €}(n?) --

a considerable speedup, even for sets of moderate size.

Exercise 2.61. Give animplementation of adj oi n- set using the ordered representation. By ana ogy
with el enent - of - set ? show how to take advantage of the ordering to produce a procedure that
requires on the average about half as many steps as with the unordered representation.

Exercise 2.62. Give a&(n) implementation of uni on- set for sets represented as ordered lists.

Sets as binary trees

We can do better than the ordered-list representation by arranging the set elementsin the form of atree.
Each node of the tree holds one element of the set, called the ““entry" at that node, and alink to each of two
other (possibly empty) nodes. The "left” link points to elements smaller than the one at the node, and the
“right” link to elements greater than the one at the node. Figure 2.16 shows some trees that represent the
set {1,3,5,7,9,11} . The same set may be represented by atree in a number of different ways. The only thing
we require for avalid representation is that all elementsin the left subtree be smaller than the node entry

and that al elementsin the right subtree be larger.

T

3/\9
A\

AN
5/\9
\

11

Figure 2.16: Various binary trees that represent the set { 1,3,5,7,9,11 }.

The advantage of the tree representation is this: Suppose we want to check whether a number x is contained
in aset. We begin by comparing x with the entry in the top node. If x isless than this, we know that we
need only search the left subtree; if X is greater, we need only search the right subtree. Now, if thetreeis
““balanced," each of these subtrees will be about half the size of the original. Thus, in one step we have
reduced the problem of searching atree of size nto searching atree of size n/2. Since the size of thetreeis
halved at each step, we should expect that the number of steps needed to search atree of size n grows as

E)(I og n).38 For large sets, thiswill be a significant speedup over the previous representations.

We can represent trees by using lists. Each node will be alist of three items: the entry at the node, the left
subtree, and the right subtree. A left or aright subtree of the empty list will indicate that there is no subtree
connected there. We can describe this representation by the following procedures:39

(define (entry tree) (car tree))

(define (left-branch tree) (cadr tree))

(define (right-branch tree) (caddr tree))

(define (make-tree entry left right)
(list entry left right))

Now we can writethe el enent - of - set ? procedure using the strategy described above:

(define (element-of-set? x set)
(cond ((null? set) false)
((=x (entry set)) true)
((< x (entry set))
(el ement-of-set? x (left-branch set)))
((>x (entry set))
(el enent-of-set? x (right-branch set)))))

Adjoining an item to aset isimplemented similarly and also requires&(l og n) steps. To adjoin an item X,

we compare X with the node entry to determine whether x should be added to the right or to the left branch,
and having adjoined x to the appropriate branch we piece this newly constructed branch together with the
original entry and the other branch. If x isequal to the entry, we just return the node. If we are asked to
adjoin x to an empty tree, we generate atree that has x as the entry and empty right and left branches. Here
isthe procedure:

(define (adjoin-set x set)
(cond ((null? set) (make-tree x "() "()))
((=x (entry set)) set)
((< x (entry set))
(make-tree (entry set)
(adjoin-set x (left-branch set))
(right-branch set)))
((> x (entry set))
(make-tree (entry set)
(left-branch set)
(adjoin-set x (right-branch set))))))

The above claim that searching the tree can be performed in alogarithmic number of steps rests on the
assumption that the tree is “"balanced," i.e., that the |eft and the right subtree of every tree have
approximately the same number of elements, so that each subtree contains about half the elements of its
parent. But how can we be certain that the trees we construct will be balanced? Even if we start with a
balanced tree, adding elements with adj oi n- set may produce an unbalanced result. Since the position
of anewly adjoined element depends on how the element compares with the items aready in the set, we
can expect that if we add elements "~ “randomly" the tree will tend to be balanced on the average. But thisis
not a guarantee. For example, if we start with an empty set and adjoin the numbers 1 through 7 in sequence
we end up with the highly unbalanced tree shown in figure 2.17. In thistree all the left subtrees are empty,
so it has no advantage over asimple ordered list. One way to solve this problem is to define an operation
that transforms an arbitrary tree into a balanced tree with the same elements. Then we can perform this
transformation after every few adj oi n- set operationsto keep our set in balance. There are also other
ways to solve this problem, most of which involve designing new data structures for which searching and
insertion both can be donein (I og n) steps.40

Figure 2.17: Unbalanced tree produced by adjoining 1 through 7 in sequence.

Exercise 2.63. Each of the following two procedures converts a binary treeto alist.

(define (tree->list-1 tree)
(if (null? tree)
()
(append (tree->list-1 (left-branch tree))
(cons (entry tree)
(tree->list-1 (right-branch tree))))))
(define (tree->list-2 tree)
(define (copy-to-list tree result-1list)
(if (null? tree)
result-1ist
(copy-to-list (left-branch tree)
(cons (entry tree)
(copy-to-list (right-branch tree)
result-list)))))
(copy-to-list tree "()))

a. Do the two procedures produce the same result for every tree? If not, how do the results differ? What
lists do the two procedures produce for the treesin figure 2.16?

b. Do the two procedures have the same order of growth in the number of steps required to convert a
balanced tree with n elementsto alist? If not, which one grows more slowly?

Exercise 2.64. Thefollowing procedurel i st - >t r ee converts an ordered list to a balanced binary tree.
The helper procedureparti al - t r ee takes as arguments an integer n and list of at least n elements and
constructs a balanced tree containing the first n elements of the list. The result returned by parti al -

t r ee isapair (formed with cons) whose car isthe constructed tree and whose cdr isthelist of
elements not included in the tree.

(define (list->tree el enents)
(car (partial-tree elenments (length elenents))))

(define (partial-tree elts n)
(if (=n0)
(cons '"() elts)
(let ((left-size (quotient (- n 1) 2)))
(let ((left-result (partial-tree elts left-size)))
(let ((left-tree (car left-result))
(non-left-elts (cdr left-result))
(right-size (- n (+ left-size 1))))
(let ((this-entry (car non-left-elts))
(right-result (partial-tree (cdr non-left-elts)
right-size)))
(let ((right-tree (car right-result))
(remaining-elts (cdr right-result)))
(cons (rmake-tree this-entry left-tree right-tree)
remaining-elts))))))))

a. Write a short paragraph explaining as clearly asyou can how par ti al - t r ee works. Draw the tree
produced by | i st->treefortheliss(1 3 5 7 9 11).

b. What isthe order of growth in the number of stepsrequired by | i st - >t r ee to convert alist of n
elements?

Exercise 2.65. Usethe results of exercises 2.63 and 2.64 to give £)(n) implementations of uni on- set
andi nt er secti on-set for setsimplemented as (balanced) binary trees.41

Sets and information retrieval

We have examined options for using lists to represent sets and have seen how the choice of representation
for adata object can have a large impact on the performance of the programs that use the data. Another
reason for concentrating on setsis that the techniques discussed here appear again and again in applications
involving information retrieval.

Consider a data base containing alarge number of individual records, such as the personnel filesfor a
company or the transactions in an accounting system. A typical data-management system spends alarge
amount of time accessing or modifying the data in the records and therefore requires an efficient method
for accessing records. Thisis done by identifying a part of each record to serve as an identifying key. A key
can be anything that uniquely identifies the record. For a personnel file, it might be an employee's ID
number. For an accounting system, it might be a transaction number. Whatever the key is, when we define
the record as a data structure we should include akey selector procedure that retrieves the key associated

with a given record.

Now we represent the data base as a set of records. To locate the record with a given key we use a
procedure | ookup, which takes as arguments a key and a data base and which returns the record that has

that key, or false if there is no such record. Lookup isimplemented in amost the same way asel enent -
of - set ?. For example, if the set of records isimplemented as an unordered list, we could use

(define (lookup given-key set-of-records)
(cond ((null? set-of-records) false)
((equal ? given-key (key (car set-of-records)))
(car set-of-records))
(el se (|l ookup given-key (cdr set-of-records)))))

Of course, there are better ways to represent large sets than as unordered lists. Information-retrieval
systemsin which records have to be ““randomly accessed" are typically implemented by atree-based
method, such as the binary-tree representation discussed previously. In designing such a system the
methodology of data abstraction can be a great help. The designer can create an initial implementation
using asimple, straightforward representation such as unordered lists. Thiswill be unsuitable for the
eventual system, but it can be useful in providing a "quick and dirty" data base with which to test the rest
of the system. Later on, the data representation can be modified to be more sophisticated. If the databaseis
accessed in terms of abstract selectors and constructors, this change in representation will not require any
changesto the rest of the system.

Exercise 2.66. Implement thel ookup procedure for the case where the set of recordsis structured as a
binary tree, ordered by the numerical values of the keys.

2.3.4 Example: Huffman Encoding Trees

This section provides practice in the use of list structure and data abstraction to manipul ate sets and trees.
The application is to methods for representing data as sequences of ones and zeros (hits). For example, the
ASCII standard code used to represent text in computers encodes each character as a sequence of seven
bits. Using seven bits allows us to distinguish 27, or 128, possible different characters. In general, if we
want to distinguish n different symbols, we will need to use| 0g, n bits per symbol. If al our messages are

made up of the eight symbols A, B, C, D, E, F, G, and H, we can choose a code with three bits per
character, for example

A 000 C010 E 100 G 110
B001 D011 F101 H111
With this code, the message

BACADAEAFABBAAAGAH
is encoded as the string of 54 bits
001000010000011000100000101000001001000000000110000111

Codes such as ASCII and the A-through-H code above are known as fixed-length codes, because they
represent each symbol in the message with the same number of bits. It is sometimes advantageous to use
variable-length codes, in which different symbols may be represented by different numbers of bits. For

example, Morse code does not use the same number of dots and dashes for each letter of the alphabet. In
particular, E, the most frequent letter, is represented by a single dot. In genera, if our messages are such
that some symbols appear very frequently and some very rarely, we can encode data more efficiently (i.e.,
using fewer bits per message) if we assign shorter codes to the frequent symbols. Consider the following
alternative code for the letters A through H:

A0 C1010 E1100 G 1110
B 100 D 1011 F 1101 H 1111
With this code, the same message as above is encoded as the string

100010100101101100011010100100000111001111

This string contains 42 hits, so it saves more than 20% in space in comparison with the fixed-length code
shown above.

One of the difficulties of using a variable-length code is knowing when you have reached the end of a
symbol in reading a sequence of zeros and ones. Morse code solves this problem by using a specia
separator code (in this case, a pause) after the sequence of dots and dashes for each letter. Another solution
isto design the code in such away that no complete code for any symbol is the beginning (or prefix) of the
code for another symbol. Such acodeis caled a prefix code. In the example above, A is encoded by 0 and
B isencoded by 100, so no other symbol can have a code that begins with O or with 100.

In general, we can attain significant savings if we use variable-length prefix codes that take advantage of
the relative frequencies of the symbols in the messages to be encoded. One particular scheme for doing this
is called the Huffman encoding method, after its discoverer, David Huffman. A Huffman code can be
represented as a binary tree whose |eaves are the symbols that are encoded. At each non-leaf node of the
tree thereis a set containing all the symbolsin the leaves that lie below the node. In addition, each symbol
at aleaf isassigned aweight (which isits relative frequency), and each non-leaf node contains aweight
that isthe sum of all the weights of the leaves lying below it. The weights are not used in the encoding or
the decoding process. We will see below how they are used to help construct the tree.

[(ABCDEF S H} 17

[BECDEF S H} 3

[B C D} 5

[EF @ H} 4

Figure 2.18: A Huffman encoding tree.

Figure 2.18 shows the Huffman tree for the A-through-H code given above. The weights at the leaves

indicate that the tree was designed for messages in which A appears with relative frequency 8, B with
relative frequency 3, and the other letters each with relative frequency 1.

Given aHuffman tree, we can find the encoding of any symbol by starting at the root and moving down
until we reach the leaf that holds the symbol. Each time we move down aleft branch we add a 0 to the
code, and each time we move down aright branch we add a 1. (We decide which branch to follow by
testing to see which branch either is the leaf node for the symbol or contains the symbol in its set.) For
example, starting from the root of the tree in figure 2.18, we arrive at the leaf for D by following aright

branch, then a left branch, then a right branch, then aright branch; hence, the code for D is 1011.

To decode a bit sequence using a Huffman tree, we begin at the root and use the successive zeros and ones
of the bit sequence to determine whether to move down the left or the right branch. Each time we cometo a
leaf, we have generated a new symbol in the message, at which point we start over from the root of the tree
to find the next symbol. For example, suppose we are given the tree above and the sequence 10001010.
Starting at the root, we move down the right branch, (since the first bit of the string is 1), then down the left
branch (since the second bit is 0), then down the left branch (since the third bit isalso 0). This brings usto
the leaf for B, so the first symbol of the decoded message is B. Now we start again at the root, and we
make aleft move because the next bit in the string is 0. This brings us to the leaf for A. Then we start again
at the root with the rest of the string 1010, so we move right, left, right, left and reach C. Thus, the entire
message is BAC.

Generating Huffman trees

Given an aphabet” of symbols and their relative frequencies, how do we construct the “"best” code? (In

other words, which tree will encode messages with the fewest bits?) Huffman gave an algorithm for doing
this and showed that the resulting code is indeed the best variable-length code for messages where the
relative frequency of the symbols matches the frequencies with which the code was constructed. We will

not prove this optimality of Huffman codes here, but we will show how Huffman trees are constructed.42

The algorithm for generating a Huffman tree is very simple. Theideais to arrange the tree so that the
symbols with the lowest frequency appear farthest away from the root. Begin with the set of leaf nodes,
containing symbols and their frequencies, as determined by the initial data from which the codeisto be
constructed. Now find two leaves with the lowest weights and merge them to produce a node that has these
two nodes as its | eft and right branches. The weight of the new node is the sum of the two weights. Remove
the two leaves from the original set and replace them by this new node. Now continue this process. At each
step, merge two nodes with the smallest weights, removing them from the set and replacing them with a
node that has these two asits left and right branches. The process stops when there is only one node | eft,
which isthe root of the entire tree. Here is how the Huffman tree of figure 2.18 was generated:

Initial leaves {(A 8) (B3) (C1) (D 1) (E1) (F1) (G 1) (H1)}
Merge {(A8) (B3 ({CD}2(ED(FILGIHI}
Merge {(A8) (B3 ({CD} 2 ({EF} 2)(G1)(H I}
Merge {(A8) (B3) ({CD} 2 ({EF} 2) {GH} 2)}
Merge {(A 8) (B3)({CD} 2) {EFGH} 4)}

Merge {(A 8) ({BCD} 5 ({EFGH} 4)}

Merge {(A8) ({BCDEFGH;} 9)}

Find merge {{ABCDEFGH} 17)}

The algorithm does not always specify a unique tree, because there may not be unique smallest-weight
nodes at each step. Also, the choice of the order in which the two nodes are merged (i.e., which will be the
right branch and which will be the left branch) is arbitrary.

Representing Huffman trees

In the exercises below we will work with a system that uses Huffman trees to encode and decode messages
and generates Huffman trees according to the algorithm outlined above. We will begin by discussing how
trees are represented.

Leaves of the tree are represented by alist consisting of the symbol | eaf , the symbol at the |eaf, and the
weight:

(define (make-1eaf synbol weight)
(list "leaf symbol weight))
(define (leaf? object)
(eg? (car object) 'leaf))
(define (synbol-leaf x) (cadr x))
(define (weight-leaf x) (caddr x))

A general tree will be alist of aleft branch, aright branch, a set of symbols, and aweight. The set of
symbolswill be ssimply alist of the symbols, rather than some more sophisticated set representation. When

we make a tree by merging two nodes, we obtain the weight of the tree as the sum of the weights of the
nodes, and the set of symbols as the union of the sets of symbolsfor the nodes. Since our symbol sets are
represented as lists, we can form the union by using the append procedure we defined in section 2.2.1:

(define (make-code-tree left right)
(list left
right
(append (synbols left) (synbols right))
(+ (weight left) (weight right))))

If we make atreein thisway, we have the following selectors:

(define (left-branch tree) (car tree))

(define (right-branch tree) (cadr tree))
(define (synbols tree)
(if (leaf? tree)
(list (synbol-leaf tree))
(caddr tree)))
(define (weight tree)
(if (leaf? tree)
(wei ght -1 eaf tree)
(cadddr tree)))

The proceduressynbol s and wei ght must do something slightly different depending on whether they

are called with aleaf or ageneral tree. These are simple examples of generic procedures (procedures that
can handle more than one kind of data), which we will have much more to say about in sections 2.4

and 2.5.

The decoding procedure

The following procedure implements the decoding algorithm. It takes as arguments a list of zeros and ones,
together with a Huffman tree.

(define (decode bits tree)
(define (decode-1 bits current-branch)
(if (null? bits)
()
(let ((next-branch
(choose-branch (car bits) current-branch)))
(if (leaf? next-branch)
(cons (synbol -1 eaf next-branch)
(decode-1 (cdr bits) tree))
(decode-1 (cdr bits) next-branch)))))
(decode-1 bits tree))
(define (choose-branch bit branch)
(cond ((= bit 0) (left-branch branch))

((= bit 1) (right-branch branch))
(else (error "bad bit -- CHOOSE- BRANCH' bit))))

The procedure decode- 1 takes two arguments: the list of remaining bits and the current position in the

tree. It keeps moving ““down" the tree, choosing a left or aright branch according to whether the next bit in
thelistisazero or aone. (Thisis done with the procedure choose- br anch.) When it reaches aledf, it

returns the symbol at that leaf as the next symbol in the message by consing it onto the result of decoding
therest of the message, starting at the root of the tree. Note the error check in the final clause of choose-
br anch, which complainsif the procedure finds something other than azero or aonein the input data.

Sets of weighted elements

In our representation of trees, each non-leaf node contains a set of symbols, which we have represented as
asimple list. However, the tree-generating algorithm discussed above requires that we also work with sets
of leaves and trees, successively merging the two smallest items. Since we will be required to repeatedly
find the smallest item in a set, it is convenient to use an ordered representation for this kind of set.

We will represent a set of leaves and trees as alist of elements, arranged in increasing order of weight. The
following adj oi n- set procedure for constructing setsis similar to the one described in exercise 2.61;

however, items are compared by their weights, and the element being added to the set is never already init.

(define (adjoin-set x set)
(cond ((null? set) (list x))
((< (weight x) (weight (car set))) (cons x set))
(el se (cons (car set)
(adj oin-set x (cdr set))))))

The following procedure takes alist of symbol-frequency pairssuchas((A 4) (B 2) (C 1) (D
1)) and constructs aninitial ordered set of |eaves, ready to be merged according to the Huffman
algorithm:

(define (nake-| eaf-set pairs)
(if (null? pairs)

()
(let ((pair (car pairs)))
(adj oi n-set (make-leaf (car pair) ; synbol

(cadr pair)) ; frequency
(make-l eaf-set (cdr pairs))))))

Exercise 2.67. Define an encoding tree and a sample message:

(define sanple-tree
(rmake- code-tree (nmake-leaf 'A 4)
(make- code-tree
(make-leaf 'B 2)
(make-code-tree (nake-leaf 'D 1)

(make-leaf "C 1)))))

(define sanple-nessage '(01 1 0010101110))
Use the decode procedure to decode the message, and give the resullt.

Exercise 2.68. Theencode procedure takes as arguments a message and a tree and produces the list of
bits that gives the encoded message.

(define (encode nmessage tree)
(if (null? nmessage)
()
(append (encode-synbol (car nessage) tree)
(encode (cdr nessage) tree))))

Encode- synbol isaprocedure, which you must write, that returns the list of bits that encodes agiven
symbol according to agiven tree. Y ou should design encode- synbol sothat it signalsan error if the
symbol isnot inthe tree at all. Test your procedure by encoding the result you obtained in exercise 2.67
with the sample tree and seeing whether it is the same as the original sample message.

Exercise 2.69. The following procedure takes as its argument alist of symbol-frequency pairs (where no
symbol appearsin more than one pair) and generates a Huffman encoding tree according to the Huffman
algorithm.

(define (generate-huffman-tree pairs)
(successi ve-nerge (neke-leaf-set pairs)))

Make- | eaf - set isthe procedure given above that transforms the list of pairsinto an ordered set of
leaves. Successi ve- mer ge isthe procedure you must write, using make- code-t r ee to successively

merge the smallest-weight elements of the set until there is only one element left, which is the desired
Huffman tree. (This procedure is slightly tricky, but not really complicated. If you find yourself designing a
complex procedure, then you are almost certainly doing something wrong. Y ou can take significant
advantage of the fact that we are using an ordered set representation.)

Exercise 2.70. Thefollowing eight-symbol a phabet with associated relative frequencies was designed to
efficiently encode the lyrics of 1950s rock songs. (Note that the *“symbols" of an “"aphabet” need not be
individual letters.)

A 2NA 16
BOOM 1 SHA 3
GET 2YIP 9
JOB 2WAH1

Usegener at e- huf f man-t r ee (exercise 2.69) to generate a corresponding Huffman tree, and use
encode (exercise 2.68) to encode the following message:

Get ajob

Shanananananananana

Get ajob

Shanananananananana
Wahyipyipyipyipyipyipyipyipyip
Sha boom

How many bits are required for the encoding? What is the smallest number of bits that would be needed to
encode this song if we used afixed-length code for the eight-symbol alphabet?

Exercise 2.71. Suppose we have a Huffman tree for an alphabet of n symbols, and that the relative
frequencies of the symbolsare 1, 2, 4, . . . , 21, Sketch the tree for n=5; for n=10. In such atree (for
general n) how may bits are required to encode the most frequent symbol? the least frequent symbol ?

Exercise 2.72. Consider the encoding procedure that you designed in exercise 2.68. What is the order of
growth in the number of steps needed to encode a symbol? Be sure to include the number of steps needed
to search the symbol list at each node encountered. To answer this question in general is difficult. Consider
the special case where the relative frequencies of the n symbols are as described in exercise 2.71, and give
the order of growth (as afunction of n) of the number of steps needed to encode the most frequent and least
frequent symbolsin the alphabet.

32 Allowing quotation in alanguage wreaks havoc with the ability to reason about the language in simple terms, because it destroys the notion
that equals can be substituted for equals. For example, threeis one plus two, but the word ““three" is not the phrase *“one plus two." Quotation
is powerful because it gives us away to build expressions that manipulate other expressions (as we will see when we write an interpreter in
chapter 4). But allowing statements in alanguage that talk about other statements in that language makes it very difficult to maintain any
coherent principle of what *“equals can be substituted for equals” should mean. For example, if we know that the evening star is the morning
star, then from the statement ““the evening star is Venus" we can deduce ““the morning star is Venus." However, given that ~"John knows that
the evening star is Venus' we cannot infer that **John knows that the morning star is Venus."

33 The single quote is different from the double quote we have been using to enclose character strings to be printed. Whereas the single quote
can be used to denote lists or symbols, the double quote is used only with character strings. In this book, the only use for character stringsis as
items to be printed.

34 gtrictly, our use of the quotation mark violates the general rule that all compound expressionsin our language should be delimited by
parentheses and look like lists. We can recover this consistency by introducing a special form quot e, which serves the same purpose as the

quotation mark. Thus, we would type (quot e a) instead of ' a, and wewouldtype (quote (a b c)) insteadof ' (a b c).Thisis

precisely how the interpreter works. The quotation mark is just a single-character abbreviation for wrapping the next compl ete expression with
qguot e toform (quot e <expr essi on>) . Thisisimportant because it maintains the principle that any expression seen by the interpreter

can be manipulated as a data object. For instance, we could construct the expression (car ' (a b c)),whichisthesameas(car
(quote (a b c))),byevaluating(list 'car (list 'quote '(a b c))).

35 We can consider two symbols to be ““the same" if they consist of the same characters in the same order. Such a definition skirts a deep issue
that we are not yet ready to address: the meaning of ~“sameness" in a programming language. We will return to thisin chapter 3 (section 3.1.3).

36 |n practice, programmers use equal ? to compare lists that contain numbers as well as symbols. Numbers are not considered to be symbols.
The question of whether two numerically equal numbers (as tested by =) are also eq? is highly implementation-dependent. A better definition
of equal ? (such asthe one that comes as a primitive in Scheme) would also stipulate that if a and b are both numbers, thena and b are
equal ? if they are numerically equal.

37 |f we want to be more formal, we can specify “consistent with the interpretations given above" to mean that the operations satisfy a
collection of rules such as these:

. For any set Sand any object x, (el enent -of -set? x (adjoin-set x S)) istrue(informally: “"Adjoining an object to a
set produces a set that contains the object”).

. Forany setsS and T and any object x, (el ement - of -set? x (union-set S T)) isequa to(or (el enent-of -
set? x S) (elenent-of-set? x T)) (informally: “Theelementsof (uni on S T) aretheelementsthat arein Sorin
).

. For any object x, (el enment - of -set? x ' ()) isfase(informally: “"No object is an element of the empty set").

38 Halving the size of the problem at each step is the distinguishing characteristic of logarithmic growth, as we saw with the fast-
exponentiation algorithm of section 1.2.4 and the half-interval search method of section 1.3.3.

39 We are representing sets in terms of trees, and trees in terms of lists -- in effect, a data abstraction built upon a data abstraction. We can
regard the proceduresent ry, | ef t - br anch, ri ght - br anch, and make- t r ee asaway of isolating the abstraction of a ““binary tree"

from the particular way we might wish to represent such atree in terms of list structure.

40 Examples of such structures include B-trees and red-black trees. There is alarge literature on data structures devoted to this problem. See
Cormen, Leiserson, and Rivest 1990.

41 Exercises 2.63-2.65 are due to Paul Hilfinger.
42 See Hamming 1980 for a discussion of the mathematical properties of Huffman codes.

[Gotofirst, previous, next page; contents;, index|

[Gotofirgt, previous, next page; contents; index]

2.4 Multiple Representations for Abstract Data

We have introduced data abstraction, a methodology for structuring systems in such away that much of a
program can be specified independent of the choices involved in implementing the data objects that the
program manipulates. For example, we saw in section 2.1.1 how to separate the task of designing a
program that uses rational numbers from the task of implementing rational numbers in terms of the
computer language's primitive mechanisms for constructing compound data. The key ideawasto erect an
abstraction barrier -- in this case, the selectors and constructors for rational numbers (make- r at , nuner,
denon) -- that isolates the way rational numbers are used from their underlying representation in terms of

list structure. A similar abstraction barrier isolates the details of the procedures that perform rational
arithmetic (add-r at ,sub-rat,mul -rat,anddi v-r at) from the "higher-level" procedures that use

rational numbers. The resulting program has the structure shown in figure 2.1.

These data-abstraction barriers are powerful tools for controlling complexity. By isolating the underlying

representations of data objects, we can divide the task of designing alarge program into smaller tasks that
can be performed separately. But this kind of data abstraction is not yet powerful enough, because it may

not always make sense to speak of ""the underlying representation” for a data object.

For one thing, there might be more than one useful representation for a data object, and we might like to
design systems that can deal with multiple representations. To take a simple example, complex numbers
may be represented in two almost equivalent ways: in rectangular form (real and imaginary parts) and in
polar form (magnitude and angle). Sometimes rectangular form is more appropriate and sometimes polar
form is more appropriate. Indeed, it is perfectly plausible to imagine a system in which complex numbers
are represented in both ways, and in which the procedures for manipulating complex numbers work with
either representation.

More importantly, programming systems are often designed by many people working over extended
periods of time, subject to requirements that change over time. In such an environment, it is simply not
possible for everyone to agree in advance on choices of data representation. So in addition to the data-
abstraction barriers that isolate representation from use, we need abstraction barriers that isolate different
design choices from each other and permit different choices to coexist in a single program. Furthermore,
since large programs are often created by combining pre-existing modules that were designed in isolation,
we need conventions that permit programmers to incorporate modules into larger systems additively, that
is, without having to redesign or reimplement these modules.

In this section, we will learn how to cope with data that may be represented in different ways by different
parts of a program. This requires constructing generic procedures -- procedures that can operate on data
that may be represented in more than one way. Our main technique for building generic procedures will be
to work in terms of data objects that have type tags, that is, data objects that include explicit information
about how they are to be processed. We will aso discuss data-directed programming, a powerful and
convenient implementation strategy for additively assembling systems with generic operations.

We begin with the simple complex-number example. We will see how type tags and data-directed style
enable us to design separate rectangular and polar representations for complex numbers while maintaining

the notion of an abstract * complex-number" data object. We will accomplish this by defining arithmetic
procedures for complex numbers (add- conpl ex, sub- conpl ex, mul - conpl ex, and di v-
conpl ex) interms of generic selectors that access parts of a complex number independent of how the
number is represented. The resulting complex-number system, as shown in figure 2.19, contains two

different kinds of abstraction barriers. The ““horizontal" abstraction barriers play the same role as the ones
in figure 2.1. They isolate “"higher-level" operations from ““lower-level" representations. In addition, there

isa vertical" barrier that gives us the ability to separately design and install alternative representations.

Programs that use complex numbers

—| add—conplex sub—conplex mul—conplex div—complex —

Complex-adthmetic package

Bectangulac Polac
n:pn:s:ntatinn [CPLESE ntation

List structuce and primitive mac bioe aothmetic

Figure 2.19: Data-abstraction barriersin the complex-number system.

In section 2.5 we will show how to use type tags and data-directed style to develop a generic arithmetic
package. This provides procedures (add, nul , and so on) that can be used to manipulate all sorts of
““numbers" and can be easily extended when a new kind of number is needed. In section 2.5.3, we'll show
how to use generic arithmetic in a system that performs symbolic algebra.

2.4.1 Representations for Complex Numbers

We will develop a system that performs arithmetic operations on complex numbers as a simple but
unrealistic example of a program that uses generic operations. We begin by discussing two plausible
representations for complex numbers as ordered pairs: rectangular form (real part and imaginary part) and
polar form (magnitude and angle).43 Section 2.4.2 will show how both representations can be made to

coexist in asingle system through the use of type tags and generic operations.

Like rational numbers, complex numbers are naturally represented as ordered pairs. The set of complex
numbers can be thought of as atwo-dimensional space with two orthogonal axes, the "“real" axis and the
“imaginary" axis. (See figure 2.20.) From this point of view, the complex number z= x + iy (where 2 = -
1) can be thought of as the point in the plane whose real coordinate is x and whose imaginary coordinate is
y. Addition of complex numbers reduces in this representation to addition of coordinates:

Real-part(zy + =3) = Real-part(zi) + Real-part{zs)

Lnaginary-part(s1+32) = Lnaginary-part(51 }4+ Inaginary-part{2)

When multiplying complex numbers, it is more natural to think in terms of representing a complex number
in polar form, as a magnitude and an angle (r and A in figure 2.20). The product of two complex numbers
is the vector obtained by stretching one complex number by the length of the other and then rotating it
through the angle of the other:

Magnitude(z - 22) = Magnitude(z;) - Magnitude(zs)

Angle[:l ' :-'_::] = ﬁﬂglel[:ﬂl + ﬁﬂgh{:;}

Thus, there are two different representations for complex numbers, which are appropriate for different
operations. Y et, from the viewpoint of someone writing a program that uses complex numbers, the
principle of data abstraction suggests that all the operations for manipulating complex numbers should be
available regardless of which representation is used by the computer. For example, it is often useful to be
able to find the magnitude of a complex number that is specified by rectangular coordinates. Similarly, itis
often useful to be able to determine the real part of a complex number that is specified by polar
coordinates.

lmaginarcy

A

i _ A
B[I=X+Iv=rFrF

== Real

Figure 2.20: Complex numbers as pointsin the plane.

To design such a system, we can follow the same data-abstraction strategy we followed in designing the
rational-number package in section 2.1.1. Assume that the operations on complex numbers are

implemented in terms of four selectors. r eal - part,i mag- part, magni t ude, and angl e. Also
assume that we have two procedures for constructing complex numbers: make-fromreal -i mag
returns a complex number with specified real and imaginary parts, and make- f r om mag- ang returnsa

complex number with specified magnitude and angle. These procedures have the property that, for any
complex number z, both

(make-fromreal -imag (real -part z) (inmag-part z))
and

(make-from mag-ang (magnitude z) (angle z))

produce complex numbers that are equal to z.

Using these constructors and selectors, we can implement arithmetic on complex numbers using the
“abstract data" specified by the constructors and selectors, just as we did for rational numbersin
section 2.1.1. As shown in the formulas above, we can add and subtract complex numbersin terms of real

and imaginary parts while multiplying and dividing complex numbers in terms of magnitudes and angles:

(define (add-conplex z1 z2)
(make-fromreal -imag (+ (real-part zl1l) (real-part z2))
(+ (imag-part z1) (imag-part z2))))
(define (sub-conplex z1 z2)
(make-fromreal -imag (- (real-part zl) (real-part z2))
(- (imag-part z1) (imag-part z2))))
(define (mul-conplex z1 z2)
(make-from mag-ang (* (magnitude z1) (rmagnitude z2))
(+ (angle z1) (angle z2))))
(define (div-conplex z1 z2)
(make-from nmag-ang (/ (magnitude z1) (magnitude z2))
(- (angle zl1l) (angle z2))))

To complete the complex-number package, we must choose a representation and we must implement the
constructors and selectors in terms of primitive numbers and primitive list structure. There are two obvious
ways to do this: We can represent a complex number in ~rectangular form" asapair (rea part, imaginary
part) or in “polar form" as a pair (magnitude, angle). Which shall we choose?

In order to make the different choices concrete, imagine that there are two programmers, Ben Bitdiddle and
Alyssa P. Hacker, who are independently designing representations for the complex-number system. Ben
chooses to represent complex numbers in rectangular form. With this choice, selecting the real and
imaginary parts of acomplex number is straightforward, asis constructing a complex number with given
real and imaginary parts. To find the magnitude and the angle, or to construct a complex number with a
given magnitude and angle, he uses the trigonometric relations

r=7 cos A r=yr?+42

y=7 snA A = arctan(y, r)

which relate the real and imaginary parts (x, y) to the magnitude and the angle (r, A).44 Ben's representation
istherefore given by the following selectors and constructors:

(define (real-part z) (car z))
(define (imag-part z) (cdr z))
(define (magnitude z)
(sgrt (+ (square (real-part z)) (square (img-part z)))))
(define (angle z)
(atan (imag-part z) (real-part z)))
(define (make-fromreal-inag x y) (cons x y))

(define (make-from nmag-ang r a)
(cons (* r (cos a)) (* r (sin a))))

Alyssa, in contrast, chooses to represent complex numbers in polar form. For her, selecting the magnitude
and angleis straightforward, but she has to use the trigonometric relations to obtain the real and imaginary
parts. Alyssa's representation is:

(define (real-part z)

(* (magnitude z) (cos (angle z))))
(define (imag-part z)

(* (rmagnitude z) (sin (angle z))))
(define (magnitude z) (car z))
(define (angle z) (cdr z))
(define (rmake-fromreal-imag x y)

(cons (sqgrt (+ (square x) (square y)))

(atan y x)))

(define (make-fromnmag-ang r a) (cons r a))

The discipline of data abstraction ensures that the same implementation of add- conpl ex, sub-

conpl ex, mul - conpl ex, and di v- conpl ex will work with either Ben's representation or Alyssa's
representation.

2.4.2 Tagged data

One way to view data abstraction is as an application of the " principle of least commitment.” In
implementing the complex-number system in section 2.4.1, we can use either Ben's rectangular
representation or Alyssa's polar representation. The abstraction barrier formed by the selectors and
constructors permits us to defer to the last possible moment the choice of a concrete representation for our
data objects and thus retain maximum flexibility in our system design.

The principle of least commitment can be carried to even further extremes. If we desire, we can maintain
the ambiguity of representation even after we have designed the selectors and constructors, and elect to use
both Ben's representation and Alyssa's representation. If both representations are included in asingle
system, however, we will need some way to distinguish datain polar form from data in rectangular form.
Otherwise, if we were asked, for instance, to find the magni t ude of the pair (3,4), we wouldn't know
whether to answer 5 (interpreting the number in rectangular form) or 3 (interpreting the number in polar
form). A straightforward way to accomplish this distinction is to include a type tag -- the symbol

rect angul ar or pol ar -- as part of each complex number. Then when we need to manipulate a

complex number we can use the tag to decide which selector to apply.

In order to manipulate tagged data, we will assume that we have procedurest ype-t ag andcont ent s

that extract from a data object the tag and the actual contents (the polar or rectangular coordinates, in the
case of acomplex number). We will also postulate a procedure at t ach- t ag that takes a tag and contents

and produces atagged data object. A straightforward way to implement thisisto use ordinary list structure:

(define (attach-tag type-tag contents)

(cons type-tag contents))
(define (type-tag datun
(if (pair? datum
(car datum
(error "Bad tagged datum -- TYPE-TAG' datum))
(define (contents datum
(if (pair? datum
(cdr datum
(error "Bad tagged datum -- CONTENTS' datum)))

Using these procedures, we can define predicatesr ect angul ar ? and pol ar ?, which recognize polar
and rectangular numbers, respectively:

(define (rectangul ar? z)

(eq? (type-tag z) 'rectangul ar))
(define (polar? z)

(eq? (type-tag z) 'polar))

With type tags, Ben and Alyssa can now modify their code so that their two different representations can
coexist in the same system. Whenever Ben constructs a complex number, he tags it as rectangular.
Whenever Alyssa constructs a complex number, she tagsit as polar. In addition, Ben and Alyssa must
make sure that the names of their procedures do not conflict. One way to do thisisfor Ben to append the
suffix r ect angul ar to the name of each of his representation procedures and for Alyssato append

pol ar tothe names of hers. Here is Ben's revised rectangular representation from section 2.4.1:

(define (real -part-rectangular z) (car z))
(define (imag-part-rectangular z) (cdr z))
(define (magnitude-rectangul ar z)

(sgrt (+ (square (real-part-rectangular z))

(square (imag-part-rectangular z)))))

(define (angl e-rectangul ar z)

(atan (i mag-part-rectangul ar z)

(real -part-rectangular z)))

(define (make-fromreal -i mag-rectangular x y)

(attach-tag 'rectangular (cons x y)))
(define (make-from mag-ang-rectangular r a)

(attach-tag 'rectangul ar

(cons (* r (cos a)) (* r (sin a)))))

and hereis Alyssa’s revised polar representation:

(define (real -part-polar z)

(* (magni tude-polar z) (cos (angle-polar z))))
(define (inmag-part-polar z)

(* (magnitude-polar z) (sin (angle-polar z))))
(define (magnitude-polar z) (car z))
(define (angle-polar z) (cdr z))
(define (nmake-fromreal -i mag-polar x vy)

(attach-tag 'polar
(cons (sqgrt (+ (square x) (square y)))
(atan y x))))
(define (make-from mag-ang-polar r a)
(attach-tag 'polar (cons r a)))

Each generic selector isimplemented as a procedure that checks the tag of its argument and calls the
appropriate procedure for handling data of that type. For example, to obtain the real part of a complex
number, r eal - part examines the tag to determine whether to use Ben'sr eal - part - r ect angul ar
or Alyssasr eal - part - pol ar . In either case, we use cont ent s to extract the bare, untagged datum
and send this to the rectangular or polar procedure as required:

(define (real-part z)
(cond ((rectangul ar? z)
(real -part-rectangul ar (contents z)))
((pol ar? z)
(real -part-polar (contents z)))
(el se (error "Unknown type -- REAL-PART" 2))))
(define (img-part z)
(cond ((rectangul ar? z)
(i mag- part-rectangul ar (contents z)))
((pol ar? z)
(i mag-part-polar (contents z)))
(el se (error "Unknown type -- | MAG PART" z))))
(define (magnitude z)
(cond ((rectangul ar? z)
(magni tude-rectangul ar (contents z)))
((polar? z)
(rmagni t ude- pol ar (contents z)))
(el se (error "Unknown type -- MAGNI TUDE" z))))
(define (angle z)
(cond ((rectangul ar? z)
(angl e-rectangul ar (contents z)))
((polar? z)
(angl e-polar (contents z)))
(el se (error "Unknown type -- ANGLE" 2))))

To implement the complex-number arithmetic operations, we can use the same procedures add-

conpl ex, sub- conpl ex, mul - conpl ex, and di v- conpl ex from section 2.4.1, because the
selectorsthey call are generic, and so will work with either representation. For example, the procedure add-
conpl ex istill

(define (add-conplex z1 z2)
(make-fromreal -imag (+ (real-part zl1l) (real-part z2))
(+ (imag-part z1) (imag-part z2))))

Finally, we must choose whether to construct complex numbers using Ben's representation or Alyssa's

representation. One reasonable choiceis to construct rectangular numbers whenever we have real and
imaginary parts and to construct polar numbers whenever we have magnitudes and angles:

(define (rmake-fromreal -imag x y)
(make-fromreal -i mag-rectangular x y))

(define (make-from nmag-ang r a)
(make-from mag- ang-polar r a))

Programs that use complex numbers

— add—conplex sub—conplex mul—complex div—ocomnplex —

Complex arithmetic package

real—part imag—part

magnitude angle

Rectangulac Polac
[Cpresentation [CpOEsentaton

List structuce and primitive machine anthmetic

Figure 2.21: Structure of the generic complex-arithmetic system.

The resulting complex-number system has the structure shown in figure 2.21. The system has been
decomposed into three relatively independent parts. the complex-number-arithmetic operations, Alyssa's
polar implementation, and Ben's rectangular implementation. The polar and rectangular implementations
could have been written by Ben and Alyssa working separately, and both of these can be used as
underlying representations by athird programmer implementing the complex-arithmetic proceduresin
terms of the abstract constructor/selector interface.

Since each data object is tagged with its type, the selectors operate on the datain ageneric manner. That is,
each selector is defined to have a behavior that depends upon the particular type of datait is applied to.
Notice the general mechanism for interfacing the separate representations: Within a given representation
implementation (say, Alyssa's polar package) a complex number is an untyped pair (magnitude, angle).
When a generic selector operates on a number of pol ar type, it strips off the tag and passes the contents
on to Alyssa's code. Conversely, when Alyssa constructs a number for general use, shetagsit with atype
so that it can be appropriately recognized by the higher-level procedures. This discipline of stripping off
and attaching tags as data objects are passed from level to level can be an important organizational
strategy, as we shall seein section 2.5.

2.4.3 Data-Directed Programming and Additivity

The general strategy of checking the type of a datum and calling an appropriate procedureis called
dispatching on type. Thisis a powerful strategy for obtaining modularity in system design. Oh the other
hand, implementing the dispatch as in section 2.4.2 has two significant weaknesses. One weakness is that

the generic interface procedures (r eal - part,i mag- part, nagni t ude, and angl e) must know

about all the different representations. For instance, suppose we wanted to incorporate a new representation
for complex numbersinto our complex-number system. We would need to identify this new representation
with atype, and then add a clause to each of the generic interface procedures to check for the new type and
apply the appropriate selector for that representation.

Another weakness of the technique is that even though the individual representations can be designed
separately, we must guarantee that no two procedures in the entire system have the same name. Thisis why
Ben and Alyssa had to change the names of their original procedures from section 2.4.1.

The issue underlying both of these weaknesses is that the technique for implementing generic interfacesis
not additive. The person implementing the generic selector procedures must modify those procedures each
time a new representation isinstalled, and the people interfacing the individual representations must
modify their code to avoid name conflicts. In each of these cases, the changes that must be made to the
code are straightforward, but they must be made nonetheless, and thisis a source of inconvenience and
error. Thisis not much of aproblem for the complex-number system as it stands, but suppose there were
not two but hundreds of different representations for complex numbers. And suppose that there were many
generic selectors to be maintained in the abstract-data interface. Suppose, in fact, that no one programmer
knew all the interface procedures or all the representations. The problem is real and must be addressed in
such programs as |l arge-scal e data-base-management systems.

What we need is a means for modularizing the system design even further. Thisis provided by the
programming technique known as data-directed programming. To understand how data-directed
programming works, begin with the observation that whenever we deal with a set of generic operations that
are common to a set of different types we are, in effect, dealing with atwo-dimensional table that contains
the possible operations on one axis and the possible types on the other axis. The entriesin the table are the
procedures that implement each operation for each type of argument presented. In the complex-number
system devel oped in the previous section, the correspondence between operation name, data type, and
actual procedure was spread out among the various conditional clauses in the generic interface procedures.
But the same information could have been organized in atable, as shown in figure 2.22.

Data-directed programming is the technique of designing programs to work with such atable directly.
Previously, we implemented the mechanism that interfaces the complex-arithmetic code with the two
representation packages as a set of procedures that each perform an explicit dispatch on type. Here we will
implement the interface as a single procedure that |ooks up the combination of the operation name and
argument type in the table to find the correct procedure to apply, and then appliesit to the contents of the
argument. If we do this, then to add a new representation package to the system we need not change any
existing procedures; we need only add new entriesto the table.

Types

Folar Rectangular

ceal—parcht ceal—parct—polac ceal—part—rcectangularc
imag—parct imag—parct—polac imag—part—rectangularc

nagnitude nagnitude—polar magnitude—rectangularc

Cperations

angle angle—polac angle—rectangularc

Figure 2.22: Table of operations for the complex-number system.

To implement this plan, assume that we have two procedures, put and get , for manipulating the
operation-and-type table:

. (put <op> <type> <itenp)
installsthe <i t en® in the table, indexed by the <op> and the <t ype>.

- (get <op> <type>)
looks up the <op>, <t ype> entry in the table and returns the item found there. If noitemis
found, get returnsfase.

For now, we can assume that put and get areincluded in our language. In chapter 3 (section 3.3.3,
exercise 3.24) we will see how to implement these and other operations for manipulating tables.

Here is how data-directed programming can be used in the complex-number system. Ben, who developed
the rectangular representation, implements his code just as he did originally. He defines a collection of
procedures, or a package, and interfaces these to the rest of the system by adding entries to the table that
tell the system how to operate on rectangular numbers. This is accomplished by calling the following
procedure:

(define (install-rectangul ar-package)

;; internal procedures
(define (real-part z) (car z))
(define (imag-part z) (cdr z))
(define (make-fromreal-imag x y) (cons x y))
(define (magnitude z)

(sgrt (+ (square (real-part z))

(square (imag-part z)))))

(define (angle z)

(atan (imag-part z) (real-part z)))
(define (make-frommg-ang r a)

(cons (* r (cos a)) (* r (sin a))))
;; Iinterface to the rest of the system
(define (tag x) (attach-tag 'rectangular x))
(put 'real-part '(rectangular) real-part)
(put '"imag-part '(rectangul ar) inmag-part)
(put "magnitude ' (rectangul ar) magnitude)
(put "angle ' (rectangul ar) angle)
(put 'make-fromreal -imag 'rectangul ar

(lanmbda (x y) (tag (make-fromreal-imag x y))))
(put 'nmake-from mag-ang 'rectangul ar
(lambda (r a) (tag (meke-fromnmag-ang r a))))

' done)

Notice that the internal procedures here are the same procedures from section 2.4.1 that Ben wrote when he

was working in isolation. No changes are necessary in order to interface them to the rest of the system.
Moreover, since these procedure definitions are internal to the installation procedure, Ben needn't worry
about name conflicts with other procedures outside the rectangular package. To interface these to the rest

of the system, Beninstallshisr eal - par t procedure under the operation namer eal - part and the type

(rectangul ar) , and similarly for the other selectors.42 The interface also defines the constructors to be

used by the external system.46 These are identical to Ben'sinternally defined constructors, except that they
attach the tag.

Alyssas polar package is analogous.

(define (install-polar-package)
;; internal procedures
(define (magnitude z) (car z))
(define (angle z) (cdr 2z))
(define (make-frommag-ang r a) (cons r a))
(define (real-part z)
(* (magnitude z) (cos (angle z))))
(define (imag-part z)
(* (magnitude z) (sin (angle z))))
(define (make-fromreal-imag x vy)
(cons (sgrt (+ (square x) (square y)))
(atan y x)))
interface to the rest of the system
(deflne (tag x) (attach tag 'polar x))
(put 'real-part '(polar) real-part)
(put '"imag-part '(polar) imag-part)
(put "magnitude ' (pol ar) nagnitude)
(put "angle ' (polar) angle)
(put 'make-fromreal -imag ' pol ar
(lanmbda (x y) (tag (make-fromreal-imag x y))))
(put 'nmake-from mag- ang ' pol ar
(lambda (r a) (tag (meke-fromnmag-ang r a))))
" done)

Even though Ben and Alyssa both still use their original procedures defined with the same names as each
other's (e.g., r eal - part), these definitions are now internal to different procedures (see section 1.1.8), so
thereis no name conflict.

The complex-arithmetic selectors access the table by means of a general "~ operation™ procedure called
appl y- generi c, which applies a generic operation to some arguments. Appl y- generi ¢ looksin the
table under the name of the operation and the types of the arguments and applies the resulting procedure if
oneis present:4/

(define (apply-generic op . args)
(let ((type-tags (map type-tag args)))
(let ((proc (get op type-tags)))
(if proc

(apply proc (map contents args))
(error
"No nmethod for these types -- APPLY-GENERI C'

(l'ist op type-tags))))))
Using appl y- generi ¢, we can define our generic selectors as follows:

(define (real-part z) (apply-generic 'real-part z))
(define (imag-part z) (apply-generic 'imag-part z))
(define (magnitude z) (apply-generic 'nmagnitude z))
(define (angle z) (apply-generic "angle z))

Observe that these do not change at all if a new representation is added to the system.

We can also extract from the table the constructors to be used by the programs external to the packagesin
making complex numbers from real and imaginary parts and from magnitudes and angles. Asin
section 2.4.2, we construct rectangular numbers whenever we have real and imaginary parts, and polar

numbers whenever we have magnitudes and angles:

(define (rmake-fromreal -imag x y)

((get 'make-fromreal -imag 'rectangular) x y))
(define (make-frommag-ang r a)

((get 'make-from mag-ang 'polar) r a))

Exercise 2.73. Section 2.3.2 described a program that performs symbolic differentiation:

(define (deriv exp var)
(cond ((nunber? exp) 0)
((variable? exp) (if (same-variable? exp var) 1 0))
((sunf exp)
(make-sum (deriv (addend exp) var)
(deriv (augend exp) var)))
((product ? exp)
(rmake- sum
(make- product (nultiplier exp)
(deriv (multiplicand exp) var))
(make- product (deriv (rmultiplier exp) var)
(rmul tiplicand exp))))
<nore rul es can be added here>
(el se (error "unknown expression type -- DERIV' exp))))

We can regard this program as performing a dispatch on the type of the expression to be differentiated. In
this situation the ““type tag" of the datum is the algebraic operator symbol (such as +) and the operation

being performed isder i v. We can transform this program into data-directed style by rewriting the basic
derivative procedure as

(define (deriv exp var)
(cond ((nunber? exp) 0)
((variable? exp) (if (same-variable? exp var) 1 0))
(el se ((get "deriv (operator exp)) (operands exp)
var))))
(define (operator exp) (car exp))
(define (operands exp) (cdr exp))

a. Explain what was done above. Why can't we assimilate the predicates nunber ? and sane-
var i abl e? into the data-directed dispatch?

b. Write the procedures for derivatives of sums and products, and the auxiliary code required to install
them in the table used by the program above.

c. Choose any additional differentiation rule that you like, such as the one for exponents (exercise 2.56),
and install it in this data-directed system.

d. Inthissimple algebraic manipulator the type of an expression is the algebraic operator that binds it
together. Suppose, however, we indexed the procedures in the opposite way, so that the dispatch linein
deri v looked like

((get (operator exp) 'deriv) (operands exp) var)

What corresponding changes to the derivative system are required?

Exercise 2.74. Insatiable Enterprises, Inc., isahighly decentralized conglomerate company consisting of a
large number of independent divisions located all over the world. The company's computer facilities have
just been interconnected by means of a clever network-interfacing scheme that makes the entire network
appear to any user to be a single computer. Insatiable's president, in her first attempt to exploit the ability of
the network to extract administrative information from division files, is dismayed to discover that, although
al the division files have been implemented as data structures in Scheme, the particular data structure used
varies from division to division. A meeting of division managersis hastily called to search for a strategy to
integrate the files that will satisfy headquarters needs while preserving the existing autonomy of the
divisions.

Show how such a strategy can be implemented with data-directed programming. As an example, suppose
that each division's personnel records consist of a single file, which contains a set of records keyed on
employees names. The structure of the set varies from division to division. Furthermore, each employee's
record isitself aset (structured differently from division to division) that contains information keyed under
identifiers such asaddr ess and sal ary. In particular:

a. Implement for headquartersaget - r ecor d procedure that retrieves a specified employee's record

from a specified personnel file. The procedure should be applicable to any division'sfile. Explain how the
individual divisions files should be structured. In particular, what type information must be supplied?

b. Implement for headquartersaget - sal ar y procedure that returns the salary information from a given

employee's record from any division's personnel file. How should the record be structured in order to make
this operation work?

c. Implement for headquartersaf i nd- enpl oyee- r ecor d procedure. This should search al the

divisions filesfor the record of a given employee and return the record. Assume that this procedure takes
as arguments an employee's name and allist of al the divisions files.

d. When Insatiable takes over a new company, what changes must be made in order to incorporate the new
personnel information into the central system?

Message passing

The key idea of data-directed programming isto handle generic operations in programs by dealing
explicitly with operation-and-type tables, such as the table in figure 2.22. The style of programming we
used in section 2.4.2 organized the required dispatching on type by having each operation take care of its

own dispatching. In effect, this decomposes the operation-and-type table into rows, with each generic
operation procedure representing arow of the table.

An alternative implementation strategy isto decompose the table into columns and, instead of using
“intelligent operations' that dispatch on data types, to work with ““intelligent data objects" that dispatch on
operation names. We can do this by arranging things so that a data object, such as arectangular number, is
represented as a procedure that takes as input the required operation name and performs the operation
indicated. In such adiscipline, make- f r om r eal - i mag could be written as

(define (make-fromreal -inag X y)
(define (dispatch op)
(cond ((eq? op 'real-part) x)
((eq? op 'imag-part) y)
((eg? op 'magnitude)
(sgrt (+ (square x) (square y))))
((eq? op 'angle) (atan y x))
(el se
(error "Unknown op -- MAKE- FROM REAL-| MAG' op))))
di spat ch)

The corresponding appl y- gener i ¢ procedure, which applies a generic operation to an argument, now
simply feeds the operation's name to the data object and | ets the object do the work:48

(define (apply-generic op arg) (arg op))

Note that the value returned by nake- f rom r eal - i nag isaprocedure -- theinternal di spat ch
procedure. Thisisthe procedure that isinvoked when appl y- gener i ¢ requests an operation to be
performed.

This style of programming is called message passing. The name comes from the image that a data object is
an entity that receives the requested operation name asa ™ message." We have already seen an example of

message passing in section 2.1.3, where we saw how cons, car , and cdr could be defined with no data
objects but only procedures. Here we see that message passing is not a mathematical trick but a useful
technique for organizing systems with generic operations. In the remainder of this chapter we will continue
to use data-directed programming, rather than message passing, to discuss generic arithmetic operations. In
chapter 3 we will return to message passing, and we will seethat it can be a powerful tool for structuring
simulation programs.

Exercise 2.75. Implement the constructor make- f r om mag- ang in message-passing style. This
procedure should be analogous to the make- f r om r eal - i mag procedure given above.

Exercise 2.76. Asalarge system with generic operations evolves, new types of data objects or new
operations may be needed. For each of the three strategies -- generic operations with explicit dispatch, data-
directed style, and message-passing-style -- describe the changes that must be made to a system in order to
add new types or new operations. Which organization would be most appropriate for a system in which
new types must often be added? Which would be most appropriate for a system in which new operations
must often be added?

43 |n actual computational systems, rectangular form is preferable to polar form most of the time because of roundoff errorsin conversion
between rectangular and polar form. Thisiswhy the complex-number example is unrealistic. Nevertheless, it provides a clear illustration of the
design of a system using generic operations and a good introduction to the more substantial systems to be developed later in this chapter.

44 The arctangent function referred to here, computed by Scheme's at an procedure, is defined so as to take two argumentsy and x and to
return the angle whose tangent is y/x. The signs of the arguments determine the quadrant of the angle.

45 Weusethelist (rect angul ar) rather than the symbol r ect angul ar to alow for the possibility of operations with multiple
arguments, not all of the same type.

46 The type the constructors are installed under needn't be alist because a constructor is always used to make an object of one particular type.

47 Appl y- gener i ¢ usesthe dotted-tail notation described in exercise 2.20, because different generic operations may take different numbers
of arguments. Inappl y- generi ¢, op hasasitsvauethefirst argument to appl y- generi c and ar gs hasasitsvalue alist of the
remaining arguments.

Appl y- generi c aso usesthe primitive procedure appl y, which takes two arguments, a procedure and alist. Appl y appliesthe
procedure, using the elementsin the list as arguments. For example,

(apply + (list 1 2 3 4))
returns 10.

48 One limitation of this organization is it permits only generic procedures of one argument.

[Gotofirst, previous, next page; contents, index|

[Gotofirgt, previous, next page; contents, index|

2.5 Systems with Generic Operations

In the previous section, we saw how to design systems in which data objects can be represented in more
than oneway. The key ideaisto link the code that specifies the data operations to the several
representations by means of generic interface procedures. Now we will see how to use this same idea not
only to define operations that are generic over different representations but also to define operations that
are generic over different kinds of arguments. We have already seen several different packages of
arithmetic operations: the primitive arithmetic (+, - , *, /) built into our language, the rational-number
arithmetic (add-r at , sub-rat, mul -rat, di v-rat) of section 2.1.1, and the complex-number
arithmetic that we implemented in section 2.4.3. We will now use data-directed techniques to construct a
package of arithmetic operations that incorporates all the arithmetic packages we have aready constructed.

Figure 2.23 shows the structure of the system we shall build. Notice the abstraction barriers. From the
perspective of someone using ~ numbers," thereis asingle procedure add that operates on whatever
numbers are supplied. Add is part of a generic interface that allows the separate ordinary-arithmetic,

rational -arithmetic, and complex-arithmetic packages to be accessed uniformly by programs that use
numbers. Any individual arithmetic package (such as the complex package) may itself be accessed through
generic procedures (such asadd- conpl ex) that combine packages designed for different representations
(such as rectangular and polar). Moreover, the structure of the system is additive, so that one can design
the individual arithmetic packages separately and combine them to produce a generic arithmetic system.

Prograrms that use numbers

add sub mal diw

Generic arnthmetic package

add—rat sub—eat add—conplex sub—conplex n . 7
T |mul—-rat div—rat mul—complex div—conplex
Rational Complex anthmetic Crodinacy
arithmetic arthmetic
Rectangular Polac

List structuce and prmitive machine anthmetc

Figure 2.23: Generic arithmetic system.

2.5.1 Generic Arithmetic Operations

The task of designing generic arithmetic operations is analogous to that of designing the generic complex-

number operations. We would like, for instance, to have a generic addition procedure add that acts like
ordinary primitive addition + on ordinary numbers, like add- r at on rational numbers, and like add-
conpl ex on complex numbers. We can implement add, and the other generic arithmetic operations, by
following the same strategy we used in section 2.4.3 to implement the generic selectors for complex

numbers. We will attach atype tag to each kind of number and cause the generic procedure to dispatch to
an appropriate package according to the data type of its arguments.

The generic arithmetic procedures are defined as follows:

(define (add x y) (apply-generic 'add x y))
(define (sub x y) (apply-generic 'sub x y))
(define (mul x y) (apply-generic 'mul x y))
(define (div x y) (apply-generic "div x vy))

We begin by installing a package for handling ordinary numbers, that is, the primitive numbers of our
language. We will tag these with the symbol scheme- nunber . The arithmetic operations in this package

are the primitive arithmetic procedures (so there is no need to define extra procedures to handle the
untagged numbers). Since these operations each take two arguments, they are installed in the table keyed
by thelist (schene- nunber schene- nunber):

(define (install-schene-nunber-package)
(define (tag x)
(attach-tag ' scheme- nunber x))
(put 'add ' (schenme-nunber schene- nunber)

(lanbda (x y) (tag (+ x Yy))))
(put 'sub ' (schene-nunber schene- nunber)

(lanbda (x y) (tag (- xYy))))
(put 'mul ' (schene-nunber schene- nunber)

(lambda (x y) (tag (* x y))))
(put 'div '(schenme-nunber schene-nunber)

(lambda (x y) (tag (/ xy))))
(put 'make 'schene- nunber

(lanmbda (x) (tag x)))
" done)

Users of the Scheme-number package will create (tagged) ordinary numbers by means of the procedure:

(define (make-schene-nunber n)
((get 'make 'scheme-nunber) n))

Now that the framework of the generic arithmetic system isin place, we can readily include new kinds of
numbers. Here is a package that performs rational arithmetic. Notice that, as a benefit of additivity, we can
use without modification the rational-number code from section 2.1.1 asthe internal proceduresin the

package:

(define (install-rational - package)

i nternal procedures
(define (numer x) (car X))
(define (denom x) (cdr x))
(define (make-rat n d)

(let ((g (gcd n d)))

(cons (/ ng) (/ dg))))
(define (add-rat x y)

(make-rat (+ (* (numer x) (denomy))
(* (numer y) (denomx)))
(* (denom x) (denomy))))
(define (sub-rat x vy)
(make-rat (- (* (nuner x) (denomy))
(* (numer y) (denomx)))
(* (denom x) (denomy))))
(define (mul-rat x vy)
(make-rat (* (nunmer x) (nuner vy))
(* (denom x) (denomy))))
(define (div-rat x y)
(make-rat (* (numer x) (denomy))
(* (denom x) (nuner y))))

interface to rest of the system

(define (tag x) (attach-tag 'rational X))
(put 'add '(rational rational)

(lambda (x y) (tag (add-rat x y))))
(put 'sub '(rational rational)

(lambda (x y) (tag (sub-rat x y))))
(put 'mul ' (rational rational)

(lambda (x y) (tag (mul-rat x vy))))
(put "div '(rational rational)

(lambda (x y) (tag (div-rat x y))))

(put 'nmake 'rational
(lanbda (n d) (tag (nmeke-rat n d))))
" done)

(define (nmake-rational n d)

((get "make 'rational) n d))

We can install asimilar package to handle complex numbers, using the tag conpl ex. In creating the
package, we extract from the table the operations make- f r om r eal - i mag and meke- f r om mag-
ang that were defined by the rectangular and polar packages. Additivity permits us to use, asthe internal
operations, the same add- conpl ex, sub- conpl ex, nul - conpl ex, and di v- conpl ex procedures

from section 2.4.1.

(define (install-conpl ex-package)
i nported procedures fromrectangul ar and pol ar

(define (nmake-fromreal -imag x y)

packages

((get '"make-fromreal -imag 'rectangular) x y))

(define (nmake-from mag-ang r a)

((get 'make-from mag-ang 'polar) r a))
;; internal procedures
(define (add-conplex z1 z2)
(make-fromreal-imag (+ (real-part zl) (real-part z2))
(+ (imag-part z1) (inmag-part z2))))
(define (sub-conplex zl1l z2)
(make-fromreal-imag (- (real-part zl1l) (real-part z2))
(- (imag-part z1l) (imag-part z2))))
(define (mul-complex z1 z2)
(make-from mag-ang (* (magnitude z1) (nagnitude z2))
(+ (angle z1) (angle z2))))
(define (div-complex z1 z2)
(rmake-from mag-ang (/ (magnitude z1) (nmagnitude z2))
(- (angle z1) (angle z2))))

;; Iinterface to rest of the system
(define (tag z) (attach-tag 'conplex z))
(put "add ' (conpl ex conpl ex)

(lanbda (z1 z2) (tag (add-conplex zl1l z2))))
(put "sub ' (conpl ex conpl ex)

(lanbda (z1 z2) (tag (sub-conplex zl1 z2))))
(put "mul ' (conpl ex conpl ex)

(lambda (z1 z2) (tag (mul-conplex zl1 z2))))
(put "div '(conplex conplex)

(lambda (z1 z2) (tag (div-conplex zl1 z2))))
(put 'meke-fromreal -i mag ' conpl ex

(lambda (x y) (tag (make-fromreal -imag x y))))
(put 'make-from mag-ang ' conpl ex

(lanmbda (r a) (tag (make-fromnmag-ang r a))))
' done)

Programs outside the complex-number package can construct complex numbers either from real and
imaginary parts or from magnitudes and angles. Notice how the underlying procedures, originally defined
in the rectangular and polar packages, are exported to the complex package, and exported from there to the
outside world.

(define (nmake-conplex-fromreal -img x y)
((get 'make-fromreal -imag 'conplex) x y))

(define (nmake-conpl ex-from mag-ang r a)
((get "make-from nmag-ang 'conplex) r a))

What we have here is atwo-level tag system. A typical complex number, such as 3 + 4i in rectangular
form, would be represented as shown in figure 2.24. The outer tag (conpl ex) is used to direct the number

to the complex package. Once within the complex package, the next tag (r ect angul ar) is used to direct

the number to the rectangular package. In alarge and complicated system there might be many levels, each
interfaced with the next by means of generic operations. As a data object is passed ~ downward," the outer
tag that is used to direct it to the appropriate package is stripped off (by applying cont ent s) and the next

level of tag (if any) becomes visible to be used for further dispatching.

compl &x rectangular = 4

Figure 2.24: Representation of 3 + 4i in rectangular form.

In the above packages, we used add- r at , add- conpl ex, and the other arithmetic procedures exactly

asoriginaly written. Once these definitions are internal to different installation procedures, however, they
no longer need names that are distinct from each other: we could simply name them add, sub, mul , and

di v in both packages.

Exercise 2.77. Louis Reasoner tries to evaluate the expression (magni t ude z) where z isthe object
shown in figure 2.24. To his surprise, instead of the answer 5 he gets an error message from appl y-
generi c, saying there isno method for the operation nagni t ude on thetypes (conpl ex) . He shows

thisinteraction to Alyssa P. Hacker, who says " The problem is that the complex-number selectors were
never defined for conpl ex numbers, just for pol ar andr ect angul ar numbers. All you have to do to

make thiswork is add the following to the conpl ex package:"

(put 'real-part '(conplex) real-part)
(put '"imag-part '(conplex) inmag-part)
(put 'magni tude ' (conpl ex) magnitude)
(put "angle '(conplex) angle)

Describe in detail why thisworks. As an example, trace through all the procedures called in evaluating the
expression (magni t ude z) where z isthe object shown in figure 2.24. In particular, how many times

isappl y- generi c invoked? What procedure is dispatched to in each case?

Exercise 2.78. Theinternal proceduresin theschenme- nunber package are essentially nothing more
than calls to the primitive procedures +, - , etc. It was not possible to use the primitives of the language

directly because our type-tag system requires that each data object have a type attached to it. In fact,
however, al Lisp implementations do have atype system, which they use internally. Primitive predicates
such assynbol ? and nunber ? determine whether data objects have particular types. Modify the

definitionsof t ype-t ag, cont ent s, and at t ach- t ag from section 2.4.2 so that our generic system

takes advantage of Scheme'sinternal type system. That is to say, the system should work as before except
that ordinary numbers should be represented simply as Scheme numbers rather than as pairswhosecar is

the symbol schene- nunber .

Exercise 2.79. Define ageneric equality predicate equ? that tests the equality of two numbers, and install
it in the generic arithmetic package. This operation should work for ordinary numbers, rational numbers,
and complex numbers.

Exercise 2.80. Define ageneric predicate =zer 0? that testsif itsargument is zero, and install it in the
generic arithmetic package. This operation should work for ordinary numbers, rational numbers, and

complex numbers.

2.5.2 Combining Data of Different Types

We have seen how to define a unified arithmetic system that encompasses ordinary numbers, complex
numbers, rational numbers, and any other type of number we might decide to invent, but we have ignored
an important issue. The operations we have defined so far treat the different data types as being completely
independent. Thus, there are separate packages for adding, say, two ordinary numbers, or two complex
numbers. What we have not yet considered is the fact that it is meaningful to define operations that cross
the type boundaries, such as the addition of a complex number to an ordinary number. We have gone to
great pains to introduce barriers between parts of our programs so that they can be developed and
understood separately. We would like to introduce the cross-type operations in some carefully controlled
way, so that we can support them without seriously violating our module boundaries.

One way to handle cross-type operationsisto design a different procedure for each possible combination
of types for which the operation is valid. For example, we could extend the complex-number package so
that it provides a procedure for adding complex numbers to ordinary numbers and installs thisin the table

using thetag (conpl ex schene- nunber) :49

;; to be included in the conpl ex package
(define (add-conpl ex-to-schemenum z x)
(make-fromreal -imag (+ (real-part z) Xx)
(i mag-part z)))
(put "add ' (conpl ex schene-nunber)
(lambda (z x) (tag (add-conpl ex-to-schenenumz x))))

This technique works, but it is cumbersome. With such a system, the cost of introducing a new typeis not
just the construction of the package of procedures for that type but also the construction and installation of
the procedures that implement the cross-type operations. This can easily be much more code than is
needed to define the operations on the type itself. The method also undermines our ability to combine
separate packages additively, or least to limit the extent to which the implementors of the individual
packages need to take account of other packages. For instance, in the example above, it seems reasonable
that handling mixed operations on complex numbers and ordinary numbers should be the responsibility of
the complex-number package. Combining rational numbers and complex numbers, however, might be
done by the complex package, by the rational package, or by some third package that uses operations
extracted from these two packages. Formulating coherent policies on the division of responsibility among
packages can be an overwhelming task in designing systems with many packages and many cross-type
operations.

Coercion

In the general situation of completely unrelated operations acting on completely unrelated types,
implementing explicit cross-type operations, cumbersome though it may be, is the best that one can hope
for. Fortunately, we can usually do better by taking advantage of additional structure that may be latent in
our type system. Often the different data types are not completely independent, and there may be ways by
which objects of one type may be viewed as being of another type. This processis called coercion. For
example, if we are asked to arithmetically combine an ordinary number with a complex number, we can

view the ordinary number as a complex number whose imaginary part is zero. This transforms the problem
to that of combining two complex numbers, which can be handled in the ordinary way by the complex-
arithmetic package.

In general, we can implement this idea by designing coercion procedures that transform an object of one
type into an equivalent object of another type. Hereisatypical coercion procedure, which transforms a
given ordinary number to a complex number with that real part and zero imaginary part:

(defi ne (schene-nunber->conpl ex n)
(rmake- compl ex-fromreal -i mag (contents n) 0))

We install these coercion proceduresin a specia coercion table, indexed under the names of the two types:

(put-coercion 'scheme-nunber 'conpl ex schenme- nunber - >conpl ex)

(We assume that there are put - coer ci on and get - coer ci on procedures available for manipulating

thistable.) Generally some of the slots in the table will be empty, because it is not generally possible to
coerce an arbitrary data object of each type into all other types. For example, there is no way to coerce an
arbitrary complex number to an ordinary number, so there will be no general conpl ex- >scherme-

nunber procedureincluded in the table.

Once the coercion table has been set up, we can handle coercion in a uniform manner by modifying the
appl y- gener i c procedure of section 2.4.3. When asked to apply an operation, we first check whether
the operation is defined for the arguments' types, just as before. If so, we dispatch to the procedure found
in the operation-and-type table. Otherwise, we try coercion. For ssimplicity, we consider only the case
where there are two arguments.20 We check the coercion table to see if objects of the first type can be
coerced to the second type. If so, we coerce the first argument and try the operation again. If objects of the
first type cannot in general be coerced to the second type, we try the coercion the other way around to see
if thereisaway to coerce the second argument to the type of the first argument. Finally, if thereisno
known way to coerce either type to the other type, we give up. Here is the procedure:

(define (apply-generic op . args)
(let ((type-tags (nmap type-tag args)))
(let ((proc (get op type-tags)))
(if proc
(apply proc (map contents args))
(if (= (length args) 2)
(let ((typel (car type-tags))
(type2 (cadr type-tags))
(al (car args))
(a2 (cadr args)))
(let ((t1->t2 (get-coercion typel type2))
(t2->t1 (get-coercion type2 typel)))
(cond (t1->t2
(appl y-generic op (t1->t2 al) a2))
(t2->t1
(appl y-generic op al (t2->t1 a2)))

(el se
(error "No nethod for these types”

(l'ist op type-tags))))))
(error "No nethod for these types”

(list op type-tags)))))))

This coercion scheme has many advantages over the method of defining explicit cross-type operations, as
outlined above. Although we still need to write coercion procedures to relate the types (possibly n?
procedures for a system with n types), we need to write only one procedure for each pair of types rather
than a different procedure for each collection of types and each generic operation.21 What we are counting
on hereisthe fact that the appropriate transformation between types depends only on the types themselves,
not on the operation to be applied.

On the other hand, there may be applications for which our coercion scheme is not general enough. Even
when neither of the objects to be combined can be converted to the type of the other it may still be possible
to perform the operation by converting both objects to athird type. In order to deal with such complexity
and still preserve modularity in our programs, it is usually necessary to build systems that take advantage
of still further structure in the relations among types, as we discuss next.

Hierarchies of types

The coercion scheme presented above relied on the existence of natural relations between pairs of types.
Often thereismore ““global" structure in how the different types relate to each other. For instance, suppose
we are building a generic arithmetic system to handle integers, rational numbers, real numbers, and
complex numbers. In such asystem, it is quite natural to regard an integer as a specia kind of rational
number, which isin turn a special kind of real number, which isin turn a special kind of complex number.
What we actually haveis a so-called hierarchy of types, in which, for example, integers are a subtype of
rational numbers (i.e., any operation that can be applied to arational number can automatically be applied
to an integer). Conversely, we say that rational numbers form a supertype of integers. The particular
hierarchy we have hereis of avery simple kind, in which each type has at most one supertype and at most
one subtype. Such a structure, called atower, isillustrated in figure 2.25.

complex

eal

cational

integer

Figure 2.25: A tower of types.

If we have atower structure, then we can greatly ssimplify the problem of adding a new typeto the
hierarchy, for we need only specify how the new type is embedded in the next supertype above it and how
it isthe supertype of the type below it. For example, if we want to add an integer to a complex number, we
need not explicitly define a special coercion procedurei nt eger - >conpl ex. Instead, we define how an
integer can be transformed into arational number, how arational number is transformed into a real

number, and how areal number is transformed into a complex number. We then allow the system to
transform the integer into a complex number through these steps and then add the two complex numbers.

We can redesign our appl y- gener i ¢ procedure in the following way: For each type, we need to supply
ar ai se procedure, which ““raises" objects of that type one level in the tower. Then when the system is
required to operate on objects of different typesit can successively raise the lower types until all the
objects are at the same level in the tower. (Exercises 2.83 and 2.84 concern the details of implementing
such a strategy.)

Another advantage of atower isthat we can easily implement the notion that every type ““inherits" all
operations defined on a supertype. For instance, if we do not supply a specia procedure for finding the real
part of an integer, we should nevertheless expect that r eal - part will be defined for integers by virtue of
the fact that integers are a subtype of complex numbers. In atower, we can arrange for thisto happenin a
uniform way by modifying appl y- gener i c. If therequired operation is not directly defined for the
type of the object given, we raise the object to its supertype and try again. We thus crawl up the tower,
transforming our argument as we go, until we either find alevel at which the desired operation can be
performed or hit the top (in which case we give up).

Y et another advantage of atower over amore general hierarchy isthat it gives usasimple way to ~ lower"
adata object to the simplest representation. For example, if we add 2 + 3i to 4 - 3i, it would be nice to
obtain the answer as the integer 6 rather than as the complex number 6 + Oi. Exercise 2.85 discusses a way

to implement such alowering operation. (The trick is that we need a general way to distinguish those
objects that can be lowered, such as 6 + Oi, from those that cannot, such as 6 + 2i.)

polygon

S

quadcilateral
trapezoid Lite

tnangle \
/ \ parallelogram
isosceles right
tnangle tnangle

rectangle chombus

equilateral isosceles \ /

T.L'i.E.I.'Igl.E I:lghT. squUare
trangle

Figure 2.26: Relations among types of geometric figures.

Inadequacies of hierarchies

If the data types in our system can be naturally arranged in atower, this greatly simplifies the problems of
dealing with generic operations on different types, as we have seen. Unfortunately, thisis usualy not the
case. Figure 2.26 illustrates a more complex arrangement of mixed types, this one showing relations
among different types of geometric figures. We see that, in general, a type may have more than one
subtype. Triangles and quadrilaterals, for instance, are both subtypes of polygons. In addition, atype may
have more than one supertype. For example, an isosceles right triangle may be regarded either as an
isosceles triangle or as aright triangle. This multiple-supertypesissue is particularly thorny, since it means
that there is no unique way to "raise" atypein the hierarchy. Finding the " correct" supertype in which to
apply an operation to an object may involve considerable searching through the entire type network on the
part of a procedure such asappl y- gener i c. Since there generally are multiple subtypes for atype,
thereisasimilar problem in coercing avalue ““down" the type hierarchy. Dealing with large numbers of
interrelated types while still preserving modularity in the design of large systemsis very difficult, and isan

area of much current research.52

Exercise 2.81. Louis Reasoner has noticed that appl y- gener i ¢ may try to coerce the arguments to
each other'stype even if they aready have the same type. Therefore, he reasons, we need to put procedures
in the coercion table to "coerce" arguments of each type to their own type. For example, in addition to the
schene- nunber - >conpl ex coercion shown above, he would do:

(define (schene-nunber->schene-nunber n) n)

(define (conpl ex->conplex z) z)

(put -coercion 'schene-nunber 'schene-nunber
schene- nunber - >schene- nunber)

(put -coercion 'conplex 'conplex conpl ex->conpl ex)

a. With Louis's coercion procedures installed, what happensif appl y- generi c iscalled with two
arguments of type schene- nunber or two arguments of type conpl ex for an operation that is not

found in the table for those types? For example, assume that we've defined a generic exponentiation
operation:

(define (exp x y) (apply-generic '"exp X Yy))
and have put a procedure for exponentiation in the Scheme-number package but not in any other package:

;; follow ng added to Schene- nunber package
(put "exp ' (schene-nunber schene-nunber)

(lambda (x y) (tag (expt x y)))) ; using primtive expt
What happens if we call exp with two complex numbers as arguments?

b. Is Louis correct that something had to be done about coercion with arguments of the same type, or does
appl y- generi c work correctly asis?

c. Modify appl y- generi ¢ sothat it doesn't try coercion if the two arguments have the same type.

Exercise 2.82. Show how to generalize appl y- gener i c to handle coercion in the general case of
multiple arguments. One strategy is to attempt to coerce al the arguments to the type of the first argument,
then to the type of the second argument, and so on. Give an example of a situation where this strategy (and
likewise the two-argument version given above) is not sufficiently general. (Hint: Consider the case where
there are some suitable mixed-type operations present in the table that will not be tried.)

Exercise 2.83. Suppose you are designing a generic arithmetic system for dealing with the tower of types
shown in figure 2.25: integer, rational, real, complex. For each type (except complex), design a procedure

that raises objects of that type one level in the tower. Show how to install agenericr ai se operation that
will work for each type (except complex).

Exercise 2.84. Using ther ai se operation of exercise 2.83, modify theappl y- gener i ¢ procedure so
that it coerces its arguments to have the same type by the method of successive raising, as discussed in this
section. Y ou will need to devise away to test which of two typesis higher in the tower. Do thisin a
manner that is ~"compatible" with the rest of the system and will not lead to problems in adding new levels
to the tower.

Exercise 2.85. This section mentioned a method for ~ simplifying" a data object by lowering it in the
tower of types asfar as possible. Design a procedure dr op that accomplishes this for the tower described

in exercise 2.83. The key isto decide, in some general way, whether an object can be lowered. For
example, the complex number 1.5 + 0i can be lowered asfar asr eal , the complex number 1 + Oi can be
lowered asfar asi nt eger , and the complex number 2 + 3i cannot be lowered at all. Hereisaplan for
determining whether an object can be lowered: Begin by defining a generic operation pr oj ect that

““pushes” an object down in the tower. For example, projecting a complex number would involve throwing
away the imaginary part. Then a number can be dropped if, when we pr oj ect itandr ai se theresult

back to the type we started with, we end up with something equal to what we started with. Show how to
implement thisideain detail, by writing adr op procedure that drops an object as far as possible. Y ou will
need to design the various projection operations®3 and install pr oj ect asageneric operation in the
system. You will also need to make use of a generic equality predicate, such as described in exercise 2.79.
Finally, use dr op to rewrite appl y- generi ¢ from exercise 2.84 so that it "simplifies' its answers.

Exercise 2.86. Suppose we want to handle complex numbers whose real parts, imaginary parts,
magnitudes, and angles can be either ordinary numbers, rational numbers, or other numbers we might wish
to add to the system. Describe and implement the changes to the system needed to accommodate this. Y ou
will have to define operations such as si ne and cosi ne that are generic over ordinary numbers and

rational numbers.

2.5.3 Example: Symbolic Algebra

The manipulation of symbolic algebraic expressions is a complex process that illustrates many of the
hardest problems that occur in the design of large-scale systems. An algebraic expression, in general, can
be viewed as a hierarchical structure, atree of operators applied to operands. We can construct algebraic
expressions by starting with a set of primitive objects, such as constants and variables, and combining
these by means of algebraic operators, such as addition and multiplication. Asin other languages, we form
abstractions that enable us to refer to compound objects in simple terms. Typical abstractionsin symbolic
algebra are ideas such as linear combination, polynomial, rational function, or trigonometric function. We
can regard these as compound ""types," which are often useful for directing the processing of expressions.
For example, we could describe the expression

r® sm(y? + 1) + r cos 2y + cosly” —)

asapolynomial in x with coefficients that are trigonometric functions of polynomialsiny whose
coefficients are integers.

We will not attempt to develop a compl ete al gebrai c-manipulation system here. Such systems are
exceedingly complex programs, embodying deep algebraic knowledge and elegant algorithms. What we
will do islook at asimple but important part of algebraic manipulation: the arithmetic of polynomials. We
will illustrate the kinds of decisions the designer of such a system faces, and how to apply the ideas of
abstract data and generic operations to help organize this effort.

Arithmetic on polynomials

Our first task in designing a system for performing arithmetic on polynomialsisto decide just what a
polynomial is. Polynomials are normally defined relative to certain variables (the indeter minates of the
polynomial). For simplicity, we will restrict ourselves to polynomials having just one indeterminate
(univariate polynomials).24 We will define a polynomial to be a sum of terms, each of which is either a
coefficient, a power of the indeterminate, or a product of a coefficient and a power of the indeterminate. A
coefficient is defined as an algebraic expression that is not dependent upon the indeterminate of the
polynomial. For example,

Erl +3r 47

isasimple polynomial in x, and
2 3
(¥ + 1+ (2r+1
isapolynomial in x whose coefficients are polynomialsiny.

Already we are skirting some thorny issues. Isthe first of these polynomials the same as the polynomial
5y2 + 3y + 7, or not? A reasonable answer might be “yes, if we are considering a polynomial purely as a
mathematical function, but no, if we are considering a polynomial to be a syntactic form." The second
polynomial is algebraically equivalent to a polynomial in'y whose coefficients are polynomialsin x.
Should our system recognize this, or not? Furthermore, there are other ways to represent a polynomial --
for example, as a product of factors, or (for a univariate polynomial) as the set of roots, or as alisting of
the values of the polynomial at a specified set of points.22 We can finesse these questions by deciding that
in our algebraic-manipulation system a " “polynomia™ will be a particular syntactic form, not its underlying
mathematical meaning.

Now we must consider how to go about doing arithmetic on polynomials. In this simple system, we will
consider only addition and multiplication. Moreover, we will insist that two polynomials to be combined
must have the same indeterminate.

We will approach the design of our system by following the familiar discipline of data abstraction. We will
represent polynomials using a data structure called a poly, which consists of a variable and a collection of
terms. We assume that we have selectorsvari abl e andt er m | i st that extract those parts from a

poly and a constructor nake- pol y that assembles a poly from agiven variable and aterm list. A variable
will be just asymbol, so we can use the sane- var i abl e? procedure of section 2.3.2 to compare
variables. The following procedures define addition and multiplication of polys:

(define (add-poly pl p2)
(if (sane-variable? (variable pl) (variable p2))
(rmake-poly (variable pl)
(add-terms (termlist pl)
(termlist p2)))
(error "Polys not in same var -- ADD POLY"
(list pl p2))))
(define (nul-poly pl p2)
(if (sane-variable? (variable pl) (variable p2))

(make-poly (variable pl)
(mul -terms (termlist pl)
(termlist p2)))
(error "Polys not in same var -- MJL-POLY"

(list pl p2))))

To incorporate polynomials into our generic arithmetic system, we need to supply them with type tags.
WEell usethetag pol ynom al , and install appropriate operations on tagged polynomials in the operation

table. We'll embed all our code in an installation procedure for the polynomial package, similar to the ones
in section 2.5.1:

(define (install-polynom al - package)
;; internal procedures

;; representation of poly

(define (make-poly variable termlist)
(cons variable termlist))

(define (variable p) (car p))

(define (termlist p) (cdr p))

<procedures sane-variable? and variable? fromsection 2.3.2>
;; representation of terns and termlists
<procedures adjoin-term...coeff fromtext bel ow

;; continued on next page

(define (add-poly pl p2) ...)
<procedures used by add- pol y>
(define (mul-poly pl p2) ...)
<procedures used by mul -pol y>
;; Iinterface to rest of the system
(define (tag p) (attach-tag 'pol ynom al p))
(put 'add ' (polynom al polynom al)

(lambda (pl p2) (tag (add-poly pl p2))))
(put "mul ' (polynom al polynom al)

(lambda (pl p2) (tag (nul-poly pl p2))))
(put 'nmake ' pol ynom al

(lanbda (var ternms) (tag (nmake-poly var terns))))
" done)

Polynomial addition is performed termwise. Terms of the same order (i.e., with the same power of the
indeterminate) must be combined. Thisis done by forming a new term of the same order whose coefficient
is the sum of the coefficients of the addends. Termsin one addend for which there are no terms of the
same order in the other addend are ssimply accumulated into the sum polynomial being constructed.

In order to manipulate term lists, we will assume that we have a constructor t he- enpty-term i st
that returns an empty term list and a constructor adj oi n- t er mthat adjoinsanew termto aterm list. We
will also assume that we have apredicateenpt y-t erm i st ? that tellsif agiventerm list is empty, a
selector f i r st - t er mthat extracts the highest-order term from aterm list, and a selector r est -t er ns

that returns all but the highest-order term. To manipulate terms, we will suppose that we have a
constructor make- t er mthat constructs a term with given order and coefficient, and selectorsor der and

coef f that return, respectively, the order and the coefficient of the term. These operations alow usto
consider both terms and term lists as data abstractions, whose concrete representations we can worry about
separately.

Here isthe procedure that constructs the term list for the sum of two polynomials:S6

(define (add-ternms L1 L2)
(cond ((enpty-termist? L1) L2)
((enmpty-termist? L2) L1)
(el se
(let ((t1 (first-termL1)) (t2 (first-termL2)))
(cond ((> (order tl1) (order t2))
(adjoin-term
tl (add-ternms (rest-ternms L1) L2)))
((< (order t1) (order t2))
(adjoin-term
t2 (add-ternms L1 (rest-ternms L2))))
(el se
(adjoin-term
(make-term (order t1)
(add (coeff t1) (coeff t2)))
(add-ternms (rest-terns L1)
(rest-terms L2)))))))))

The most important point to note here is that we used the generic addition procedure add to add together
the coefficients of the terms being combined. This has powerful consequences, as we will see below.

In order to multiply two term lists, we multiply each term of thefirst list by all the terms of the other list,
repeatedly using mul -t er m by- al | - t er ns, which multipliesagiven term by al termsin agiven
term list. The resulting term lists (one for each term of the first list) are accumulated into a sum.
Multiplying two terms forms a term whose order is the sum of the orders of the factors and whose
coefficient is the product of the coefficients of the factors:

(define (nmul-ternms L1 L2)
(if (enpty-termist? L1)
(the-enpty-termist)
(add-ternms (rmul-termby-all-terns (first-termL1l) L2)
(mul -terms (rest-terns L1) L2))))
(define (nmul-termby-all-terns t1 L)
(if (enmpty-termist? L)
(the-enpty-termist)
(let ((t2 (first-termLl)))
(adjoin-term
(make-term (+ (order tl1l) (order t2))
(rmul (coeff t1) (coeff t2)))

(mul -termby-all-terns t1 (rest-terns L))))))

Thisisredly all thereisto polynomial addition and multiplication. Notice that, since we operate on terms
using the generic procedures add and mul , our polynomial package is automatically able to handle any

type of coefficient that is known about by the generic arithmetic package. If we include a coercion
mechanism such as one of those discussed in section 2.5.2, then we also are automatically able to handle

operations on polynomials of different coefficient types, such as

2

Bl + (2 +3)r 47| [:4 +3

4 (54 3;:}]

Because we installed the polynomial addition and multiplication procedures add- pol y and nul - pol y
in the generic arithmetic system asthe add and mul operations for type pol ynoni al , our systemisaso
automatically able to handle polynomial operations such as

[+ 02+ A4+ D+ — 1] [y — 2 + (o + 7]

The reason is that when the system tries to combine coefficients, it will dispatch through add and nul .
Since the coefficients are themselves polynomials (in y), these will be combined using add- pol y and
mul - pol y. Theresult isakind of ““data-directed recursion” in which, for example, acall tomul - pol y
will result in recursive callsto mul - pol y in order to multiply the coefficients. If the coefficients of the

coefficients were themselves polynomials (as might be used to represent polynomialsin three variables),
the data direction would ensure that the system would follow through another level of recursive calls, and
so on through as many levels as the structure of the data dictates.2/

Representing term lists

Finally, we must confront the job of implementing a good representation for term lists. A term list is, in
effect, a set of coefficients keyed by the order of the term. Hence, any of the methods for representing sets,
as discussed in section 2.3.3, can be applied to this task. On the other hand, our procedures add- t er s

and mul - t er ms always access term lists sequentially from highest to lowest order. Thus, we will use
some kind of ordered list representation.

How should we structure the list that represents aterm list? One consideration is the " density" of the
polynomials we intend to manipulate. A polynomial is said to be denseif it has nonzero coefficientsin
terms of most orders. If it has many zero termsit is said to be sparse. For example,

A P+ artyast ooy
is adense polynomial, whereas
E: f™ynas?y

is sparse.

The term lists of dense polynomials are most efficiently represented as lists of the coefficients. For
example, A above would be nicely representedas(1 2 0 3 -2 -5).Theorder of aterminthis

representation is the length of the sublist beginning with that term's coefficient, decremented by 1.58 This
would be aterrible representation for a sparse polynomial such as B: There would be agiant list of zeros
punctuated by afew lonely nonzero terms. A more reasonabl e representation of the term list of a sparse
polynomial isas alist of the nonzero terms, where each termisalist containing the order of the term and
the coefficient for that order. In such a scheme, polynomial B is efficiently represented as((100 1) (2
2) (0 1)) .Asmost polynomial manipulations are performed on sparse polynomials, we will use this
method. We will assume that term lists are represented as lists of terms, arranged from highest-order to
lowest-order term. Once we have made this decision, implementing the selectors and constructors for
terms and term lists is straightforward:9

(define (adjoin-termtermtermlist)
(if (=zero? (coeff term)

termlist

(cons termtermlist)))
(define (the-enmpty-termist) '())
(define (first-termtermlist) (car termlist))
(define (rest-ternms termlist) (cdr termlist))
(define (enmpty-termist? termlist) (null? termlist))
(define (nmake-term order coeff) (list order coeff))
(define (order term) (car term)
(define (coeff term (cadr tern))

where =zer 0? isas defined in exercise 2.80. (See also exercise 2.87 below.)

Users of the polynomial package will create (tagged) polynomials by means of the procedure:

(define (nmake-polynom al var terns)
((get 'make 'polynomal) var terns))

Exercise 2.87. Instal =zer 0? for polynomialsin the generic arithmetic package. Thiswill allow
adj oi n-t er mto work for polynomials with coefficients that are themselves polynomials.

Exercise 2.88. Extend the polynomial system to include subtraction of polynomials. (Hint: Y ou may find
it helpful to define a generic negation operation.)

Exercise 2.89. Define procedures that implement the term-list representation described above as
appropriate for dense polynomials.

Exercise 2.90. Suppose we want to have a polynomia system that is efficient for both sparse and dense
polynomials. One way to do thisisto alow both kinds of term-list representationsin our system. The
situation is analogous to the complex-number example of section 2.4, where we allowed both rectangular
and polar representations. To do this we must distinguish different types of term lists and make the
operations on term lists generic. Redesign the polynomial system to implement this generaization. Thisis

amajor effort, not alocal change.

Exercise 2.91. A univariate polynomial can be divided by another one to produce a polynomial quotient
and a polynomial remainder. For example,

-1

5 = r*+ r, remainder r — 1
rF—1

Division can be performed vialong division. That is, divide the highest-order term of the dividend by the
highest-order term of the divisor. The result isthe first term of the quotient. Next, multiply the result by
the divisor, subtract that from the dividend, and produce the rest of the answer by recursively dividing the
difference by the divisor. Stop when the order of the divisor exceeds the order of the dividend and declare
the dividend to be the remainder. Also, if the dividend ever becomes zero, return zero as both quotient and
remainder.

We can design adi v- pol y procedure on the model of add- pol y and nul - pol y. The procedure
checksto seeif the two polys have the same variable. If so, di v- pol y strips off the variable and passes
the problemto di v-t er ns, which performs the division operation onterm lists. Di v- pol y finaly
reattaches the variable to the result supplied by di v-t er ms. It isconvenient to designdi v-t er ns to
compute both the quotient and the remainder of adivision. Di v-t er ns can take two term lists as
arguments and return alist of the quotient term list and the remainder term list.

Complete the following definition of di v-t er s by filling in the missing expressions. Use thisto
implement di v- pol y, which takes two polys as arguments and returns alist of the quotient and
remainder polys.

(define (div-ternms L1 L2)
(if (enpty-termist? L1)
(list (the-enpty-termist) (the-enpty-termist))
(let ((t1 (first-termL1))
(t2 (first-termL2)))
(if (> (order t2) (order tl))
(list (the-enpty-termist) L1)
(let ((newc (div (coeff tl1l) (coeff t2)))
(new-o (- (order tl1) (order t2))))
(let ((rest-of-result

<conpute rest of result recursively>

))

<form conplete result>

))))))

Hierarchies of types in symbolic algebra

Our polynomial system illustrates how objects of one type (polynomials) may in fact be complex objects
that have objects of many different types as parts. This poses no real difficulty in defining generic
operations. We need only install appropriate generic operations for performing the necessary

manipulations of the parts of the compound types. In fact, we saw that polynomials form akind of
““recursive data abstraction,” in that parts of a polynomia may themselves be polynomials. Our generic
operations and our data-directed programming style can handle this complication without much trouble.

On the other hand, polynomial algebrais a system for which the data types cannot be naturally arranged in
atower. For instance, it is possible to have polynomials in x whose coefficients are polynomiasiny. It is
also possible to have polynomialsin y whose coefficients are polynomialsin x. Neither of these typesis
““above" the other in any natural way, yet it is often necessary to add together elements from each set.
There are several ways to do this. One possibility isto convert one polynomial to the type of the other by
expanding and rearranging terms so that both polynomials have the same principal variable. One can
impose a towerlike structure on this by ordering the variables and thus always converting any polynomial
to a “canonical form" with the highest-priority variable dominant and the lower-priority variables buried
in the coefficients. This strategy works fairly well, except that the conversion may expand a polynomial
unnecessarily, making it hard to read and perhaps less efficient to work with. The tower strategy is
certainly not natural for this domain or for any domain where the user can invent new types dynamically
using old typesin various combining forms, such as trigonometric functions, power series, and integrals.

It should not be surprising that controlling coercion is a serious problem in the design of large-scale
algebraic-manipulation systems. Much of the complexity of such systemsis concerned with relationships
among diverse types. Indeed, it isfair to say that we do not yet completely understand coercion. In fact, we
do not yet completely understand the concept of a datatype. Nevertheless, what we know provides us with
powerful structuring and modularity principles to support the design of large systems.

Exercise 2.92. By imposing an ordering on variables, extend the polynomial package so that addition and
multiplication of polynomials works for polynomialsin different variables. (Thisis not easy!)

Extended exercise: Rational functions

We can extend our generic arithmetic system to include rational functions. These are " fractions" whose
numerator and denominator are polynomials, such as

-1

The system should be able to add, subtract, multiply, and divide rational functions, and to perform such
computations as

r+1 T _IE'-I—E.I?-I—EI-I—I
-1 -1 4o r—1

(Here the sum has been ssimplified by removing common factors. Ordinary " cross multiplication” would
have produced a fourth-degree polynomial over afifth-degree polynomial.)

If we modify our rational-arithmetic package so that it uses generic operations, then it will do what we
want, except for the problem of reducing fractions to lowest terms.

Exercise 2.93. Modify the rational-arithmetic package to use generic operations, but change make- r at
so that it does not attempt to reduce fractions to lowest terms. Test your system by calling make-
rat i onal ontwo polynomialsto produce arational function

(define pl (make-polynomal '"x '((2 1)(0 1)
(define p2 (make-polynomal '"x '((3 1)(0 1)
(define rf (make-rational p2 pl))

)))
)))

Now add r f toitself, using add. Y ou will observe that this addition procedure does not reduce fractions
to lowest terms.

We can reduce polynomial fractions to lowest terms using the same idea we used with integers: modifying
make- r at to divide both the numerator and the denominator by their greatest common divisor. The

notion of ""greatest common divisor" makes sense for polynomials. In fact, we can compute the GCD of
two polynomials using essentially the same Euclid's Algorithm that works for integers.89 The integer
versionis

(define (gcd a b)
(if (=b 0)
a
(gcd b (remai nder a b))))

Using this, we could make the obvious modification to define a GCD operation that works on term lists:

(define (gcd-ternms a b)
(if (enpty-termist? b)
a
(gcd-ternms b (remainder-terns a b))))

wherer enmai nder -t er ns picks out the remainder component of the list returned by the term-list
division operation di v-t er ns that was implemented in exercise 2.91.

Exercise2.94. Usingdi v-t er s, implement the procedurer enmai nder - t er ns and use thisto define
gcd-t er ns as above. Now write aprocedure gcd- pol y that computes the polynomial GCD of two

polys. (The procedure should signal an error if the two polys are not in the same variable.) Install in the
system a generic operation gr eat est - conmon- di vi sor that reducesto gcd- pol y for polynomials

and to ordinary gcd for ordinary numbers. As atest, try

(define pl (make-polynomal "x '((4 1) (3 -1) (2 -2) (1 2))))
(define p2 (make-polynomal 'x '"((3 1) (1 -1))))
(greatest-conmmon-di visor pl p2)

and check your result by hand.

Exercise 2.95. Define P, P,, and P5 to be the polynomials

= £ —9r 41
B 11e747
B 13r 45

Now define Q, to be the product of P, and P, and Q- to be the product of P, and P53, and use gr eat est -
common-di vi sor (exercise 2.94) to compute the GCD of Q; and Q,. Note that the answer is not the
same as P;. This example introduces noninteger operations into the computation, causing difficulties with

the GCD algorithm.61 To understand what is happening, try tracing gcd- t er ns while computing the
GCD or try performing the division by hand.

We can solve the problem exhibited in exercise 2.95 if we use the following modification of the GCD

algorithm (which really works only in the case of polynomials with integer coefficients). Before
performing any polynomial division in the GCD computation, we multiply the dividend by an integer
constant factor, chosen to guarantee that no fractions will arise during the division process. Our answer
will thus differ from the actual GCD by an integer constant factor, but this does not matter in the case of
reducing rational functions to lowest terms; the GCD will be used to divide both the numerator and
denominator, so the integer constant factor will cancel out.

More precisely, if P and Q are polynomials, let O, be the order of P (i.e., the order of the largest term of P)
and let O, bethe order of Q. Let ¢ be the leading coefficient of Q. Then it can be shown that, if we
multiply P by the integerizing factor ¢1+O1-O2, the resulting polynomial can be divided by Q by using the
di v-t er ns agorithm without introducing any fractions. The operation of multiplying the dividend by

this constant and then dividing is sometimes called the pseudodivision of P by Q. The remainder of the
division is called the pseudoremainder.

Exercise2.96. a. Implement the procedure pseudor enai nder -t er ns, whichisjust like

remai nder -t er ns except that it multiplies the dividend by the integerizing factor described above
before calling di v-t er ms. Modify gcd- t er ns to use pseudor emai nder -t er ns, and verify that
gr eat est - conmon- di vi sor now produces an answer with integer coefficients on the examplein
exercise 2.95.

b. The GCD now has integer coefficients, but they are larger than those of P;. Modify gcd-t er ms so

that it removes common factors from the coefficients of the answer by dividing al the coefficients by their
(integer) greatest common divisor.

Thus, here is how to reduce arational function to lowest terms;

. Compute the GCD of the numerator and denominator, using the version of gcd- t er ns from
exercise 2.96.

. When you obtain the GCD, multiply both numerator and denominator by the same integerizing
factor before dividing through by the GCD, so that division by the GCD will not introduce any
noninteger coefficients. As the factor you can use the leading coefficient of the GCD raised to the
power 1 + O4 - O,, where O, isthe order of the GCD and O, is the maximum of the orders of the

numerator and denominator. Thiswill ensure that dividing the numerator and denominator by the
GCD will not introduce any fractions.

. Theresult of this operation will be a numerator and denominator with integer coefficients. The
coefficients will normally be very large because of all of the integerizing factors, so the last step is
to remove the redundant factors by computing the (integer) greatest common divisor of all the
coefficients of the numerator and the denominator and dividing through by this factor.

Exercise 2.97. a. Implement this algorithm as aprocedurer educe-t er ns that takestwo term listsn
and d as arguments and returns alist nn, dd, which are n and d reduced to lowest terms via the algorithm
given above. Also write a procedurer educe- pol y, analogous to add- pol y, that checksto seeif the
two polys have the same variable. If so, r educe- pol y strips off the variable and passes the problem to
r educe- t er s, then reattaches the variable to the two term lists supplied by r educe- t er is.

b. Define a procedure analogousto r educe- t er ns that does what the original make- r at did for
integers:

(define (reduce-integers n d)

(let ((g (gcd n d)))
(list (/ ng) (/ dg))))

and definer educe as ageneric operation that callsappl y- gener i ¢ to dispatch to either r educe-
pol y (for pol ynom al arguments) or r educe-i nt eger s (for schene- nunber arguments). You
can now easily make the rational-arithmetic package reduce fractions to lowest terms by having make-
rat call r educe before combining the given numerator and denominator to form arational number. The

system now handles rational expressions in either integers or polynomials. To test your program, try the
example at the beginning of this extended exercise:

(define pl (nmake-polynom al
(define p2 (nake-pol ynom al
(define p3 (nake-pol ynom al
(define p4 (nmake-pol ynom al

(define rfl1 (make-rational pl p2))
(define rf2 (nmake-rational p3 p4))

(add rfl rf2)

Seeif you get the correct answer, correctly reduced to lowest terms.

The GCD computation is at the heart of any system that does operations on rational functions. The
algorithm used above, although mathematically straightforward, is extremely slow. The slownessis due

partly to the large number of division operations and partly to the enormous size of the intermediate
coefficients generated by the pseudodivisions. One of the active areas in the development of algebraic-
manipulation systemsis the design of better algorithms for computing polynomial GCDs.62

49 We al'so have to supply an almost identical procedure to handle the types (scheme- nunber conpl ex) .
50 See exercise 2.82 for generalizations.

51 |f we are clever, we can usually get by with fewer than n2 coercion procedures. For instance, if we know how to convert from type 1 to type
2 and from type 2 to type 3, then we can use this knowledge to convert from type 1 to type 3. This can greatly decrease the number of coercion
procedures we need to supply explicitly when we add a new type to the system. If we are willing to build the required amount of

sophistication into our system, we can have it search the *“graph” of relations among types and automatically generate those coercion
procedures that can be inferred from the ones that are supplied explicitly.

52 This statement, which also appearsin the first edition of this book, isjust as true now as it was when we wrote it twelve years ago.
Developing a useful, general framework for expressing the relations among different types of entities (what philosophers call **ontology™)
seems intractably difficult. The main difference between the confusion that existed ten years ago and the confusion that exists now is that now
avariety of inadeguate ontological theories have been embodied in a plethora of correspondingly inadequate programming languages. For
example, much of the complexity of object-oriented programming languages -- and the subtle and confusing differences among contemporary
object-oriented languages -- centers on the treatment of generic operations on interrelated types. Our own discussion of computational objects
in chapter 3 avoids these issues entirely. Readers familiar with object-oriented programming will notice that we have much to say in chapter 3
about local state, but we do not even mention ““classes” or “inheritance." In fact, we suspect that these problems cannot be adequately
addressed in terms of computer-language design alone, without also drawing on work in knowledge representation and automated reasoning.

53 A real number can be projected to an integer using the r ound primitive, which returns the closest integer to its argument.

54 On the other hand, we will alow polynomials whose coefficients are themselves polynomials in other variables. Thiswill give us
essentially the same representational power as afull multivariate system, although it does lead to coercion problems, as discussed below.

55 For univariate polynomials, giving the value of a polynomial at a given set of points can be a particularly good representation. This makes
polynomial arithmetic extremely simple. To obtain, for example, the sum of two polynomials represented in this way, we need only add the
values of the polynomials at corresponding points. To transform back to a more familiar representation, we can use the Lagrange interpolation
formula, which shows how to recover the coefficients of a polynomial of degree n given the values of the polynomial at n + 1 points.

56 This operation is very much like the ordered uni on- set operation we developed in exercise 2.62. In fact, if we think of the terms of the

polynomial as a set ordered according to the power of the indeterminate, then the program that produces the term list for a sum is almost
identical touni on- set .

57 To make this work completely smoothly, we should also add to our generic arithmetic system the ability to coerce a ™ “number" to a
polynomial by regarding it as a polynomial of degree zero whose coefficient is the number. Thisis necessary if we are going to perform
operations such as

[£° + {y+ i+ 5] + [£7+ 2 + 1]
which requires adding the coefficient y + 1 to the coefficient 2.

58 |n these polynomial examples, we assume that we have implemented the generic arithmetic system using the type mechanism suggested in
exercise 2.78. Thus, coefficients that are ordinary numbers will be represented as the numbers themselves rather than as pairswhose car is

the symbol schene- nunber .

59 Although we are assuming that term lists are ordered, we have implemented adj oi n- t er mto simply cons the new term onto the
existing term list. We can get away with this so long as we guarantee that the procedures (such asadd- t er ns) that useadj oi n-term

aways call it with a higher-order term than appearsin thelist. If we did not want to make such a guarantee, we could have implemented
adj oi n-t er mto besimilar to theadj oi n- set constructor for the ordered-list representation of sets (exercise 2.61).

60 The fact that Euclid's Algorithm works for polynomials is formalized in algebra by saying that polynomials form akind of algebraic
domain called a Euclidean ring. A Euclidean ring is a domain that admits addition, subtraction, and commutative multiplication, together with
away of assigning to each element x of the ring a positive integer *~measure" m(x) with the properties that m(xy)> m(x) for any nonzero x and
y and that, given any x and y, there exists aq such that y = gx + r and either r = 0 or m(r)< m(x). From an abstract point of view, thisiswhat is
needed to prove that Euclid's Algorithm works. For the domain of integers, the measure m of an integer is the absolute value of the integer
itself. For the domain of polynomials, the measure of a polynomial isits degree.

61 |n an implementation like MIT Scheme, this produces a polynomial that isindeed a divisor of Q; and Q,, but with rational coefficients. In
many other Scheme systems, in which division of integers can produce limited-precision decimal numbers, we may fail to get avalid divisor.

62 One extremely efficient and elegant method for computing polynomial GCDs was discovered by Richard Zippel (1979). The method isa
probabilistic algorithm, asisthe fast test for primality that we discussed in chapter 1. Zippel's book (1993) describes this method, together
with other ways to compute polynomia GCDs.

[Gotofirgt, previous, next page; contents, index|

[Gotofirdt, previous, next page; contents; index|

Chapter 3

Modularity, Objects, and State

veETadd A ior craralera:

(Even whileit changes, it stands still.)
Heraclitus
Plus ¢a change, plus c'est laméme chose.

Alphonse Karr

The preceding chapters introduced the basic el ements from which programs are made. We saw how
primitive procedures and primitive data are combined to construct compound entities, and we learned that
abstraction is vital in helping usto cope with the complexity of large systems. But these tools are not
sufficient for designing programs. Effective program synthesis also requires organizational principles that
can guide us in formulating the overall design of a program. In particular, we need strategiesto help us
structure large systems so that they will be modular, that is, so that they can be divided " naturally" into
coherent parts that can be separately developed and maintained.

One powerful design strategy, which is particularly appropriate to the construction of programs for
modeling physical systems, isto base the structure of our programs on the structure of the system being
modeled. For each object in the system, we construct a corresponding computational object. For each
system action, we define a symbolic operation in our computational model. Our hope in using this strategy
isthat extending the model to accommodate new objects or new actions will require no strategic changes
to the program, only the addition of the new symbolic analogs of those objects or actions. If we have been
successful in our system organization, then to add a new feature or debug an old one we will have to work
on only alocalized part of the system.

To alarge extent, then, the way we organize alarge program is dictated by our perception of the system to
be modeled. In this chapter we will investigate two prominent organizational strategies arising from two
rather different “"world views" of the structure of systems. The first organizational strategy concentrates on
objects, viewing alarge system as a collection of distinct objects whose behaviors may change over time.
An alternative organizational strategy concentrates on the streams of information that flow in the system,
much as an electrical engineer views a signal-processing system.

Both the object-based approach and the stream-processing approach raise significant linguistic issuesin
programming. With objects, we must be concerned with how a computational object can change and yet

maintain itsidentity. Thiswill force usto abandon our old substitution model of computation

(section 1.1.5) in favor of a more mechanistic but less theoretically tractable environment model of
computation. The difficulties of dealing with objects, change, and identity are a fundamental consequence
of the need to grapple with time in our computational models. These difficulties become even greater
when we allow the possibility of concurrent execution of programs. The stream approach can be most
fully exploited when we decouple ssmulated time in our model from the order of the events that take place
in the computer during evaluation. We will accomplish this using a technique known as delayed
evaluation.

[Gotofirdt, previous, next page; contents; index|

[Gotofirdt, previous, next page; contents; index|

3.1 Assignment and Local State

We ordinarily view the world as populated by independent objects, each of which has a state that changes
over time. An object issaid to “"have state” if its behavior isinfluenced by its history. A bank account, for
example, has state in that the answer to the question *"Can | withdraw $100?" depends upon the history of
deposit and withdrawal transactions. We can characterize an object's state by one or more state variables,
which among them maintain enough information about history to determine the object's current behavior.
In a simple banking system, we could characterize the state of an account by a current balance rather than
by remembering the entire history of account transactions.

In a system composed of many objects, the objects are rarely completely independent. Each may influence
the states of others through interactions, which serve to couple the state variables of one object to those of
other objects. Indeed, the view that a system is composed of separate objects is most useful when the state
variables of the system can be grouped into closely coupled subsystems that are only loosely coupled to
other subsystems.

Thisview of a system can be a powerful framework for organizing computational models of the system.
For such amodel to be modular, it should be decomposed into computational objects that model the actual
objectsin the system. Each computational object must have its own local state variables describing the
actual object's state. Since the states of objects in the system being modeled change over time, the state
variables of the corresponding computational objects must also change. If we choose to model the flow of
time in the system by the elapsed time in the computer, then we must have a way to construct
computational objects whose behaviors change as our programs run. In particular, if we wish to model
state variables by ordinary symbolic names in the programming language, then the language must provide
an assignment operator to enable us to change the value associated with a name.

3.1.1 Local State Variables

To illustrate what we mean by having a computational object with time-varying state, let us model the
situation of withdrawing money from a bank account. We will do thisusing a procedure wi t hdr aw,

which takes as argument an anount to be withdrawn. If there is enough money in the account to
accommodate the withdrawal, then wi t hdr aw should return the balance remaining after the withdrawal .
Otherwise, wi t hdr aw should return the message I nsufficient funds. For example, if we begin with $100
in the account, we should obtain the following sequence of responsesusing w t hdr aw:

(w t hdraw 25)

75
(w t hdraw 25)

50
(Wi t hdr aw 60)

"l nsufficient funds"
(w t hdraw 15)

35

Observe that the expression (wi t hdr aw 25) , evaluated twice, yields different values. Thisis anew

kind of behavior for a procedure. Until now, all our procedures could be viewed as specifications for
computing mathematical functions. A call to a procedure computed the value of the function applied to the
given arguments, and two calls to the same procedure with the same arguments always produced the same

result.l

Toimplement wi t hdr aw, we can use avariable bal ance to indicate the balance of money in the
account and definewi t hdr aw as a procedure that accesses bal ance. Thew t hdr aw procedure checks
toseeif bal ance isat least as large as the requested anount . If so, wi t hdr aw decrementsbal ance
by anmount and returns the new value of bal ance. Otherwise, wi t hdr aw returns the Insufficient funds
message. Here are the definitions of bal ance andw t hdr aw:

(defi ne bal ance 100)

(define (w thdraw anmount)
(if (>= bal ance anount)
(begin (set! balance (- bal ance anopunt))
bal ance)
"Insufficient funds"))

Decrementing bal ance isaccomplished by the expression

(set! bal ance (- bal ance anount))

Thisusestheset ! special form, whose syntax is

(set! <name> <new val ue>)

Here <name> is a symbol and <new-value> is any expression. Set ! changes <name> so that itsvalueis
the result obtained by evaluating <new-value>. In the case at hand, we are changing bal ance so that its

new value will be the result of subtracting anount from the previous value of bal ance.2

W t hdr awaso usesthe begi n specia form to cause two expressions to be evaluated in the case where
thei f testistrue: first decrementing bal ance and then returning the value of bal ance. In general,
evaluating the expression

(begin <exp;> <expy> ... <expy>)

causes the expressions <exp;> through <exp,> to be evaluated in sequence and the value of the final
expression <exp,> to be returned as the value of the entire begi n form.3

Although wi t hdr awworks as desired, the variable bal ance presents a problem. As specified above,
bal ance isaname defined in the global environment and is freely accessible to be examined or modified

by any procedure. It would be much better if we could somehow make bal ance internal towi t hdr aw,
so that wi t hdr awwould be the only procedure that could access bal ance directly and any other
procedure could access bal ance only indirectly (through callstow t hdr aw). Thiswould more
accurately model the notion that bal ance isalocal state variable used by wi t hdr awto keep track of
the state of the account.

We can make bal ance internal towi t hdr aw by rewriting the definition as follows:

(defi ne new w t hdraw
(let ((bal ance 100))
(1 anbda (anount)
(if (>= bal ance anount)
(begin (set! balance (- bal ance anount))
bal ance)
"I nsufficient funds"))))

What we have done hereisusel et to establish an environment with alocal variable bal ance, bound to
theinitial value 100. Within thislocal environment, we use | anbda to create a procedure that takes
anount asan argument and behaves like our previouswi t hdr aw procedure. This procedure -- returned
astheresult of evaluating thel et expression -- isnew wi t hdr aw, which behavesin precisely the same

way aswi t hdr awbut whose variable bal ance is not accessible by any other procedure.4

Combining set ! with local variablesis the general programming technique we will use for constructing

computational objects with local state. Unfortunately, using this technique raises a serious problem: When
we first introduced procedures, we also introduced the substitution model of evaluation (section 1.1.5) to

provide an interpretation of what procedure application means. We said that applying a procedure should
be interpreted as evaluating the body of the procedure with the formal parameters replaced by their values.
Thetroubleisthat, as soon as we introduce assignment into our language, substitution isno longer an
adequate model of procedure application. (We will see why thisis so in section 3.1.3.) As a consequence,
we technically have at this point no way to understand why the new wi t hdr aw procedure behaves as
claimed above. In order to really understand a procedure such as new wi t hdr aw, we will need to
develop anew model of procedure application. In section 3.2 we will introduce such a model, together
with an explanation of set ! and local variables. First, however, we examine some variations on the
theme established by new wi t hdr aw.

The following procedure, make- wi t hdr aw, creates “withdrawal processors.” The formal parameter
bal ance inmake- wi t hdr aw specifies the initial amount of money in the account.2

(define (nmake-w t hdraw bal ance)
(1 anbda (anount)
(if (>= bal ance anount)
(begin (set! balance (- bal ance anopunt))
bal ance)
"Insufficient funds")))

Make- wi t hdr aw can be used as follows to create two objects WL and W2

(define W (nmake-w t hdraw 100))
(define W2 (nmake-w t hdraw 100))
(WL 50)

50

(W 70)

30

(W2 40)

"l nsufficient funds"

(WL 40)

10

Observe that WL and W2 are compl etely independent objects, each with its own local state variable
bal ance. Withdrawals from one do not affect the other.

We can also create objects that handle deposits as well as withdrawals, and thus we can represent simple
bank accounts. Here is a procedure that returns a " bank-account object" with a specified initial balance:

(define (make-account bal ance)
(define (wthdraw anmount)
(i f (>= bal ance anount)
(begin (set! balance (- bal ance anmount))
bal ance)
"I nsufficient funds"))
(define (deposit anount)
(set! bal ance (+ bal ance anount))
bal ance)
(define (dispatch m
(cond ((eg? m'w thdraw) w t hdraw)
((eq? m'deposit) deposit)
(el se (error "Unknown request -- MAKE- ACCOUNT"

m)))
di spat ch)

Each call to make- account setsup an environment with alocal state variable bal ance. Within this
environment, make- account defines proceduresdeposi t andw t hdr awthat accessbal ance and
an additional procedure di spat ch that takesa "message" as input and returns one of the two local
procedures. Thedi spat ch procedure itself isreturned as the value that represents the bank-account
object. Thisis precisely the message-passing style of programming that we saw in section 2.4.3, athough
here we are using it in conjunction with the ability to modify local variables.

Make- account can be used as follows:

(define acc (make-account 100))
((acc "withdraw) 50)

50
((acc "withdraw) 60)

"I nsufficient funds"”
((acc '"deposit) 40)

90
((acc "withdraw) 60)

30

Each call to acc returnsthe localy defined deposi t or wi t hdr aw procedure, which is then applied to
the specified anount . Aswas the case with make- wi t hdr aw, another call to make- account

(define acc2 (make-account 100))

will produce a completely separate account object, which maintainsits own local bal ance.

Exercise 3.1. Anaccumulator isaprocedure that is called repeatedly with a single numeric argument and
accumulates its arguments into a sum. Each timeit is called, it returns the currently accumulated sum.
Write aprocedure meke- accunul at or that generates accumulators, each maintaining an independent

sum. The input to make- accunul at or should specify the initial value of the sum; for example

(define A (make-accunul ator 5))
(A 10)

15
(A 10)

25

Exercise 3.2. In software-testing applications, it is useful to be able to count the number of times agiven
procedure is called during the course of a computation. Write a procedure make- noni t or ed that takes

asinput aprocedure, f , that itself takes one input. The result returned by make- noni t or ed isathird
procedure, say nf , that keeps track of the number of timesit has been called by maintaining an internal
counter. If the input to nf isthe special symbol how many- cal | s?, thennf returns the value of the
counter. If the input isthe special symbol r eset - count , then nf resets the counter to zero. For any
other input, nf returnsthe result of calling f on that input and increments the counter. For instance, we
could make a monitored version of thesqr t procedure:

(define s (make-nonitored sqrt))

(s 100)
10

(s ' how many-cal | s?)

1

Exercise 3.3. Modify the make- account procedure so that it creates password-protected accounts.
That is, make- account should take a symbol as an additional argument, asin

(define acc (make-account 100 'secret-password))

The resulting account object should process arequest only if it is accompanied by the password with
which the account was created, and should otherwise return a complaint:

((acc 'secret-password 'w thdraw) 40)
60

((acc 'sone-other-password 'deposit) 50)

"I ncorrect password"

Exercise 3.4. Modify the make- account procedure of exercise 3.3 by adding another local state

variable so that, if an account is accessed more than seven consecutive times with an incorrect password, it
invokesthe procedurecal | -t he- cops.

3.1.2 The Benefits of Introducing Assignment

Aswe shall see, introducing assignment into our programming language leads us into athicket of difficult
conceptual issues. Nevertheless, viewing systems as collections of objects with local state is a powerful
technique for maintaining a modular design. As a simple example, consider the design of a procedure

r and that, whenever it is called, returns an integer chosen at random.

Itisnot at al clear what is meant by “"chosen at random." What we presumably want is for successive
callstor and to produce a sequence of numbers that has statistical properties of uniform distribution. We
will not discuss methods for generating suitable sequences here. Rather, let us assume that we have a
procedurer and- updat e that has the property that if we start with a given number x; and form

X, = (rand-update Xx;)
X3 = (rand-update Xx»,)
then the sequence of values xq, X,, X3, . . . , Will have the desired statistical properties.6

We can implement r and as a procedure with alocal state variable x that isinitialized to some fixed value
randomi ni t . Eachcal tor and computesr and- updat e of the current value of x, returnsthis as
the random number, and also stores this as the new value of x.

(define rand
(let ((x randominit))

(lanmbda ()
(set! x (rand-update x))
x)))

Of course, we could generate the same sequence of random numbers without using assignment by simply

calling r and- updat e directly. However, this would mean that any part of our program that used
random numbers would have to explicitly remember the current value of x to be passed as an argument to
r and- updat e. To realize what an annoyance this would be, consider using random numbers to
implement a technique called Monte Carlo simulation.

The Monte Carlo method consists of choosing sample experiments at random from a large set and then
making deductions on the basis of the probabilities estimated from tabulating the results of those
experiments. For example, we can approximate it using the fact that 6/7r2 is the probability that two
integers chosen at random will have no factors in common; that is, that their greatest common divisor will
be 1.7 To obtain the approximation to o, we perform alarge number of experiments. In each experiment
we choose two integers at random and perform atest to seeif their GCD is 1. The fraction of times that the
test is passed gives us our estimate of 6/xr2, and from this we obtain our approximation to .

The heart of our program is a procedure nont e- car | o, which takes as arguments the number of times

to try an experiment, together with the experiment, represented as a no-argument procedure that will return
either true or false each time it isrun. Mont e- car | o runsthe experiment for the designated number of

trials and returns a number telling the fraction of the trials in which the experiment was found to be true.

(define (estimate-pi trials)
(sgrt (/ 6 (nmonte-carlo trials cesaro-test))))
(define (cesaro-test)
(= (gcd (rand) (rand)) 1))
(define (nonte-carlo trials experinent)
(define (iter trials-remaining trials-passed)
(cond ((= trials-remaining 0)
(/ trials-passed trials))
((experinment)
(iter (- trials-remaining 1) (+ trials-passed 1)))
(el se
(iter (- trials-remaining 1) trials-passed))))
(iter trials 0))

Now let ustry the same computation using r and- updat e directly rather thanr and, the way we would
be forced to proceed if we did not use assignment to model local state:

(define (estimate-pi trials)
(sgrt (/ 6 (randomgcd-test trials randominit))))
(define (randomgcd-test trials initial-x)
(define (iter trials-remaining trials-passed x)
(let ((x1 (rand-update x)))
(let ((x2 (rand-update x1)))
(cond ((= trials-remaining 0)
(/ trials-passed trials))
((= (gcd x1 x2) 1)
(iter (- trials-renmaining 1)
(+ trial s-passed 1)
x2))

(el se
(iter (- trials-remaining 1)
trial s-passed

x2))))))

(iter trials O initial-x))

While the program is still smple, it betrays some painful breaches of modularity. In our first version of the
program, using r and, we can express the Monte Carlo method directly as ageneral nont e-car |l o

procedure that takes as an argument an arbitrary exper i ment procedure. In our second version of the
program, with no local state for the random-number generator, r andom gcd- t est must explicitly
manipulate the random numbers x 1 and x2 and recycle x 2 through the iterative loop as the new input to
r and- updat e. Thisexplicit handling of the random numbers intertwines the structure of accumulating

test results with the fact that our particular experiment uses two random numbers, whereas other Monte
Carlo experiments might use one random number or three. Even the top-level procedureest i mat e- pi

has to be concerned with supplying an initial random number. The fact that the random-number generator's
insides are leaking out into other parts of the program makes it difficult for usto isolate the Monte Carlo
idea so that it can be applied to other tasks. In the first version of the program, assignment encapsulates the
state of the random-number generator within the r and procedure, so that the details of random-number

generation remain independent of the rest of the program.

The general phenomenon illustrated by the Monte Carlo exampleisthis: From the point of view of one
part of acomplex process, the other parts appear to change with time. They have hidden time-varying
local state. If we wish to write computer programs whose structure reflects this decomposition, we make
computational objects (such as bank accounts and random-number generators) whose behavior changes
with time. We model state with local state variables, and we model the changes of state with assignments
to those variables.

It is tempting to conclude this discussion by saying that, by introducing assignment and the technique of
hiding state in local variables, we are able to structure systems in a more modular fashion than if al state
had to be manipulated explicitly, by passing additional parameters. Unfortunately, as we shall see, the
story is not so simple.

Exercise 3.5. Monte Carlo integration is amethod of estimating definite integrals by means of Monte
Carlo simulation. Consider computing the area of aregion of space described by a predicate P(x, y) that is
true for points (x, y) in the region and false for points not in the region. For example, the region contained
within acircle of radius 3 centered at (5, 7) is described by the predicate that tests whether (x - 5)2 + (y -
7)2< 32. To estimate the area of the region described by such a predicate, begin by choosing arectangle
that contains the region. For example, a rectangle with diagonally opposite corners at (2, 4) and (8, 10)
contains the circle above. The desired integral isthe area of that portion of the rectangle that liesin the
region. We can estimate the integral by picking, at random, points (x,y) that lie in the rectangle, and testing
P(x, y) for each point to determine whether the point liesin the region. If we try this with many points,
then the fraction of pointsthat fall in the region should give an estimate of the proportion of the rectangle
that liesin the region. Hence, multiplying this fraction by the area of the entire rectangle should produce
an estimate of the integral.

Implement Monte Carlo integration as aprocedure est i mat e- i nt egr al that takes as arguments a
predicate P, upper and lower bounds x1, x2, y1, and y2 for the rectangle, and the number of trials to

perform in order to produce the estimate. Y our procedure should use the same nont e- car | o procedure
that was used above to estimate =r. Use your est i mat e- i nt egr al to produce an estimate of ar by
measuring the area of a unit circle.

You will find it useful to have a procedure that returns a number chosen at random from a given range.
Thefollowing r andont i n- r ange procedure implements thisin terms of the r andomprocedure used

in section 1.2.6, which returns a nonnegative number less than itsinput.8

(define (randomin-range | ow high)

(let ((range (- high low))
(+ low (randomrange))))

Exercise 3.6. Itisuseful to be able to reset arandom-number generator to produce a sequence starting
from agiven value. Design anew r and procedure that is called with an argument that is either the symbol

gener at e or the symbol r eset and behavesasfollows: (rand ' gener at e) produces anew
random number; ((rand 'reset) <new val ue>) resetstheinterna state variable to the

designated <new-value>. Thus, by resetting the state, one can generate repeatable sequences. These are
very handy to have when testing and debugging programs that use random numbers.

3.1.3 The Costs of Introducing Assignment

Aswe have seen, theset ! operation enables us to model objects that have local state. However, this
advantage comes at a price. Our programming language can no longer be interpreted in terms of the
substitution model of procedure application that we introduced in section 1.1.5. Moreover, no simple

model with ""nice" mathematical properties can be an adequate framework for dealing with objects and
assignment in programming languages.

So long as we do not use assignments, two evaluations of the same procedure with the same arguments
will produce the same result, so that procedures can be viewed as computing mathematical functions.
Programming without any use of assignments, as we did throughout the first two chapters of this book, is
accordingly known as functional programming.

To understand how assignment complicates matters, consider a ssmplified version of the make-
wi t hdr aw procedure of section 3.1.1 that does not bother to check for an insufficient amount:

efine (make-sinplified-wthdraw bal ance
(defi (mak i mplified-wthd bal)
(1 anbda (anount)
(set! bal ance (- bal ance anount))

bal ance))
(define W (nmake-sinplified-w thdraw 25))
(W 20)
5
(W 10)

- 5

Compare this procedure with the following make- decr enent er procedure, which does not useset ! :

(defi ne (nmake-decrenenter bal ance)
(1 anbda (anount)
(- bal ance anount)))

Make- decr ement er returns aprocedure that subtracts its input from a designated amount bal ance,
but there is no accumulated effect over successive calls, aswith make- si npl i fi ed-w t hdr aw.

(define D (nmake-decrenenter 25))

(D 20)

5
(D 10)

15

We can use the substitution model to explain how make- decr enent er works. For instance, let us
analyze the evaluation of the expression

((rmake-decrenenter 25) 20)

We first smplify the operator of the combination by substituting 25 for bal ance in the body of make-
decr enent er . Thisreduces the expression to

((lanbda (amount) (- 25 anount)) 20)

Now we apply the operator by substituting 20 for anount in the body of thel anbda expression:
(- 25 20)

The final answer is 5.

Observe, however, what happens if we attempt a similar substitution analysiswith make- si npl i fi ed-
wi t hdr aw

((make-sinplified-w thdraw 25) 20)

We first smplify the operator by substituting 25 for bal ance in the body of make- si npl i fi ed-
wi t hdr aw. This reduces the expression to2

((lambda (anmount) (set! bal ance (- 25 anmount)) 25) 20)

Now we apply the operator by substituting 20 for anount in the body of thel anbda expression:

(set! balance (- 25 20)) 25

If we adhered to the substitution model, we would have to say that the meaning of the procedure
application istofirst set bal ance to 5 and then return 25 as the value of the expression. This gets the

wrong answer. In order to get the correct answer, we would have to somehow distinguish the first
occurrence of bal ance (before the effect of theset !) from the second occurrence of bal ance (after

the effect of theset !), and the substitution model cannot do this.

Thetrouble here is that substitution is based ultimately on the notion that the symbolsin our language are
essentially names for values. But as soon aswe introduce set ! and the idea that the value of avariable

can change, avariable can no longer be simply a name. Now a variable somehow refers to a place where a
value can be stored, and the value stored at this place can change. In section 3.2 we will see how

environments play thisrole of “place" in our computational model.

Sameness and change

The issue surfacing here is more profound than the mere breakdown of a particular model of computation.
As soon as we introduce change into our computational models, many notions that were previously
straightforward become problematical. Consider the concept of two things being " the same."

Suppose we call make- decr enment er twice with the same argument to create two procedures:

(define DL (make-decrenenter 25))
(define D2 (make-decrenenter 25))

Are D1 and D2 the same? An acceptable answer is yes, because D1 and D2 have the same computational
behavior -- each is a procedure that subtractsits input from 25. In fact, D1 could be substituted for D2 in
any computation without changing the resullt.

Contrast thiswith making two callsto make- si npl i fi ed-wi t hdr aw.

(define WL (make-sinplified-w thdraw 25))
(define W2 (make-sinplified-w thdraw 25))

Are WL and W2 the same? Surely not, because callsto WL and W2 have distinct effects, as shown by the
following sequence of interactions:

(WL 20)

5
(WL 20)

- 15
(V2 20)

5

Even though WL and W2 are ““equal" in the sense that they are both created by evaluating the same
expression, (make-si npl i fi ed-w t hdraw 25),itisnot truethat W could be substituted for V2 in
any expression without changing the result of evaluating the expression.

A language that supports the concept that ~ equals can be substituted for equals" in an expresssion without
changing the value of the expression is said to be referentially transparent. Referential transparency is
violated when weincludeset ! in our computer language. This makesit tricky to determine when we can
simplify expressions by substituting equivalent expressions. Consequently, reasoning about programs that
use assignment becomes drastically more difficult.

Once we forgo referential transparency, the notion of what it means for computational objectsto be ““the
same" becomes difficult to capture in aformal way. Indeed, the meaning of ~"same" in the real world that
our programs model is hardly clear in itself. In general, we can determine that two apparently identical
objects are indeed " "the same one" only by modifying one object and then observing whether the other
object has changed in the same way. But how can we tell if an object has "changed” other than by
observing the ““same" object twice and seeing whether some property of the object differs from one
observation to the next? Thus, we cannot determine "~ change" without some a priori notion of
““sameness," and we cannot determine sameness without observing the effects of change.

As an example of how thisissue arises in programming, consider the situation where Peter and Paul have a
bank account with $100 in it. There is a substantial difference between modeling this as

(define peter-acc (nmake-account 100))
(define paul -acc (nmake-account 100))

and modeling it as

(define peter-acc (nmake-account 100))
(define paul -acc peter-acc)

In the first situation, the two bank accounts are distinct. Transactions made by Peter will not affect Paul's
account, and vice versa. In the second situation, however, we have defined paul - acc to be the same

thing as pet er - acc. In effect, Peter and Paul now have ajoint bank account, and if Peter makes a
withdrawal from pet er - acc Paul will observe less money in paul - acc. These two similar but distinct

situations can cause confusion in building computational models. With the shared account, in particular, it
can be especially confusing that there is one object (the bank account) that has two different names
(pet er - acc and paul - acc); if we are searching for all the placesin our program where paul - acc

can be changed, we must remember to look also at things that change pet er - acc.10

With reference to the above remarks on ““sameness' and " "change," observe that if Peter and Paul could
only examine their bank balances, and could not perform operations that changed the balance, then the
issue of whether the two accounts are distinct would be moot. In general, so long as we never modify data
objects, we can regard a compound data object to be precisely the totality of its pieces. For example, a
rational number is determined by giving its numerator and its denominator. But this view is no longer
valid in the presence of change, where a compound data object has an "identity" that is something
different from the pieces of which it is composed. A bank account is still ““the same" bank account even if

we change the balance by making awithdrawal; conversely, we could have two different bank accounts
with the same state information. This complication is a consequence, not of our programming language,
but of our perception of a bank account as an object. We do not, for example, ordinarily regard a rational
number as a changeable object with identity, such that we could change the numerator and still have ““the
same" rational number.

Pitfalls of imperative programming

In contrast to functional programming, programming that makes extensive use of assignment is known as
imper ative programming. In addition to raising complications about computational models, programs
written in imperative style are susceptible to bugs that cannot occur in functional programs. For example,
recall the iterative factorial program from section 1.2.1:

(define (factorial n)
(define (iter product counter)
(if (> counter n)
pr oduct
(iter (* counter product)
(+ counter 1))))
(iter 1 1))

Instead of passing argumentsin the internal iterative loop, we could adopt a more imperative style by
using explicit assignment to update the values of the variables pr oduct and count er :

(define (factorial n)
(let ((product 1)
(counter 1))
(define (iter)
(if (> counter n)
pr oduct
(begin (set! product (* counter product))
(set! counter (+ counter 1))
(iter))))
(iter)))

This does not change the results produced by the program, but it does introduce a subtle trap. How do we
decide the order of the assignments? As it happens, the program is correct as written. But writing the
assignments in the opposite order

(set! counter (+ counter 1))
(set! product (* counter product))

would have produced a different, incorrect result. In general, programming with assignment forces us to
carefully consider the relative orders of the assignments to make sure that each statement is using the
correct version of the variables that have been changed. Thisissue simply does not arise in functional

programs.11 The complexity of imperative programs becomes even worse if we consider applicationsin

which several processes execute concurrently. We will return to thisin section 3.4. First, however, we will

address the issue of providing a computational model for expressions that involve assignment, and explore
the uses of objects with local state in designing simulations.

Exercise 3.7. Consider the bank account objects created by nake- account , with the password
maodification described in exercise 3.3. Suppose that our banking system requires the ability to make joint
accounts. Define a procedure make- | oi nt that accomplishesthis. Make- | oi nt should take three

arguments. The first is a password-protected account. The second argument must match the password with
which the account was defined in order for the make- j oi nt operation to proceed. The third argument is

anew password. Make- j oi nt isto create an additional access to the original account using the new
password. For example, if pet er - acc isabank account with password open- sesane, then

(define paul -acc
(make-j oint peter-acc 'open-sesane 'rosebud))

will allow one to make transactions on pet er - acc using the name paul - acc and the password
r osebud. You may wish to modify your solution to exercise 3.3 to accommodate this new feature.

Exercise 3.8. When we defined the evaluation model in section 1.1.3, we said that the first step in
evaluating an expression is to evaluate its subexpressions. But we never specified the order in which the
subexpressions should be evaluated (e.g., lft to right or right to left). When we introduce assignment, the
order in which the arguments to a procedure are evaluated can make a difference to the result. Define a
simple proceduref such that evaluating (+ (f 0) (f 1)) will returnOif the argumentsto + are

evaluated from left to right but will return 1 if the arguments are evaluated from right to |eft.

1 Actually, thisis not quite true. One exception was the random-number generator in section 1.2.6. Another exception involved the
operation/type tables we introduced in section 2.4.3, where the values of two callsto get with the same arguments depended on intervening
callsto put . On the other hand, until we introduce assignment, we have no way to create such procedures ourselves.

2Thevaueof aset ! expression isimplementation-dependent. Set ! should be used only for its effect, not for its value.

Thenameset ! reflectsanaming convention used in Scheme: Operations that change the values of variables (or that change data structures,
aswe will seein section 3.3) are given names that end with an exclamation point. Thisis similar to the convention of designating predicates
by names that end with a question mark.

3 We have aready used begi n implicitly in our programs, because in Scheme the body of a procedure can be a sequence of expressions.
Also, the <consequent> part of each clausein acond expression can be a sequence of expressions rather than a single expression.

4 In programming-language jargon, the variable bal ance is said to be encapsulated within the new- wi t hdr aw procedure. Encapsulation

reflects the general system-design principle known as the hiding principle: One can make a system more modular and robust by protecting
parts of the system from each other; that is, by providing information access only to those parts of the system that have a "“need to know."

5 In contrast with new- wi t hdr aw above, we do not haveto usel et to make bal ance alocal variable, since formal parameters are
already local. Thiswill be clearer after the discussion of the environment model of evaluation in section 3.2. (See also exercise 3.10.)

6 One common way to implement r and- updat e isto use the rule that x is updated to ax + b modulo m, where a, b, and m are appropriately
chosen integers. Chapter 3 of Knuth 1981 includes an extensive discussion of techniques for generating sequences of random numbers and
establishing their statistical properties. Notice that ther and- updat e procedure computes a mathematical function: Given the same input
twice, it produces the same output. Therefore, the number sequence produced by r and- updat e certainly isnot ““random," if by *“random"
weinsist that each number in the sequence is unrelated to the preceding number. The relation between "““real randomness" and so-called
pseudo-random sequences, which are produced by well-determined computations and yet have suitable statistical properties, is a complex
question involving difficult issuesin mathematics and philosophy. Kolmogorov, Solomonoff, and Chaitin have made great progressin
clarifying these issues; a discussion can be found in Chaitin 1975.

7 This theorem is due to E. Cesaro. See section 4.5.2 of Knuth 1981 for a discussion and a proof.

8 MIT Scheme provides such a procedure. If r andomis given an exact integer (asin section 1.2.6) it returns an exact integer, but if it is given
adecimal value (asin this exercise) it returns a decimal value.

9 We don't substitute for the occurrence of bal ance intheset ! expression because the <name>inaset ! isnot evaluated. If we did
substitute for it, wewould get (set! 25 (- 25 anount)), which makes no sense.

10 The phenomenon of a single computational object being accessed by more than one name is known as aliasing. The joint bank account
situation illustrates a very simple example of an dlias. In section 3.3 we will see much more complex examples, such as “distinct" compound

data structures that share parts. Bugs can occur in our programs if we forget that a change to an object may also, asa " side effect,” change a
“different” object because the two ““different” objects are actually a single object appearing under different aliases. These so-called side-effect
bugs are so difficult to locate and to analyze that some people have proposed that programming languages be designed in such away as to not
allow side effects or aiasing (Lampson et a. 1981; Morris, Schmidt, and Wadler 1980).

11 Inview of this, it isironic that introductory programming is most often taught in a highly imperative style. This may be a vestige of a
belief, common throughout the 1960s and 1970s, that programs that call procedures must inherently be less efficient than programs that
perform assignments. (Steele (1977) debunks this argument.) Alternatively it may reflect aview that step-by-step assignment is easier for
beginners to visualize than procedure call. Whatever the reason, it often saddles beginning programmers with ““should | set this variable
before or after that one" concerns that can complicate programming and obscure the important ideas.

[Go tofirst, previous, next page; contents, index|

[Gotofirdt, previous, next page; contents; index|

3.2 The Environment Model of Evaluation

When we introduced compound proceduresin chapter 1, we used the substitution model of evaluation
(section 1.1.5) to define what is meant by applying a procedure to arguments:

. To apply acompound procedure to arguments, eval uate the body of the procedure with each
formal parameter replaced by the corresponding argument.

Once we admit assignment into our programming language, such adefinition is no longer adequate. In
particular, section 3.1.3 argued that, in the presence of assignment, a variable can no longer be considered

to be merely a name for avalue. Rather, a variable must somehow designate a *“place” in which values can
be stored. In our new model of evaluation, these places will be maintained in structures called
environments.

An environment is a sequence of frames. Each frame is atable (possibly empty) of bindings, which
associate variable names with their corresponding values. (A single frame may contain at most one
binding for any variable.) Each frame also has a pointer to its enclosing environment, unless, for the
purposes of discussion, the frameis considered to be global. The value of a variable with respect to an
environment is the value given by the binding of the variable in the first frame in the environment that
contains a binding for that variable. If no frame in the sequence specifies abinding for the variable, then
the variable is said to be unbound in the environment.

L
x:3
F o
[B
II IIL
=: 6 m:1
x:7 Tl

A B
Figure 3.1: A simple environment structure.

Figure 3.1 shows a simple environment structure consisting of three frames, labeled I, 11, and I11. In the

diagram, A, B, C, and D are pointers to environments. C and D point to the same environment. The
variables z and x are bound in frame 11, whiley and x are bound in framel. The value of x in

environment D is 3. The value of x with respect to environment B isalso 3. Thisis determined as follows:
We examine the first frame in the sequence (frame I11) and do not find a binding for x, so we proceed to
the enclosing environment D and find the binding in frame I. On the other hand, the value of x in
environment A is 7, because the first frame in the sequence (frame 11) contains a binding of x to 7. With

respect to environment A, the binding of x to 7 in frame 1l is said to shadow the binding of x to 3 in frame
l.

The environment is crucial to the evaluation process, because it determines the context in which an
expression should be evaluated. Indeed, one could say that expressions in a programming language do not,
in themselves, have any meaning. Rather, an expression acquires a meaning only with respect to some
environment in which it is evaluated. Even the interpretation of an expression as straightforward as

(+ 1 1) dependson an understanding that oneis operating in a context in which + is the symbol for
addition. Thus, in our model of evaluation we will always speak of evaluating an expression with respect
to some environment. To describe interactions with the interpreter, we will suppose that there is a global
environment, consisting of a single frame (with no enclosing environment) that includes values for the
symbols associated with the primitive procedures. For example, the ideathat + is the symbol for addition

is captured by saying that the symbol + is bound in the global environment to the primitive addition
procedure.

3.2.1 The Rules for Evaluation

The overall specification of how the interpreter evaluates a combination remains the same as when we first
introduced it in section 1.1.3:

. To evauate a combination:

1. Evaluate the subexpressions of the combination.12

2. Apply the value of the operator subexpression to the values of the operand
subexpressions.

The environment model of evaluation replaces the substitution model in specifying what it means to apply
a compound procedure to arguments.

In the environment model of evaluation, a procedure is always a pair consisting of some code and a
pointer to an environment. Procedures are created in one way only: by evaluating al anbda expression.

This produces a procedure whose code is obtained from the text of the| antbda expression and whose
environment is the environment in which the | anbda expression was evaluated to produce the procedure.
For example, consider the procedure definition

(define (square x)

(* x x))

evaluated in the global environment. The procedure definition syntax is just syntactic sugar for an
underlying implicit | anbda expression. It would have been equivalent to have used

(defi ne square
(lambda (x) (* x x)))

which evaluates (| anbda (x) (* x x)) andbindssquar e to theresulting value, all in the global
environment.

Figure 3.2 shows the result of evaluating thisdef i ne expression. The procedure object is a pair whose
code specifies that the procedure has one formal parameter, namely x, and aprocedure body (* x X).

The environment part of the procedure is a pointer to the globa environment, since that is the environment
in which thel anbda expression was evaluated to produce the procedure. A new binding, which

associates the procedure object with the symbol squar e, has been added to the global frame. In general,
def i ne creates definitions by adding bindings to frames.

global ather varmables
|snwv BUATA:

(dafine {zquara x) i
(%))

paranetars: x

body: (¥ xx)

Figure 3.2: Environment structure produced by evaluating (defi ne (square x) (* x X)) in
the global environment.

Now that we have seen how procedures are created, we can describe how procedures are applied. The
environment model specifies: To apply a procedure to arguments, create a new environment containing a
frame that binds the parameters to the values of the arguments. The enclosing environment of thisframeis
the environment specified by the procedure. Now, within this new environment, evaluate the procedure

body.

To show how thisruleisfollowed, figure 3.3 illustrates the environment structure created by evaluating
the expression (squar e 5) inthegloba environment, where squar e isthe procedure generated in
figure 3.2. Applying the procedure results in the creation of a new environment, labeled E1 in the figure,
that begins with aframe in which x, the formal parameter for the procedure, is bound to the argument 5.

The pointer leading upward from this frame shows that the frame's enclosing environment is the global
environment. The global environment is chosen here, because this is the environment that is indicated as
part of the squar e procedure object. Within E1, we evaluate the body of the procedure, (* x X) . Since

thevalueof x inELlis5, theresultis(* 5 5), or 25.

global athar v rmablas

anov

Equa:ra:—|
(=zquara §) i
El x:h
paranatarz: x %)
body: (%)

Figure 3.3: Environment created by evaluating (squar e 5) inthe global environment.

The environment model of procedure application can be summarized by two rules:

. A procedure object is applied to a set of arguments by constructing a frame, binding the formal
parameters of the procedure to the arguments of the call, and then evaluating the body of the
procedure in the context of the new environment constructed. The new frame has as its enclosing
environment the environment part of the procedure object being applied.

. A procedureis created by evaluating al anbda expression relative to a given environment. The
resulting procedure object isapair consisting of the text of thel anbda expression and a pointer
to the environment in which the procedure was created.

We also specify that defining a symbol using def i ne creates a binding in the current environment frame
and assigns to the symbol the indicated value.13 Finally, we specify the behavior of set ! , the operation
that forced us to introduce the environment model in the first place. Evaluating the expression (set !
<vari abl e> <val ue>) in some environment locates the binding of the variable in the environment

and changes that binding to indicate the new value. That is, one finds the first frame in the environment
that contains a binding for the variable and modifies that frame. If the variable is unbound in the
environment, thenset ! signalsan error.

These evaluation rules, though considerably more complex than the substitution model, are still reasonably
straightforward. Moreover, the evaluation model, though abstract, provides a correct description of how
the interpreter evaluates expressions. In chapter 4 we shall see how this model can serve as a blueprint for
implementing aworking interpreter. The following sections el aborate the details of the model by
analyzing someillustrative programs.

3.2.2 Applying Simple Procedures

When we introduced the substitution model in section 1.1.5 we showed how the combination (f 5)
evaluates to 136, given the following procedure definitions:

(define (square x)

(* x x))
(define (sumof-squares x y)

(+ (square x) (square y)))
(define (f a)

(sumof-squares (+ a 1) (* a 2)))

We can analyze the same example using the environment model. Figure 3.4 shows the three procedure
objects created by evaluating the definitions of f , squar e, and sum of - squar es in the global
environment. Each procedure object consists of some code, together with a pointer to the global
environment.

sun-of-zquarss:
lobal
fnz 2 Equars:
£ ——
Y Y L)
paranastaerz: a paranasterz: x paraneterz: x, ¥
body: (zun-of-=quarss body: (% xx) body: €+ (=zquars x)
f+ail) f=zquara y12
(®al2)}

Figure 3.4: Procedure objectsin the global frame.
In figure 3.5 we see the environment structure created by evaluating the expression (f 5) . Thecall tof
creates a new environment E1 beginning with aframe in which a, the formal parameter of f , isbound to

the argument 5. In E1, we evaluate the body of f :

(sumof-squares (+ a 1) (* a 2))

global
anv

[E &)
g B9 x£. 0
El al 7: 10 E3 x: 6 Ed —m x: 10
fzum-of-zquaras {+ (=quara] %) (¥)
f+al) f=quara F1)

f¥a2))

Figure 3.5: Environments created by evaluating (f 5) using the proceduresin figure 3.4.

To evaluate this combination, we first evaluate the subexpressions. The first subexpression, sum of -
squar es, hasavauethat is a procedure object. (Notice how thisvaueisfound: Wefirst look in the first
frame of E1, which contains no binding for sum of - squar es. Then we proceed to the enclosing
environment, i.e. the global environment, and find the binding shown in figure 3.4.) The other two
subexpressions are evaluated by applying the primitive operations + and * to evaluate the two
combinations(+ a 1) and(* a 2) toobtain 6 and 10, respectively.

Now we apply the procedure object sum of - squar es to the arguments 6 and 10. Thisresultsin a new
environment E2 in which the formal parameters x andy are bound to the arguments. Within E2 we
evaluate the combination (+ (square x) (square y)).Thisleadsustoevauate(square X),
where squar e isfound in the global frame and x is 6. Once again, we set up a new environment, E3, in
which x is bound to 6, and within this we evaluate the body of squar e, whichis(* x x) .Also as part
of applying sum of - squar es, we must evaluate the subexpression (squar e y),wherey is10. This
second call to squar e creates another environment, E4, in which x, the formal parameter of squar e, is
bound to 10. And within E4 we must evaluate (* x X).

The important point to observe isthat each call to squar e creates a new environment containing a
binding for x. We can see here how the different frames serve to keep separate the different local variables
all named x. Notice that each frame created by squar e points to the global environment, since thisisthe
environment indicated by the squar e procedure object.

After the subexpressions are evaluated, the results are returned. The values generated by the two callsto
squar e are added by sum of - squar es, and thisresult isreturned by f . Since our focus hereis on the

environment structures, we will not dwell on how these returned values are passed from call to call;
however, thisis also an important aspect of the evaluation process, and we will return to it in detail in
chapter 5.

Exercise 3.9. In section 1.2.1 we used the substitution model to analyze two procedures for computing
factorias, arecursive version

(define (factorial n)
(if (=n1)
1
(* n (factorial (- n 1)))))

and an iterative version

(define (factorial n)
(fact-iter 1 1 n))
(define (fact-iter product counter max-count)
(1f (> counter max-count)
pr oduct
(fact-iter (* counter product)
(+ counter 1)
max- count)))

Show the environment structures created by evaluating (f act ori al 6) using each version of the
factorial procedurel4

3.2.3 Frames as the Repository of Local State

We can turn to the environment model to see how procedures and assignment can be used to represent
objects with local state. As an example, consider the ““withdrawal processor" from section 3.1.1 created by

calling the procedure

(define (nmake-w t hdraw bal ance)
(1 anbda (anount)
(i f (>= bal ance anpunt)
(begin (set! bal ance (- bal ance anopunt))
bal ance)
"Insufficient funds")))

Let us describe the evaluation of

(define W (nmake-w t hdraw 100))

followed by

(WL 50)
50

Figure 3.6 shows the result of defining the make- wi t hdr aw procedure in the global environment. This

produces a procedure object that contains a pointer to the global environment. So far, thisis no different
from the examples we have already seen, except that the body of the procedureisitself al anbda

expression.

global
anv

nake-withdraw: ——

paraneterz: balance
body: [lanbda (amount)
(if (*= balancae anonnt)
{begin f=at! balanca (- balanca anount))
balanca)
"TnEnfficient fund="))

Figure 3.6: Result of defining make- wi t hdr awin the global environment.

The interesting part of the computation happens when we apply the procedure make- wi t hdr awto an
argument:

(define W (make-w t hdraw 100))

We begin, as usual, by setting up an environment E1 in which the formal parameter bal ance isbound to
the argument 100. Within this environment, we evaluate the body of make- wi t hdr aw, namely the

| anmbda expression. This constructs a new procedure object, whose code is as specified by thel anbda
and whose environment is E1, the environment in which the | ambda was evaluated to produce the
procedure. The resulting procedure object is the value returned by the call to make-w t hdr aw. Thisis
bound to WL in the global environment, sincethe def i ne itself is being evaluated in the global
environment. Figure 3.7 shows the resulting environment structure.

nake-withdraw:

global
anv wi:

1 1

E1—>{ balancae: 1Qd
L
paranetarzs: balanca
| E j{.: body: ...

paraneters: anount
body: [if (>= balance anoumt)
{bagin f=zat! balanca (- balance amount))
balanca)
"Ingufficient funds"))

-

Figure3.7: Result of evaluating (defi ne WL (nmake-w t hdraw 100)).
Now we can analyze what happens when W is applied to an argument:

(W 50)
50

We begin by constructing aframe in which anount , the formal parameter of W, is bound to the
argument 50. The crucial point to observeisthat this frame has as its enclosing environment not the global
environment, but rather the environment E1, because this is the environment that is specified by the WL

procedure object. Within this new environment, we evaluate the body of the procedure:

(if (>= bal ance anount)
(begin (set! bal ance (- bal ance anopunt))
bal ance)
"I nsufficient funds")

The resulting environment structure is shown in figure 3.8. The expression being evaluated references both
anmount and bal ance. Amount will befound in thefirst frame in the environment, while bal ance
will be found by following the enclosing-environment pointer to E1.

global
anv

nake-withdraw: ...

Wil —

T

Here is the balance
that wall be changed

E1~){ balance: 1dJ
L

by the zat! .

o

paranstars: anount (if
body: ...

amount: 5

(»=balanca amount)
{bagin
fzat! balanca
(- balance amount))
balanca)
"Ionzufficient fundz™))

Figure 3.8: Environments created by applying the procedure object L.

Whentheset ! isexecuted, the binding of bal ance in E1 ischanged. At the completion of the call to
WL, bal ance is50, and the frame that contains bal ance is till pointed to by the procedure object ..
The frame that binds anount (in which we executed the code that changed bal ance) isno longer

relevant, since the procedure call that constructed it has terminated, and there are no pointers to that frame
from other parts of the environment. The next time W is called, thiswill build a new frame that binds

anmount and whose enclosing environment is E1. We see that E1 serves asthe " "place" that holds the local
state variable for the procedure object WL.. Figure 3.9 shows the situation after the call to ..

global
\ov

nake-withdraw: ...

Wil —

.T.

El —){ balanca: &J
v T
i :

paraneters: anount
body: ...

Figure 3.9: Environments after the call to WL.

Observe what happens when we create a second ~ withdraw" object by making another call to make-

wi t hdr aw:

(define W2 (nmake-w t hdraw 100))

This produces the environment structure of figure 3.10, which shows that W2 is a procedure object, that is,
apair with some code and an environment. The environment E2 for 2 was created by the call to nake-
Wi t hdr aw. It contains aframe with itsown local binding for bal ance. On the other hand, WL and \\2
have the same code: the code specified by the | anbda expression in the body of make- wi t hdr aw.12
We see here why WL and W2 behave as independent objects. Callsto WL reference the state variable

bal ance stored in E1, whereas callsto W2 reference the bal ance stored in E2. Thus, changes to the
local state of one object do not affect the other object.

nake-withdraw: ...
—a=| W2
Wil —

global
\ov

1 A

El balance: 5d E2 —3s balance: 104
T v
»

paranstarz: anount
body: ...

e
-x

Figure3.10: Using (define W2 (nake-w t hdraw 100)) to create a second object.

Exercise 3.10. Inthemake- wi t hdr aw procedure, the local variable bal ance iscreated asa
parameter of make- wi t hdr aw. We could also create the local state variable explicitly, using | et , as
follows:

(define (make-wi thdraw initial -anmount)
(let ((balance initial-anmount))
(I anmbda (anount)
(if (>= bal ance anount)
(begin (set! balance (- bal ance anount))
bal ance)
"I nsufficient funds"))))

Recall from section 1.3.2 that | et issimply syntactic sugar for a procedure call:
(let ((<var> <exp>)) <body>)

isinterpreted as an alternate syntax for

((lanmbda (<var>) <body>) <exp>)

Use the environment model to analyze this alternate version of nake- wi t hdr aw, drawing figureslike
the ones above to illustrate the interactions

(define W (make-w t hdraw 100))
(W 50)

(define W2 (make-w t hdraw 100))

Show that the two versions of nake- wi t hdr aw create objects with the same behavior. How do the
environment structures differ for the two versions?

3.2.4 Internal Definitions

Section 1.1.8 introduced the idea that procedures can have internal definitions, thus leading to a block
structure as in the following procedure to compute square roots:

(define (sqrt x)
(defi ne (good-enough? guess)
(< (abs (- (square guess) x)) 0.001))
(define (inmprove guess)
(average guess (/ x guess)))
(define (sqrt-iter guess)
(i f (good-enough? guess)
guess
(sqgrt-iter (inprove guess))))
(sqgrt-iter 1.0))

Now we can use the environment model to see why these internal definitions behave as desired.
Figure 3.11 shows the point in the evaluation of the expression (sqrt 2) wheretheinterna procedure

good- enough? has been called for the first timewith guess equal to 1.

global

o qu“—|
VT i
i DG) x e

good-anough?:
paransters: x

inprovae: ...

egqri-iter: ...

body: fdefina good-anough? ... %
fdafine inprove ...} v
fdafine sqrt-iter ...J
{zqrt-iter 1.4
E2
paraneterz: gusss
call to sgqrt-ditar body: (< (abz ...}
Lo

E3 s gusss: 1

call to good-snough?

Figure3.11: Sqrt procedure with internal definitions.

Observe the structure of the environment. Sqr t isasymbol in the global environment that is bound to a
procedure object whose associated environment is the global environment. When sqr t was called, a new
environment E1 was formed, subordinate to the global environment, in which the parameter x is bound to
2. The body of sqrt wasthen evaluated in E1. Since thefirst expression in the body of sqrt is

(define (good-enough? guess)
(< (abs (- (square guess) x)) 0.001))

evaluating this expression defined the procedure good- enough? in the environment E1. To be more
precise, the symbol good- enough? was added to the first frame of E1, bound to a procedure object
whose associated environment is E1. Similarly, i nprove andsqrt - it er were defined as procedures
in E1. For conciseness, figure 3.11 shows only the procedure object for good- enough?.

After the local procedures were defined, the expression (sqrt-iter 1. 0) wasevauated, till in
environment E1. So the procedure object boundtosqrt -i t er in E1 was called with 1 as an argument.
This created an environment E2 in which guess, the parameter of sqrt-iter,isboundto1. Sgrt -

i ter inturncalled good- enough? with the value of guess (from E2) as the argument for good-
enough?. This set up another environment, E3, in which guess (the parameter of good- enough?) is
bound to 1. Althoughsqrt-i t er and good- enough? both have a parameter named guess, these are

two distinct local variables located in different frames. Also, E2 and E3 both have E1 as their enclosing
environment, becausethesqrt -i t er and good- enough? procedures both have E1 as their

environment part. One consequence of thisisthat the symbol x that appearsin the body of good-

enough? will reference the binding of x that appearsin E1, namely the value of x with which the
original sqrt procedure was called. The environment model thus explains the two key properties that
make local procedure definitions a useful technique for modularizing programs.

. The names of the local procedures do not interfere with names external to the enclosing
procedure, because the local procedure names will be bound in the frame that the procedure
creates when it is run, rather than being bound in the global environment.

. Thelocal procedures can access the arguments of the enclosing procedure, ssmply by using
parameter names as free variables. Thisis because the body of the local procedureis evaluated in
an environment that is subordinate to the eval uation environment for the enclosing procedure.

Exercise 3.11. In section 3.2.3 we saw how the environment model described the behavior of procedures

with local state. Now we have seen how internal definitions work. A typical message-passing procedure
contains both of these aspects. Consider the bank account procedure of section 3.1.1:

(defi ne (nmake-account bal ance)
(define (w thdraw anmount)
(if (>= bal ance anount)
(begin (set! balance (- bal ance anopunt))
bal ance)
"Insufficient funds"))
(define (deposit anount)
(set! bal ance (+ bal ance anount))
bal ance)
(define (dispatch m
(cond ((eq? m'w thdraw) w thdraw)
((eq? m'deposit) deposit)
(el se (error "Unknown request -- MAKE- ACCOUNT"

m)))
di spat ch)

Show the environment structure generated by the sequence of interactions

(define acc (make-account 50))

((acc 'deposit) 40)
90

((acc "withdraw) 60)
30

Whereisthelocal state for acc kept? Suppose we define another account

(define acc2 (make-account 100))

How are the local states for the two accounts kept distinct? Which parts of the environment structure are
shared between acc andacc2?

12 Assignment introduces a subtlety into step 1 of the evaluation rule. As shown in exercise 3.8, the presence of assignment allows us to write

expressions that will produce different values depending on the order in which the subexpressions in a combination are evaluated. Thus, to be
precise, we should specify an evaluation order in step 1 (e.g., |eft to right or right to left). However, this order should always be considered to
be an implementation detail, and one should never write programs that depend on some particular order. For instance, a sophisticated compiler
might optimize a program by varying the order in which subexpressions are evaluated.

13 |f there is already a binding for the variable in the current frame, then the binding is changed. This is convenient because it allows
redefinition of symbols; however, it also meansthat def i ne can be used to change values, and this brings up the issues of assignment
without explicitly using set ! . Because of this, some people prefer redefinitions of existing symbols to signal errors or warnings.

14 The environment model will not clarify our claim in section 1.2.1 that the interpreter can execute a procedure such asf act -i ter ina

constant amount of space using tail recursion. We will discusstail recursion when we deal with the control structure of the interpreter in
section 5.4.

15 Whether WL and W2 share the same physical code stored in the computer, or whether they each keep a copy of the code, is a detail of the
implementation. For the interpreter we implement in chapter 4, the codeisin fact shared.

[Gotofirdt, previous, next page; contents; index]

[Gotofirdt, previous, next page; contents; index|

3.3 Modeling with Mutable Data

Chapter 2 dealt with compound data as a means for constructing computational objects that have several
parts, in order to model real-world objects that have several aspects. In that chapter we introduced the
discipline of data abstraction, according to which data structures are specified in terms of constructors,
which create data objects, and selectors, which access the parts of compound data objects. But we now
know that there is another aspect of data that chapter 2 did not address. The desire to model systems
composed of objects that have changing state leads us to the need to modify compound data objects, as
well asto construct and select from them. In order to model compound objects with changing state, we
will design data abstractions to include, in addition to selectors and constructors, operations called
mutators, which modify data objects. For instance, modeling a banking system requires us to change
account balances. Thus, a data structure for representing bank accounts might admit an operation

(set-bal ance! <account> <new- val ue>)

that changes the balance of the designated account to the designated new value. Data objects for which
mutators are defined are known as mutable data objects.

Chapter 2 introduced pairs as a general -purpose " "glue" for synthesizing compound data. We begin this
section by defining basic mutators for pairs, so that pairs can serve as building blocks for constructing
mutabl e data objects. These mutators greatly enhance the representational power of pairs, enabling usto
build data structures other than the sequences and trees that we worked with in section 2.2. We also

present some examples of simulationsin which complex systems are modeled as collections of objects
with local state.

3.3.1 Mutable List Structure

The basic operations on pairs -- cons, car , and cdr -- can be used to construct list structure and to select

parts from list structure, but they are incapable of modifying list structure. The sameistrue of thelist
operations we have used so far, such asappend and | i st , since these can be defined in terms of cons,

car, and cdr . To modify list structures we need new operations.

y —— 8|

Figure3.12: Listsx:((a b) c d) andy:(e f).

¥ ¥
o d
Iﬂ
a b
2ar e
sl]
e £

Figure3.13: Effectof (set-car! x y) onthelistsinfigure 3.12.

¥ ¥

c d

i-——:-I/|
2= " a b

Figure 3.14: Effectof (define z (cons y (cdr x))) onthelistsinfigure 3.12.

x—=]p]y ¢[v={+]

¥ ¥

c d

= -——:-T

¥

a b

Ty —A e

Y ¥ ¥

B £

Figure 3.15: Effectof (set-cdr! x y) onthelistsinfigure 3.12.

The primitive mutatorsfor pairsareset - car! andset - cdr! . Set - car! takestwo arguments, the
first of which must be apair. It modifies this pair, replacing the car pointer by a pointer to the second

argument of set - car! .16

As an example, suppose that x isbound tothelist ((a b) c¢ d) andy tothelist (e f) asillustrated
in figure 3.12. Evaluating the expression (set - car! x y) modifiesthe pair to which x is bound,
replacing itscar by the value of y. The result of the operation is shown in figure 3.13. The structure x has
been modified and would now be printedas((e f) c d).Thepairsrepresentingthelist (a b),
identified by the pointer that was replaced, are now detached from the original structure.l’

Compare figure 3.13 with figure 3.14, which illustrates the result of executing (define z (cons y
(cdr x))) withx andy bound to the original lists of figure 3.12. The variable z is now bound to a new
pair created by the cons operation; the list to which x is bound is unchanged.

Theset - cdr! operationissimilartoset - car! . Theonly differenceisthat thecdr pointer of the
pair, rather than the car pointer, isreplaced. The effect of executing (set - cdr! x y) onthelistsof
figure 3.12 isshown in figure 3.15. Here the cdr pointer of x has been replaced by the pointerto (e f).
Also, thelist (¢ d), which used to bethecdr of x, isnow detached from the structure.

Cons builds new list structure by creating new pairs, whileset - car! andset - cdr! modify existing
pairs. Indeed, we could implement cons in terms of the two mutators, together with a procedure get -
new- pai r, which returns anew pair that is not part of any existing list structure. We obtain the new pair,
setitscar and cdr pointers to the designated objects, and return the new pair asthe result of the cons .18

(define (cons x vy)

(let ((new (get-newpair)))
(set-car! new x)
(set-cdr! newy)

new))
Exercise 3.12. The following procedure for appending lists was introduced in section 2.2.1:

(define (append x y)
(if (null? x)

y
(cons (car x) (append (cdr x) y))))

Append formsanew list by successively consing the elements of x onto y. The procedure append! is
similar to append, but it isamutator rather than a constructor. It appends the lists by splicing them
together, modifying the final pair of x so that itscdr isnowy. (Itisan error to call append! with an
empty x.)

(define (append! x vy)
(set-cdr! (last-pair x) vy)
X)

Herel ast - pai r isaprocedure that returnsthe last pair in its argument:

(define (last-pair x)
(if (null? (cdr x))
X
(last-pair (cdr x))))

Consider the interaction

(define x (list "a '"b))
(definey (list '"c 'd))
(define z (append x y))
z

(a b c d)

(cdr x)

<response>

(define w (append! x vy))
w

(a b c d
(cdr x)

<r esponse>

What are the missing <response>s? Draw box-and-pointer diagrams to explain your answer.

Exercise 3.13. Consider the following make- cycl e procedure, which usesthel ast - pai r procedure
defined in exercise 3.12:

(define (make-cycle x)
(set-cdr! (last-pair x) x)
X)

Draw a box-and-pointer diagram that shows the structure z created by
(define z (make-cycle (list "a '"b 'c)))
What happens if we try to compute (| ast -pair z)?

Exercise 3.14. Thefollowing procedure is quite useful, although obscure:

(define (nystery x)
(define (loop x vy)
(if (null? x)
y

(let ((tenp (cdr x)))
(set-cdr! x vy)

(loop temp x))))
(loop x " ()))

Loop usesthe ‘temporary"” variable t enp to hold the old value of the cdr of x, sincetheset - cdr! on
the next line destroys the cdr . Explain what nyst er y doesin general. Suppose Vv is defined by
(define v (list "a 'b 'c 'd)).Draw thebox-and-pointer diagram that representsthelist to
which v isbound. Suppose that we now evaluate (def i ne w (nystery v)).Draw box-and-pointer
diagrams that show the structures v and w after evaluating this expression. What would be printed as the
valuesof v and w?

Sharing and identity

We mentioned in section 3.1.3 the theoretical issues of ~"sameness” and " “change” raised by the

introduction of assignment. These issues arise in practice when individual pairs are shared among
different data objects. For example, consider the structure formed by

(define x (list "a 'b))
(define z1 (cons x X))

Asshowninfigure 3.16, z1 isapair whosecar and cdr both point to the same pair x. This sharing of x
by thecar and cdr of z1 isaconsequence of the straightforward way in which cons isimplemented. In
general, using cons to construct lists will result in an interlinked structure of pairsin which many
individual pairs are shared by many different structures.

G B A1
'y
0 T - T
¥ ¥
a b

Figure3.16: Thelistz1 formedby (cons x Xx).

ZE—3 g I——:IT =
¥

1]
N g e

————= ¥ - -

Figure3.17: Thelistz2 formedby (cons (list "a '"b) (list "a 'b)).

In contrast to figure 3.16, figure 3.17 shows the structure created by

(define z2 (cons (list "a '"b) (list "a "b)))

In this structure, the pairsin thetwo (a b) listsare distinct, although the actual symbols are shared.19

When thought of asalist, z1 and z2 both represent “"thesame" list, ((a b) a b).Ingeneral, sharing
is completely undetectable if we operate on listsusing only cons, car , and cdr . However, if we allow

mutators on list structure, sharing becomes significant. As an example of the difference that sharing can
make, consider the following procedure, which modifiesthe car of the structure to which it is applied:

(define (set-to-wow Xx)
(set-car! (car x) 'wow)
X)

Eventhough z1 and z2 are ""the same" structure, applying set - t o- wow! to them yields different
results. With z1, altering the car also changesthe cdr , becausein z1 thecar andthecdr arethe same
pair. Withz2, thecar and cdr aredistinct, soset - t o- wow! modifiesonly thecar :

z1
((a b) a b)

(set-to-wow z1)
((wow b) wow b)

z2
((a b) ab)

(set-to-wow z2)
((wow b) a b)

One way to detect sharing in list structuresisto use the predicate eq?, which we introduced in
section 2.3.1 as away to test whether two symbols are equal. More generally, (eq? x y) testswhether
x and y are the same object (that is, whether x and y are equal as pointers). Thus, withz1 and z2 as
definedinfigures3.16 and 3.17, (eq? (car zl) (cdr zl1)) istrueand(eq? (car z2) (cdr
z2)) isfdse.

Aswill be seen in the following sections, we can exploit sharing to greatly extend the repertoire of data
structures that can be represented by pairs. On the other hand, sharing can also be dangerous, since
maodifications made to structures will also affect other structures that happen to share the modified parts.
The mutation operationsset - car! andset - cdr! should be used with care; unless we have a good

understanding of how our data objects are shared, mutation can have unanticipated results.20

Exercise 3.15. Draw box-and-pointer diagrams to explain the effect of set - t o- wow! on the structures
z1 and z2 above.

Exercise 3.16. Ben Bitdiddle decides to write a procedure to count the number of pairsin any list
structure. ~It's easy," he reasons. = The number of pairsin any structure is the number inthecar plusthe

number in the cdr plus one more to count the current pair.” So Ben writes the following procedure:

(define (count-pairs x)
(if (not (pair? x))
0
(+ (count-pairs (car X))
(count-pairs (cdr x))

1))

Show that this procedure is not correct. In particular, draw box-and-pointer diagrams representing list
structures made up of exactly three pairs for which Ben's procedure would return 3; return 4; return 7;
never return at all.

Exercise 3.17. Devise acorrect version of the count - pai r s procedure of exercise 3.16 that returns the

number of distinct pairsin any structure. (Hint: Traverse the structure, maintaining an auxiliary data
structure that is used to keep track of which pairs have already been counted.)

Exercise 3.18. Write a procedure that examines alist and determines whether it contains a cycle, that is,
whether a program that tried to find the end of the list by taking successive cdr swould go into an infinite

loop. Exercise 3.13 constructed such lists.

Exercise 3.19. Redo exercise 3.18 using an algorithm that takes only a constant amount of space. (This
requires avery clever idea)

Mutation is just assignment

When we introduced compound data, we observed in section 2.1.3 that pairs can be represented purely in
terms of procedures:

(define (cons x vy)
(define (dispatch n
(cond ((eg? m'car) X)
((eq? m'cdr) vy)
(el se (error "Undefined operation -- CONS" m)))
di spat ch)
(define (car z) (z 'car))
(define (cdr z) (z 'cdr))

The same observation is true for mutable data. We can implement mutable data objects as procedures
using assignment and local state. For instance, we can extend the above pair implementation to handle
set-car! andset - cdr! inamanner analogous to the way we implemented bank accounts using

make- account insection 3.1.1;

(define (cons x vy)
(define (set-x! v) (set! x v))
(define (set-y! v) (set! y v))
(define (dispatch nm
(cond ((eg? m'car) X)
((eq? m'cdr) vy)
((eq? m'set-car!) set-x!)
((eq? m'set-cdr!) set-y!)
(el se (error "Undefined operation -- CONS" m)))
di spat ch)
(define (car z) (z 'car))
(define (cdr z) (z 'cdr))
(define (set-car! z newval ue)
((z "set-car!) newval ue)
z)
(define (set-cdr! z newval ue)
((z "set-cdr!) newval ue)

z)

Assignment is all that is needed, theoretically, to account for the behavior of mutable data. As soon aswe
admit set ! to our language, we raise al the issues, not only of assignment, but of mutable datain

general .21

Exercise 3.20. Draw environment diagrams to illustrate the evaluation of the sequence of expressions

(define x (cons 1 2))
(define z (cons x X))
(set-car! (cdr z) 17)
(car x)

17

using the procedural implementation of pairs given above. (Compare exercise 3.11.)

3.3.2 Representing Queues

Themutatorsset - car! andset - cdr! enable usto use pairsto construct data structures that cannot be
built with cons, car, and cdr aone. This section shows how to use pairs to represent a data structure
called a queue. Section 3.3.3 will show how to represent data structures called tables.

A queueisasequence in which items are inserted at one end (called the rear of the queue) and deleted
from the other end (the front). Figure 3.18 shows an initially empty queue in which theitemsa and b are

inserted. Then a isremoved, ¢ and d are inserted, and b is removed. Because items are always removed in
the order in which they are inserted, a queue is sometimes called a FIFO (first in, first out) buffer.

Operation Resulting Queue
(define g (nake-queue))

(i nsert-queue! g 'a) a
(insert-queue! q 'b) ab

(del et e- queue! q) b

(i nsert-queue! g 'c) b c

(i nsert-queue! g 'd) b cd

(del et e- queue! q) cd

Figure 3.18: Queue operations.
In terms of data abstraction, we can regard a queue as defined by the following set of operations:

. aconstructor:
(make- queue)

returns an empty queue (a queue containing no items).

. two selectors:
(enpty- queue? <queue>)
testsif the queue is empty.
(front-queue <queue>)
returns the object at the front of the queue, signaling an error if the queue is empty; it does not
modify the queue.

. two mutators:

(i nsert-queue! <queue> <itenp)

inserts the item at the rear of the queue and returns the modified queue as its value.

(del et e- queue! <queue>)

removes the item at the front of the queue and returns the modified queue asits value, signaling an

error if the queue is empty before the deletion.

Because a queue is a sequence of items, we could certainly represent it as an ordinary list; the front of the
gueue would bethe car of thelist, inserting an item in the queue would amount to appending a new

element at the end of the list, and deleting an item from the queue would just be taking the cdr of thelist.

However, this representation is inefficient, because in order to insert an item we must scan the list until we
reach the end. Since the only method we have for scanning alist is by successive cdr operations, this

scanning requires £i(n) steps for alist of nitems. A simple modification to the list representation
overcomes this disadvantage by allowing the queue operations to be implemented so that they require £(1)
steps, that is, so that the number of steps needed is independent of the length of the queue.

The difficulty with the list representation arises from the need to scan to find the end of the list. The reason
we need to scan is that, although the standard way of representing alist asachain of pairs readily provides
us with a pointer to the beginning of thelist, it gives us no easily accessible pointer to the end. The
modification that avoids the drawback isto represent the queue as alist, together with an additional

pointer that indicates the final pair in the list. That way, when we go to insert an item, we can consult the

rear pointer and so avoid scanning the list.

A gueue isrepresented, then, as apair of pointers, f r ont - pt r andr ear - pt r, which indicate,

respectively, the first and last pairsin an ordinary list. Since we would like the queue to be an identifiable
object, we can use cons to combine the two pointers. Thus, the queue itself will be the cons of the two

pointers. Figure 3.19 illustrates this representation.

g—— & | »

front—pte

ceac—pbe

a b

Figure 3.19: Implementation of a queue as alist with front and rear pointers.

To define the queue operations we use the following procedures, which enable us to select and to modify

the front and rear pointers of a queue:

pler—tele

—= ¢
¥

=

(define (front-ptr queue) (car queue))
(define (rear-ptr queue) (cdr queue))

(define (set-front-ptr! queue iten) (set-car!

gueue item)

(define (set-rear-ptr! queue item (set-cdr! queue item)

Now we can implement the actual queue operations. We will consider a queue to be empty if its front
pointer isthe empty list:

(define (enpty-queue? queue) (null? (front-ptr queue)))

The make- queue constructor returns, as an initially empty queue, apair whose car and cdr are both
the empty list:

(define (make-queue) (cons '"() '()))

To select the item at the front of the queue, we return the car of the pair indicated by the front pointer:

(define (front-qgueue queue)
(i f (enpty-queue? queue)
(error "FRONT called with an enpty queue" queue)
(car (front-ptr queue))))

Toinsert an item in aqueue, we follow the method whose result isindicated in figure 3.20. Wefirst create
anew pair whose car istheitem to beinserted and whose cdr isthe empty list. If the queue was initialy

empty, we set the front and rear pointers of the queue to this new pair. Otherwise, we modify the final pair
in the gqueue to point to the new pair, and also set the rear pointer to the new pair.

q——~ & | =

front—pte rear—ptr
S e KIS e E IS e
¥ ¥ ¥ ¥
a b (a4 d

Figure 3.20: Resultof using (i nsert-queue! q 'd) onthequeue of figure 3.19.

(define (insert-queue! queue item
(let ((newpair (cons item'())))
(cond ((enpty-queue? queue)
(set-front-ptr! queue new pair)
(set-rear-ptr! queue new- pair)
gueue)
(el se
(set-cdr! (rear-ptr queue) new pair)
(set-rear-ptr! queue new- pair)
queue))))

To delete the item at the front of the queue, we merely modify the front pointer so that it now points at the
second item in the queue, which can be found by following the cdr pointer of the first item (see

figure 3.21):22

g ——S & | ®
front—pte reac—pte
ety er=lel s
¥ ¥ ¥ ¥
a b c d

Figure 3.21: Result of using (del et e- queue! q) onthe queue of figure 3.20.

(define (del ete-queue! queue)
(cond ((enpty-queue? queue)
(error "DELETE! called with an enpty queue" queue))
(el se
(set-front-ptr! queue (cdr (front-ptr queue)))

queue)))

Exercise 3.21. Ben Bitdiddle decides to test the queue implementation described above. He typesin the
procedures to the Lisp interpreter and proceeds to try them out:

(define gl (make-queue))
(i nsert-queue! gl 'a)
((a) a)

(i nsert-queue! gl 'b)
((a b) b)

(del et e- queue! ql)

((b) b)
(del et e- queue! ql)

(() b)

“lt'sal wrong!" he complains. " The interpreter's response shows that the last item is inserted into the
gueue twice. And when | delete both items, the second b is still there, so the queue isn't empty, even

though it's supposed to be." Eva Lu Ator suggests that Ben has misunderstood what is happening. " It's not
that the items are going into the queue twice," she explains. " It's just that the standard Lisp printer doesn't
know how to make sense of the queue representation. If you want to see the queue printed correctly, you'll
have to define your own print procedure for queues." Explain what Eva Lu is talking about. In particular,
show why Ben's examples produce the printed results that they do. Define a procedure pr i nt - queue

that takes a queue as input and prints the sequence of itemsin the queue.

Exercise 3.22. Instead of representing a queue as a pair of pointers, we can build a queue as a procedure
with local state. The local state will consist of pointers to the beginning and the end of an ordinary list.

Thus, the make- queue procedure will have the form

(defi ne (nmake-queue)
(let ((front-ptr ...)
(rear-ptr ...))

<definitions of internal procedures>
(define (dispatch m) ...)
di spat ch))

Complete the definition of make- queue and provide implementations of the queue operations using this
representation.

Exercise 3.23. A deque (" double-ended queue”) is a sequence in which items can be inserted and deleted
at either the front or the rear. Operations on deques are the constructor make- deque, the predicate

enpt y- deque?, selectorsf r ont - deque and r ear - deque, and mutatorsf r ont - i nsert -
deque! ,rear-insert-deque!,front-del et e-deque! ,andr ear - del et e- deque! . Show

how to represent deques using pairs, and give implementations of the operations.23 All operations should
be accomplished in £(1) steps.

3.3.3 Representing Tables

When we studied various ways of representing setsin chapter 2, we mentioned in section 2.3.3 the task of
maintaining atable of records indexed by identifying keys. In the implementation of data-directed
programming in section 2.4.3, we made extensive use of two-dimensional tables, in which information is
stored and retrieved using two keys. Here we see how to build tables as mutable list structures.

We first consider a one-dimensional table, in which each value is stored under asingle key. We implement
the table as alist of records, each of which isimplemented as a pair consisting of a key and the associated
value. The records are glued together to form alist by pairs whose car s point to successive records.
These gluing pairs are called the backbone of the table. In order to have a place that we can change when
we add a new record to the table, we build the table as a headed list. A headed list has a special backbone
pair at the beginning, which holds a dummy ““record" -- in this case the arbitrarily chosen symbol

t abl e. Figure 3.22 shows the box-and-pointer diagram for the table

o

a:
b:
C: 3

N

tabkle

*tablew

E=
Fa

0 il =%

.
¥
b

o]

Figure 3.22: A table represented as a headed list.

To extract information from atable we use the | ookup procedure, which takes a key as argument and
returns the associated value (or falseif there is no value stored under that key). Lookup isdefined in
terms of the assoc operation, which expects akey and alist of records as arguments. Note that assoc

never sees the dummy record. Assoc returns the record that has the given key asitscar .24 Lookup then
checks to see that the resulting record returned by assoc is not false, and returns the value (the cdr) of
the record.

(define (|l ookup key table)
(let ((record (assoc key (cdr table))))
(if record
(cdr record)
fal se)))
(define (assoc key records)
(cond ((null? records) false)
((equal ? key (caar records)) (car records))
(el se (assoc key (cdr records)))))

Toinsert avalue in atable under a specified key, wefirst useassoc to seeif thereisaready arecord in
the table with this key. If not, we form a new record by consing the key with the value, and insert this at

the head of the table's list of records, after the dummy record. If there already is a record with this key, we
set the cdr of thisrecord to the designated new value. The header of the table provides us with a fixed

location to modify in order to insert the new record.22

(define (insert! key value table)
(let ((record (assoc key (cdr table))))
(if record
(set-cdr! record val ue)
(set-cdr! table
(cons (cons key value) (cdr table)))))
' ok)

To construct a new table, we ssimply create alist containing the symbol *t abl e*:

(define (make-table)
(list "*table*))

Two-dimensional tables

In atwo-dimensional table, each value isindexed by two keys. We can construct such atable as a one-
dimensional table in which each key identifies a subtable. Figure 3.23 shows the box-and-pointer diagram

for the table

mat h:
+: 43
-. 45
¥ 42
| etters:
a. 97
b: 98

which has two subtables. (The subtables don't need a special header symbol, since the key that identifies
the subtable serves this purpose.)

table

L] [L » []

L] L)

*table¥ | —T—|n|®= 9

letters T 1&. w -Ii
¥ % %N
a a7 b a8
[
o | | s T t—%—r
! v $
math t1a) [9la) [1l9
LU L S "
+ 43 - 45 * 4z

Figure 3.23: A two-dimensional table.

When we look up an item, we use the first key to identify the correct subtable. Then we use the second key
to identify the record within the subtable.

(define (| ookup key-1 key-2 table)
(let ((subtable (assoc key-1 (cdr table))))
(if subtable
(let ((record (assoc key-2 (cdr subtable))))
(if record
(cdr record)
fal se))
fal se)))

Toinsert anew item under apair of keys, we use assoc to seeif there is a subtable stored under the first
key. If not, we build a new subtable containing the singlerecord (key- 2, val ue) and insert it into the

table under the first key. If a subtable already exists for the first key, we insert the new record into this
subtable, using the insertion method for one-dimensional tables described above:

(define (insert! key-1 key-2 value table)
(let ((subtable (assoc key-1 (cdr table))))
(if subtable
(let ((record (assoc key-2 (cdr subtable))))
(if record
(set-cdr! record val ue)
(set-cdr! subtable
(cons (cons key-2 val ue)
(cdr subtable)))))
(set-cdr! table
(cons (list key-1
(cons key-2 val ue))
(cdr table)))))
' ok)

Creating local tables

Thel ookup andi nsert! operations defined above take the table as an argument. This enables usto
use programs that access more than one table. Another way to deal with multiple tablesis to have separate
| ookup andi nsert! proceduresfor each table. We can do this by representing a table procedurally, as
an object that maintains an internal table as part of itslocal state. When sent an appropriate message, this
““table object" supplies the procedure with which to operate on the internal table. Here is a generator for
two-dimensional tables represented in this fashion:

(define (nmake-table)
(let ((local-table (list '"*table*)))
(define (I ookup key-1 key-2)
(let ((subtable (assoc key-1 (cdr local-table))))
(i f subtable
(let ((record (assoc key-2 (cdr subtable))))

(i1f record
(cdr record)
fal se))
fal se)))
(define (insert! key-1 key-2 val ue)
(let ((subtable (assoc key-1 (cdr |ocal-table))))
(1 f subtable
(let ((record (assoc key-2 (cdr subtable))))
(i1f record
(set-cdr! record val ue)
(set-cdr! subtable
(cons (cons key-2 val ue)
(cdr subtable)))))
(set-cdr! |ocal-table
(cons (list key-1
(cons key-2 val ue))
(cdr local-table)))))
' 0k)
(define (dispatch m
(cond ((eg? m' Il ookup-proc) | ookup)
((eq? m'insert-proc!) insert!)
(el se (error "Unknown operation -- TABLE' m))))
di spatch))

Using make- t abl e, we could implement the get and put operations used in section 2.4.3 for data-
directed programming, as follows:

(define operation-table (make-table))
(define get (operation-table 'l ookup-proc))
(define put (operation-table '"insert-proc!))

CGet takes as arguments two keys, and put takes as arguments two keys and a value. Both operations
access the same local table, which is encapsul ated within the object created by the call to make-t abl e.

Exercise 3.24. In the table implementations above, the keys are tested for equality using equal ? (called
by assoc). Thisis not always the appropriate test. For instance, we might have a table with numeric keys
in which we don't need an exact match to the number we're looking up, but only a number within some
tolerance of it. Design atable constructor make- t abl e that takes as an argument asame- key?
procedure that will be used to test “equality” of keys. Make-t abl e should returnadi spat ch
procedure that can be used to access appropriate | ookup andi nsert! proceduresfor alocal table.

Exercise 3.25. Generalizing one- and two-dimensional tables, show how to implement atablein which
values are stored under an arbitrary number of keys and different values may be stored under different
numbers of keys. Thel ookup andi nsert! procedures should take asinput alist of keys used to access

the table.

Exercise 3.26. To search atable asimplemented above, one needs to scan through the list of records. This
is basically the unordered list representation of section 2.3.3. For large tables, it may be more efficient to

structure the table in a different manner. Describe a table implementation where the (key, value) records
are organized using a binary tree, assuming that keys can be ordered in some way (e.g., numerically or
aphabetically). (Compare exercise 2.66 of chapter 2.)

Exercise 3.27. Memoization (also called tabulation) is atechnique that enables a procedure to record, in a
local table, values that have previously been computed. This technique can make avast difference in the
performance of a program. A memoized procedure maintains atable in which values of previous calls are
stored using as keys the arguments that produced the values. When the memoized procedure is asked to
compute avalue, it first checks the table to see if the value is already there and, if so, just returns that
value. Otherwise, it computes the new value in the ordinary way and stores thisin the table. Asan
example of memoization, recall from section 1.2.2 the exponential process for computing Fibonacci

numbers:

(define (fib n)
(cond ((=n 0) 0)

((=n1) 1)
(else (+ (fib (- n 1))
(fib (- n2))))))

The memoized version of the same procedure is

(define nmeno-fib
(menoi ze (| anbda (n)
(cond ((=n 0) 0)
((=n1l) 1)
(else (+ (nmenmo-fib (- n 1))
(menmo-fib (- 2))

))))))

where the memoizer is defined as

(define (nmenoize f)
(let ((table (make-table)))
(1 anbda (x)
(let ((previously-conputed-result (lookup x table)))
(or previously-conmputed-result
(let ((result (f x)))
(insert! x result table)

result))))))

Draw an environment diagram to analyze the computation of (meno-fi b 3).Explanwhy meno-fi b

computes the nth Fibonacci number in a number of steps proportional to n. Would the scheme still work if
we had ssmply defined meno-fi b tobe (nenoi ze fib)?

3.3.4 A Simulator for Digital Circuits

Designing complex digital systems, such as computers, is an important engineering activity. Digital
systems are constructed by interconnecting simple elements. Although the behavior of these individual
elementsis simple, networks of them can have very complex behavior. Computer simulation of proposed
circuit designsis an important tool used by digital systems engineers. In this section we design a system
for performing digital logic ssimulations. This system typifies akind of program called an event-driven
simulation, in which actions (" events") trigger further events that happen at alater time, which in turn
trigger more events, and so so.

Our computational model of acircuit will be composed of objects that correspond to the elementary
components from which the circuit is constructed. There are wires, which carry digital signals. A digital
signal may at any moment have only one of two possible values, 0 and 1. There are also various types of
digital function boxes, which connect wires carrying input signals to other output wires. Such boxes
produce output signals computed from their input signals. The output signal is delayed by atime that
depends on the type of the function box. For example, an inverter is a primitive function box that inverts
itsinput. If the input signal to an inverter changes to 0, then one inverter-delay later the inverter will
change its output signal to 1. If the input signal to an inverter changesto 1, then one inverter-delay |ater
the inverter will change its output signal to 0. We draw an inverter symbolically asin figure 3.24. An and-

gate, also shown in figure 3.24, is a primitive function box with two inputs and one output. It drivesits

output signal to avaluethat isthe logical and of theinputs. That is, if both of itsinput signals become 1,
then one and-gate-delay time later the and-gate will force its output signal to be 1; otherwise the output
will be 0. An or-gateisasimilar two-input primitive function box that drivesits output signal to avalue
that isthelogical or of theinputs. That is, the output will become 1 if at least one of theinput signalsis 1;
otherwise the output will become 0.

e B

Inverter And—gate Cor—gate

Figure 3.24: Primitive functionsin the digital logic simulator.

We can connect primitive functions together to construct more complex functions. To accomplish thiswe
wire the outputs of some function boxes to the inputs of other function boxes. For example, the half-adder
circuit shown in figure 3.25 consists of an or-gate, two and-gates, and an inverter. It takes two input
signals, A and B, and has two output signals, S and C. Swill become 1 whenever precisely one of A and B
is1, and C will become 1 whenever A and B are both 1. We can see from the figure that, because of the
delaysinvolved, the outputs may be generated at different times. Many of the difficulties in the design of
digital circuits arise from this fact.

A %D—— 2

E

B

Figure 3.25: A half-adder circuit.

We will now build a program for modeling the digital logic circuits we wish to study. The program will
construct computational objects modeling the wires, which will ““hold" the signals. Function boxes will be
modeled by procedures that enforce the correct relationships among the signals.

One basic element of our ssimulation will be a procedure make- wi r e, which constructs wires. For
example, we can construct six wires as follows:

(defi ne
(define
(define

(make-wire))
(make-wire))
(make-wire))

O oo

o

(define (make-wire))
(define e (nmake-wire))
(define s (nmake-wire))

We attach a function box to a set of wires by calling a procedure that constructs that kind of box. The
arguments to the constructor procedure are the wires to be attached to the box. For example, given that we
can construct and-gates, or-gates, and inverters, we can wire together the half-adder shown in figure 3.25:

(or-gate a b d)
ok

(and-gate a b ¢)
ok

(inverter c e)
ok

(and-gate d e s)
ok

Better yet, we can explicitly name this operation by defining a procedure hal f - adder that constructs
this circuit, given the four external wires to be attached to the half-adder:

(define (half-adder a b s ¢)
(let ((d (nmake-wire)) (e (make-wire)))
(or-gate a b d)
(and-gate a b ¢)
(inverter c e)
(and-gate d e s)
' 0k))

The advantage of making this definition isthat we can use hal f - adder itself asabuilding block in
creating more complex circuits. Figure 3.26, for example, shows a full-adder composed of two half-adders
and an or-gate.26 We can construct a full-adder as follows:

(define (full-adder a b c-in sum c-out)

(let ((s (make-wire))
(cl (make-wire))
(c2 (make-wire)))
(hal f-adder b c-in s cl)
(hal f-adder a s sum c2)
(or-gate cl c2 c-out)
' ok))

Having defined f ul | - adder asaprocedure, we can now useit as a building block for creating still
more complex circuits. (For example, see exercise 3.30.)

A half

L230) .)

adder
B half _I-:}-_.;)—— Cout

o adder

in

Figure 3.26: A full-adder circuit.

In essence, our simulator provides us with the tools to construct a language of circuits. If we adopt the

general perspective on languages with which we approached the study of Lisp in section 1.1, we can say
that the primitive function boxes form the primitive elements of the language, that wiring boxes together
provides a means of combination, and that specifying wiring patterns as procedures serves as a means of

abstraction.

Primitive function boxes

The primitive function boxes implement the ““forces" by which a change in the signal on one wire
influences the signals on other wires. To build function boxes, we use the following operations on wires:

. (get-signal <wire>)

returns the current value of the signal on the wire.

. (set-signal! <wre> <new val ue>)
changes the value of the signal on the wire to the new value.

. (add-action! <wire> <procedure of no argunents>)
asserts that the designated procedure should be run whenever the signal on the wire changes value.
Such procedures are the vehicles by which changesin the signal value on the wire are

communicated to other wires.

In addition, we will make use of aprocedure af t er - del ay that takes atime delay and a procedure to be
run and executes the given procedure after the given delay.

Using these procedures, we can define the primitive digital logic functions. To connect an input to an
output through an inverter, we use add- act i on! to associate with the input wire a procedure that will

be run whenever the signal on the input wire changes value. The procedure computesthel ogi cal - not
of the input signal, and then, after onei nvert er - del ay, setsthe output signal to be this new value:

(define (inverter input output)
(define (invert-input)
(let ((newvalue (logical-not (get-signal input))))
(after-delay inverter-del ay
(lanmbda ()
(set-signal! output newvalue)))))
(add-action! input invert-input)
' ok)
(define (logical-not s)
(cond ((=s 0) 1)
((=s 1) 0

(else (error "lInvalid signal" s))))

An and-gate is alittle more complex. The action procedure must be run if either of the inputs to the gate
changes. It computesthel ogi cal - and (using a procedure analogousto | ogi cal - not) of the values

of the signals on the input wires and sets up a change to the new value to occur on the output wire after
oneand- gat e- del ay.

(define (and-gate al a2 output)
(define (and-action-procedure)
(let ((newval ue
(logical -and (get-signal al) (get-signal a2))))
(after-del ay and-gate-del ay
(lanmbda ()
(set-signal! output newvalue)))))

(add-action! al and-action-procedure)

(add-action! a2 and-action-procedure)

' ok)

Exercise 3.28. Define an or-gate as a primitive function box. Your or - gat e constructor should be
similar to and- gat e.

Exercise 3.29. Another way to construct an or-gate is as a compound digital logic device, built from and-
gates and inverters. Define a procedure or - gat e that accomplishes this. What is the delay time of the or-

gateintermsof and- gat e- del ay andi nverter-del ay?

Exercise 3.30. Figure 3.27 shows aripple-carry adder formed by stringing together n full-adders. Thisis
the simplest form of parallel adder for adding two n-bit binary numbers. Theinputs A, Ay, As, . .., Aj
and B4, By, B3, . . . , B, arethe two binary numbers to be added (each A, and B isa 0 or a 1). The circuit
generates Sy, Sy, S, . . ., S, then bits of the sum, and C, the carry from the addition. Write a procedure
ri ppl e-carry-adder that generatesthiscircuit. The procedure should take as arguments three lists

of n wires each -- the A, the B, and the S -- and also another wire C. The major drawback of the ripple-
carry adder is the need to wait for the carry signalsto propagate. What is the delay needed to obtain the
complete output from an n-bit ripple-carry adder, expressed in terms of the delays for and-gates, or-gates,
and inverters?

n. B h, B h. B n_B
| 1-1 2 T2 373 I | 1 c =
| G4 ‘ Cy ‘ Cg | n
| T |
| I |
| | |
| Fa Fi Fa ! | Fa
| | |
I | I

C.'.—|— | D E—
| | |
! Cy Cq ! ! Cn1
| | |
S:l 32 SEI- S::1

Figure 3.27: A ripple-carry adder for n-bit numbers.

Representing wires

A wirein our ssimulation will be a computational object with two local state variables: asi gnal - val ue
(initially taken to be 0) and a collection of act i on- pr ocedur es to be run when the signal changes

value. We implement the wire, using message-passing style, as a collection of local procedures together
with adi spat ch procedure that selects the appropriate local operation, just as we did with the simple

bank-account object in section 3.1.1:

(define (nake-wire)
(let ((signal-value 0) (action-procedures '()))
(define (set-nmy-signal! new val ue)
(if (not (= signal-value newval ue))
(begin (set! signal-val ue newval ue)
(cal |l -each action-procedures))
‘done))
(define (accept-action-procedure! proc)
(set! action-procedures (cons proc action-procedures))
(proc))
(define (dispatch nm
(cond ((eq? m'get-signal) signal-value)
((eq? m'set-signal!) set-my-signal!)
((eq? m'add-action!) accept-action-procedure!)
(el se (error "Unknown operation -- WRE" m)))
di spat ch))

The local procedureset - ny- si gnhal ! tests whether the new signal value changes the signal on the
wire. If so, it runs each of the action procedures, using the following procedure cal | - each, which calls
each of theitemsin alist of no-argument procedures:

(define (call-each procedures)
(if (null? procedures)
' done
(begin
((car procedures))
(call-each (cdr procedures)))))

The local procedureaccept - acti on- pr ocedur e! addsthe given procedure to the list of procedures
to be run, and then runs the new procedure once. (See exercise 3.31.)

With thelocal di spat ch procedure set up as specified, we can provide the following proceduresto
access the local operations on wires:27

(define (get-signal wre)
(Wwre 'get-signal))

(define (set-signal! wire newval ue)
((wire "set-signal!) newvalue))

(define (add-action! wire action-procedure)
((wre '"add-action!) action-procedure))

Wires, which have time-varying signals and may be incrementally attached to devices, are typical of
mutabl e objects. We have model ed them as procedures with local state variables that are modified by
assignment. When anew wireis created, a new set of state variablesisallocated (by thel et expressionin

make-wi r e) and anew di spat ch procedure is constructed and returned, capturing the environment
with the new state variables.

The wires are shared among the various devices that have been connected to them. Thus, a change made
by an interaction with one device will affect all the other devices attached to the wire. The wire
communicates the change to its neighbors by calling the action procedures provided to it when the
connections were established.

The agenda

The only thing needed to complete the smulator isaf t er - del ay. The idea hereisthat we maintain a

data structure, called an agenda, that contains a schedule of thingsto do. The following operations are
defined for agendas:

. (make-agenda)
returns a new empty agenda.

. (enpty-agenda? <agenda>)
istrueif the specified agendais empty.

. (first-agenda-item <agenda>)
returns the first item on the agenda.

. (renove-first-agenda-itenl <agenda>)
modifies the agenda by removing the first item.

. (add-to-agenda! <tinme> <action> <agenda>)
modifies the agenda by adding the given action procedure to be run at the specified time.

. (current-time <agenda>)
returns the current simulation time.

The particular agenda that we use is denoted by t he- agenda. The procedure af t er - del ay adds new
elementstot he- agenda:

(define (after-delay delay action)
(add-to-agenda! (+ delay (current-tinme the-agenda))
action
t he- agenda))

The ssimulation is driven by the procedure pr opagat e, which operatesont he- agenda, executing

each procedure on the agenda in sequence. In general, as the simulation runs, new itemswill be added to
the agenda, and pr opagat e will continue the simulation as long as there are items on the agenda:

(defi ne (propagate)
(if (enpty-agenda? the-agenda)

' done

(let ((first-item (first-agenda-itemthe-agenda)))
(first-item
(renove-first-agenda-itenl the-agenda)
(propagate))))

A sample simulation

The following procedure, which places a ™ probe” on awire, shows the simulator in action. The probe tells
the wire that, whenever its signal changes value, it should print the new signal value, together with the
current time and a name that identifies the wire:

(define (probe nanme wre)
(add-action! wre

(lanmbda ()
(new i ne)
(di spl ay nane)
(display " ")

(display (current-tine the-agenda))
(display " Newvalue = ")
(display (get-signal wire)))))

We begin by initializing the agenda and specifying delays for the primitive function boxes:

(defi ne the-agenda (nake-agenda))
(define inverter-delay 2)

(defi ne and-gate-delay 3)

(define or-gate-delay 5)

Now we define four wires, placing probes on two of them:

(define input-1 (make-wire))
(define input-2 (make-wire))
(define sum (nmake-wre))
(define carry (make-wire))
(probe 'sum sum

sum O Newvalue =0
(probe 'carry carry)

carry O Newvalue =0

Next we connect the wiresin a half-adder circuit (asin figure 3.25), set thesignal oni nput - 1 to 1, and
run the simulation:

(hal f-adder input-1 input-2 sumcarry)

ok

(set-signal! input-1 1)
done

(propagat e)

sum8 Newvalue =1
done

The sumsignal changesto 1 at time 8. We are now eight time units from the beginning of the simulation.
At this point, we can set the signal oni nput - 2 to 1 and allow the values to propagate:

(set-signal! input-2 1)
done

(propagat e)

carry 11 Newvalue =
sum 16 Newvalue = 0
done

1

Thecar ry changesto 1 at time 11 and the sumchangesto O at time 16.

Exercise 3.31. Theinternal procedureaccept - act i on- pr ocedur e! definedin make-w r e
specifies that when a new action procedure is added to awire, the procedure isimmediately run. Explain
why thisinitialization is necessary. In particular, trace through the half-adder example in the paragraphs
above and say how the system's response would differ if we had defined accept - acti on-

procedure! as

(define (accept-action-procedure! proc)
(set! action-procedures (cons proc action-procedures)))

Implementing the agenda

Finally, we give details of the agenda data structure, which holds the procedures that are scheduled for
future execution.

The agendais made up of time segments. Each time segment is a pair consisting of a number (the time)
and a queue (see exercise 3.32) that holds the procedures that are scheduled to be run during that time

segment.

(define (make-tine-segnent tinme queue)
(cons tinme queue))

(define (segnent-tine s) (car s))

(define (segnent-queue s) (cdr s))

We will operate on the time-segment queues using the queue operations described in section 3.3.2.

The agendaitself is aone-dimensional table of time segments. It differs from the tables described in
section 3.3.3 in that the segments will be sorted in order of increasing time. In addition, we store the

current time (i.e., the time of the last action that was processed) at the head of the agenda. A newly
constructed agenda has no time segments and has a current time of 0:28

(define (nmake-agenda) (list 0))
(define (current-time agenda) (car agenda))
(define (set-current-tine! agenda tine)
(set-car! agenda tine))
(define (segnents agenda) (cdr agenda))
(define (set-segnents! agenda segnents)
(set-cdr! agenda segnents))
(define (first-segnent agenda) (car (segnents agenda)))
(define (rest-segnments agenda) (cdr (segnents agenda)))

An agendais empty if it has no time segments:

(define (enpty-agenda? agenda)
(nul'l? (segnments agenda)))

To add an action to an agenda, we first check if the agendais empty. If so, we create atime segment for
the action and install thisin the agenda. Otherwise, we scan the agenda, examining the time of each
segment. If we find a segment for our appointed time, we add the action to the associated queue. If we
reach atime later than the one to which we are appointed, we insert a new time segment into the agenda

just before it. If we reach the end of the agenda, we must create a new time segment at the end.

(define (add-to-agenda! tinme action agenda)
(define (bel ongs-before? segnents)
(or (null? segnents)
(< tine (segnent-tinme (car segnents)))))
(define (make-newtine-segnment tine action)
(let ((q (rmake-queue)))
(i nsert-queue! g action)
(make-time-segnent tine q)))
(define (add-to-segnents! segnents)
(if (= (segnment-tine (car segnents)) tine)
(1 nsert-queue! (segnent-queue (car segnents))
action)
(let ((rest (cdr segnents)))
(if (bel ongs-before? rest)
(set-cdr!
segnent s
(cons (nmake-newtine-segnent tine action)
(cdr segnents)))
(add-to-segnents! rest)))))
(let ((segnments (segnents agenda)))
(i f (bel ongs-before? segnents)
(set-segnents!
agenda
(cons (nmake-newtine-segnment tine action)
segnent s))
(add-to-segnents! segnents))))

The procedure that removes the first item from the agenda del etes the item at the front of the queuein the
first time segment. If this deletion makes the time segment empty, we remove it from the list of
segments:29

(define (renove-first-agenda-item agenda)
(let ((gq (segnent-queue (first-segnent agenda))))
(del et e- queue! Q)
(if (enmpty-queue? Q)
(set-segnments! agenda (rest-segnents agenda)))))

The first agendaitem isfound at the head of the queue in the first time segment. Whenever we extract an
item, we also update the current time:30

(define (first-agenda-item agenda)
(i f (enpty-agenda? agenda)
(error "Agenda is enpty -- FIRST- AGENDA-| TEM')
(let ((first-seg (first-segnent agenda)))
(set-current-tinme! agenda (segnent-time first-seqg))
(front-queue (segnent-queue first-seq)))))

Exercise 3.32. The procedures to be run during each time segment of the agenda are kept in a queue.
Thus, the procedures for each segment are called in the order in which they were added to the agenda (first
in, first out). Explain why this order must be used. In particular, trace the behavior of an and-gate whose
inputs change from 0,1 to 1,0 in the same segment and say how the behavior would differ if we stored a
segment's procedures in an ordinary list, adding and removing procedures only at the front (last in, first
out).

3.3.5 Propagation of Constraints

Computer programs are traditionally organized as one-directional computations, which perform operations
on prespecified arguments to produce desired outputs. On the other hand, we often model systemsin terms
of relations among quantities. For example, a mathematical model of a mechanical structure might include
the information that the deflection d of a metal rod isrelated to the force F on the rod, the length L of the
rod, the cross-sectional area A, and the elastic modulus E via the equation

dAE = FL

Such an equation is not one-directional. Given any four of the quantities, we can use it to compute the
fifth. Y et trandating the equation into atraditional computer language would force us to choose one of the
guantities to be computed in terms of the other four. Thus, a procedure for computing the area A could not
be used to compute the deflection d, even though the computations of A and d arise from the same

equation.31

In this section, we sketch the design of alanguage that enables usto work in terms of relations themselves.
The primitive elements of the language are primitive constraints, which state that certain relations hold
between quantities. For example, (adder a b c) specifiesthat the quantities a, b, and ¢ must be

related by theequationa+b=c,(rmul tiplier x y z) expressestheconstraint xy =z and
(constant 3.14 x) saysthat the value of x must be 3.14.

Our language provides a means of combining primitive constraints in order to express more complex
relations. We combine constraints by constructing constraint networks, in which constraints are joined by
connectors. A connector is an object that “"holds" avalue that may participate in one or more constraints.
For example, we know that the relationship between Fahrenheit and Celsius temperaturesis

9C = 5(F — 32)

Such a constraint can be thought of as a network consisting of primitive adder, multiplier, and constant
constraints (figure 3.28). In the figure, we see on the left amultiplier box with three terminals, labeled mi1,

m2, and p. These connect the multiplier to the rest of the network as follows: The m1 terminal islinked to
aconnector C, which will hold the Celsius temperature. The m2 terminal is linked to a connector w, which
isalso linked to a constant box that holds 9. The p terminal, which the multiplier box constrains to be the
product of m1 and m2, islinked to the p terminal of another multiplier box, whose m2 is connected to a
constant 5 and whose ml is connected to one of the termsin asum.

r
c ml ml al
* B s =B * = F
m mne az
w x\ ‘ ¥
3] 3z

Figure 3.28: Therelation 9C = 5(F - 32) expressed as a constraint network.

Computation by such a network proceeds as follows. When a connector is given avalue (by the user or by
aconstraint box to which it islinked), it awakens all of its associated constraints (except for the constraint
that just awakened it) to inform them that it has a value. Each awakened constraint box then pollsits
connectorsto seeif there is enough information to determine a value for a connector. If so, the box sets
that connector, which then awakens all of its associated constraints, and so on. For instance, in conversion
between Celsius and Fahrenheit, w, X, and y are immediately set by the constant boxesto 9, 5, and 32,
respectively. The connectors awaken the multipliers and the adder, which determine that there is not
enough information to proceed. If the user (or some other part of the network) sets C to avalue (say 25),
the leftmost multiplier will be awakened, and it will set uto 25 - 9 = 225. Then u awakens the second
multiplier, which sets v to 45, and v awakens the adder, which sets F to 77.

Using the constraint system

To use the constraint system to carry out the temperature computation outlined above, we first create two
connectors, Cand F, by calling the constructor make- connect or, and link Cand F in an appropriate

network:

(define C (nmake-connector))
(define F (nmake-connector))
(cel sius-fahrenheit-converter C F)

ok
The procedure that creates the network is defined as follows:

(define (celsius-fahrenheit-converter c f)
(let ((u (make-connector))

(v (make-connector))
(w (make-connector))
(x (make-connector))
(y (make-connector)))

(multiplier ¢ w u)

(multiplier v x u)

(adder v y f)

(constant 9 w)

(constant 5 x)

(constant 32 vy)

' 0k))

This procedure creates the internal connectorsu, v, w, X, and y, and links them as shown in figure 3.28
using the primitive constraint constructorsadder , mul ti pl i er,and const ant . Just aswith the
digital-circuit ssimulator of section 3.3.4, expressing these combinations of primitive elementsin terms of
procedures automatically provides our language with a means of abstraction for compound objects.

To watch the network in action, we can place probes on the connectors C and F, using apr obe procedure
similar to the one we used to monitor wiresin section 3.3.4. Placing a probe on a connector will cause a
message to be printed whenever the connector is given avalue:

(probe "Cel sius tenp" C)
(probe "Fahrenheit tenmp" F)

Next we set the value of Cto 25. (The third argument to set - val ue! tells Cthat this directive comes
fromtheuser.)

(set-value! C 25 'user)

Probe: Celsius temp = 25
Probe: Fahrenheit temp = 77
done

The probe on C awakens and reports the value. C aso propagates its value through the network as
described above. This setsF to 77, which is reported by the probe on F.

Now we can try to set F to anew value, say 212:

(set-value! F 212 'user)
Error! Contradiction (77 212)

The connector complains that it has sensed a contradiction: Itsvalueis 77, and someoneistrying to set it
to 212. If wereally want to reuse the network with new values, we can tell Cto forget its old value:

(forget-value! C 'user)

Probe: Celsius temp = ?
Probe: Fahrenheit temp = ?
done

Cfindsthat theuser , who set its value originally, is now retracting that value, so C agreesto lose its

value, as shown by the probe, and informs the rest of the network of this fact. Thisinformation eventually
propagates to F, which now finds that it has no reason for continuing to believe that itsown valueis 77.

Thus, F aso gives up its value, as shown by the probe.

Now that F has no value, we are freeto set it to 212;

(set-value! F 212 'user)

Probe: Fahrenheit tenmp = 212
Probe: Celsius tenmp = 100
done

This new value, when propagated through the network, forces Cto have avalue of 100, and thisis
registered by the probe on C. Notice that the very same network is being used to compute C given F and to
compute F given C. This nondirectionality of computation is the distinguishing feature of constraint-based
systems.

Implementing the constraint system

The constraint system isimplemented via procedural objects with local state, in a manner very similar to
the digital-circuit ssmulator of section 3.3.4. Although the primitive objects of the constraint system are

somewhat more complex, the overall system is simpler, since there is no concern about agendas and logic
delays.

The basic operations on connectors are the following:

. (has-val ue? <connect or >)
tells whether the connector has avaue.

. (get-val ue <connect or>)
returns the connector's current value.

. (set-value! <connector> <new val ue> <i nf or mant >)
indicates that the informant is requesting the connector to set its value to the new value.

. (forget-val ue! <connector> <retractor>)
tells the connector that the retractor isrequesting it to forget its value.

. (connect <connector> <new constrai nt>)
tells the connector to participate in the new constraint.

The connectors communicate with the constraints by means of the proceduresi nf or m about - val ue,
which tells the given constraint that the connector hasavalue, and i nf or m about - no- val ue, which
tells the constraint that the connector haslost its value.

Adder constructs an adder constraint among summand connectorsal and a2 and asumconnector. An
adder isimplemented as a procedure with local state (the procedure ne below):

(define (adder al a2 sum
(define (process-new val ue)
(cond ((and (has-value? al) (has-value? a2))

(set-val ue! sum
(+ (get-value al) (get-value a2))
me))
((and (has-val ue? al) (has-value? sum)
(set-val ue! a2
(- (get-value sunm) (get-value al))
me))
((and (has-val ue? a2) (has-value? sum)
(set-value! al
(- (get-value sum) (get-value a2))
me))))
(define (process-forget-val ue)
(forget-value! sum ne)
(forget-value! al ne)
(forget-value! a2 ne)
(process-new val ue))
(define (me request)

(cond ((eqg? request 'I-have-a-val ue)
(process- new val ue))
((eq? request 'I-lost-ny-val ue)
(process-forget-val ue))
(el se
(error "Unknown request -- ADDER' request))))

(connect al ne)
(connect a2 ne)
(connect sum ne)
me)

Adder connects the new adder to the designated connectors and returns it asits value. The procedure ne,

which represents the adder, acts as a dispatch to the local procedures. The following ™ syntax interfaces"
(see footnote 27 in section 3.3.4) are used in conjunction with the dispatch:

(define (informabout-value constraint)

(constraint 'I-have-a-value))
(define (informabout-no-val ue constraint)
(constraint 'I-1ost-ny-value))

The adder'slocal procedure pr ocess- new val ue iscalled when the adder isinformed that one of its
connectors has avalue. The adder first checksto seeif both al and a2 have values. If so, it tellssumto
set its value to the sum of the two addends. Thei nf or mant argument to set - val ue! isne, whichis
the adder object itself. If a1 and a2 do not both have values, then the adder checksto seeif perhapsal
and sumhave values. If so, it setsa?2 to the difference of these two. Finally, if a2 and sumhave values,
this gives the adder enough information to set al. If the adder istold that one of its connectors haslost a
value, it requeststhat all of its connectors now lose their values. (Only those values that were set by this
adder are actually lost.) Then it runspr ocess- new val ue. The reason for this last step is that one or
more connectors may still have avalue (that is, a connector may have had a value that was not originally
set by the adder), and these values may need to be propagated back through the adder.

A multiplier isvery similar to an adder. It will set itspr oduct to Oif either of the factorsis 0, even if the
other factor is not known.

(define (multiplier mlL n2 product)
(define (process-new val ue)
(cond ((or (and (has-value? nml) (= (get-value nl) 0))
(and (has-value? n2) (= (get-value n2) 0)))
(set-val ue! product 0 ne))
((and (has-val ue? m) (has-value? nR))
(set-val ue! product
(* (get-value nml) (get-value nR))
ne))
((and (has-val ue? product) (has-value? ml))
(set-val ue! nt
(/ (get-value product) (get-value nl))
ne))
((and (has-val ue? product) (has-value? nR))
(set-value! m
(/ (get-val ue product) (get-value nR))
ne))))
(define (process-forget-val ue)
(forget-val ue! product ne)
(forget-value! mL ne)
(forget-value! n2 ne)
(process-new-val ue))
(define (me request)

(cond ((eqg? request 'I-have-a-val ue)
(process-new-val ue))
((eqg? request 'I-lost-ny-val ue)
(process-forget-val ue))
(el se

(error "Unknown request -- MJULTIPLIER' request))))
(connect mlL ne)
(connect n2 ne)
(connect product ne)
ne)

A const ant constructor simply sets the value of the designated connector. Any | - have- a- val ue or
| -1 ost - my- val ue message sent to the constant box will produce an error.

(define (constant val ue connector)
(define (me request)
(error "Unknown request -- CONSTANT" request))
(connect connector ne)
(set-val ue! connector val ue ne)
ne)

Finally, a probe prints a message about the setting or unsetting of the designated connector:

(define (probe name connector)
(define (print-probe val ue)
(new i ne)
(di splay "Probe: ")
(di spl ay nane)
(display " =")
(di spl ay val ue))
(define (process-new val ue)
(print-probe (get-value connector)))
(define (process-forget-val ue)
(print-probe "?"))
(define (me request)

(cond ((eq? request 'I-have-a-val ue)

(process-new val ue))
((eq? request 'I-1ost-my-val ue)
(process-forget-val ue))
(el se
(error "Unknown request -- PROBE" request))))

(connect connector ne)

ne)

Representing connectors

A connector is represented as a procedural object with local state variablesval ue, the current value of
the connector; i nf or mant , the object that set the connector's value; and const r ai nt s, alist of the
constraints in which the connector participates.

(defi ne (nake-connector)
(let ((value false) (informant fal se) (constraints '()))
(define (set-my-val ue newal setter)
(cond ((not (has-value? ne))
(set! val ue newal)
(set! informant setter)
(for-each-except setter
i nf orm about - val ue
constraints))
((not (= val ue newal))
(error "Contradiction" (list value newal)))
(el se "ignored)))
(define (forget-ny-value retractor)
(if (eg? retractor informant)
(begin (set! informant false)
(for-each-except retractor
i nf orm about - no- val ue
constraints))
"ignored))

(define (connect new constraint)
(i1f (not (nmeng new constraint constraints))
(set! constraints
(cons newconstraint constraints)))
(1 f (has-val ue? ne)
(i nform about - val ue new constraint))
" done)
(define (me request)
(cond ((eq? request 'has-val ue?)
(if informant true false))
((eq? request 'value) val ue)
((eq? request 'set-value!) set-ny-val ue)
((eq? request 'forget) forget-mny-val ue)
((eq? request 'connect) connect)
(el se (error "Unknown operation -- CONNECTOR"
request))))
ne))

The connector's local procedure set - my- val ue is called when there is arequest to set the connector's
value. If the connector does not currently have avalue, it will set its value and remember asi nf or mant

the constraint that requested the value to be set.32 Then the connector will notify all of its participating
constraints except the constraint that requested the value to be set. Thisis accomplished using the
following iterator, which applies a designated procedure to all itemsin alist except a given one:

(define (for-each-except exception procedure |ist)
(define (loop itemns)
(cond ((null? itens) 'done)
((eq? (car itens) exception) (loop (cdr itens)))
(el se (procedure (car itens))
(loop (cdr itens)))))
(loop list))

If aconnector is asked to forget its value, it runsthe local proceduref or get - ny- val ue, which first

checks to make sure that the request is coming from the same object that set the value originaly. If so, the
connector informs its associated constraints about the loss of the value.

Thelocal procedure connect adds the designated new constraint to the list of constraintsif it is not
already in that list. Then, if the connector has avalue, it informs the new constraint of this fact.

The connector's procedure e serves as a dispatch to the other internal procedures and also represents the
connector as an object. The following procedures provide a syntax interface for the dispatch:

(define (has-val ue? connector)
(connector 'has-val ue?))
(define (get-val ue connector)
(connector 'value))
(define (set-value! connector new- val ue informant)

((connector 'set-value!) newvalue informant))
(define (forget-val ue! connector retractor)
((connector 'forget) retractor))
(define (connect connector new constraint)
((connector 'connect) new constraint))

Exercise 3.33. Using primitive multiplier, adder, and constant constraints, define a procedure aver ager
that takes three connectors a, b, and ¢ as inputs and establishes the constraint that the value of ¢ isthe
average of the values of a and b.

Exercise 3.34. Louis Reasoner wants to build a squarer, a constraint device with two terminals such that
the value of connector b on the second terminal will always be the square of the value a on the first

terminal. He proposes the following simple device made from amultiplier:

(define (squarer a b)
(multiplier a a b))

Thereisaserious flaw in thisidea. Explain.

Exercise 3.35. Ben Bitdiddle tells Louis that one way to avoid the trouble in exercise 3.34 isto define a

squarer as anew primitive constraint. Fill in the missing portionsin Ben's outline for a procedure to
implement such a constraint:

(define (squarer a b)
(define (process-newval ue)
(1f (has-value? b)
(1f (< (get-value b) 0)
(error "square less than 0 -- SQUARER' (get-value b))
<al ternativel>)
<al ternative2>))
(define (process-forget-val ue) <bodyl>)
(define (nme request) <body2>)
<rest of definition>
ne)

Exercise 3.36. Suppose we evaluate the following sequence of expressionsin the global environment:

(define a (nmake-connector))
(define b (nmake-connector))
(set-value! a 10 'user)

At sometime during evaluation of the set - val ue! , the following expression from the connector's local
procedure is evaluated:

(for-each-except setter informabout-value constraints)

Draw an environment diagram showing the environment in which the above expression is evaluated.

Exercise 3.37. Thecel si us-fahrenheit-converter procedureiscumbersome when compared
with a more expression-oriented style of definition, such as

(define (celsius-fahrenheit-converter x)
(c+ (c* (c/ (cv 9) (cv H))
X)
(cv 32)))
(define C (nmake-connector))
(define F (cel sius-fahrenheit-converter Q))

Herec+, c*, etc. arethe ""constraint” versions of the arithmetic operations. For example, ¢ + takes two
connectors as arguments and returns a connector that is related to these by an adder constraint:

(define (c+ x vy)
(let ((z (nmake-connector)))
(adder x y z)

z))

Define analogous proceduresc- , c*, ¢/ , and cv (constant value) that enable usto define compound
constraints as in the converter example above.33

16Set-car! andset - cdr! returnimplementation-dependent values. Likeset !, they should be used only for their effect.

17 We see from this that mutation operations on lists can create “garbage" that is not part of any accessible structure. We will seein
section 5.3.2 that Lisp memory-management systems include a garbage collector, which identifies and recycles the memory space used by

unneeded pairs.

18 Get - new pai r isone of the operations that must be implemented as part of the memory management required by a Lisp
implementation. We will discuss thisin section 5.3.1.

19 The two pairs are distinct because each call to cons returns anew pair. The symbols are shared; in Scheme there is a unique symbol with
any given name. Since Scheme provides no way to mutate a symbol, this sharing is undetectable. Note also that the sharing is what enables us
to compare symbols using eq?, which simply checks equality of pointers.

20 The subtleties of dealing with sharing of mutable data objects reflect the underlying issues of “sameness” and *"change'" that were raised in
section 3.1.3. We mentioned there that admitting change to our language requires that a compound object must have an ““identity" that is
something different from the pieces from which it is composed. In Lisp, we consider this ““identity" to be the quality that istested by eq?,
i.e., by equality of pointers. Sincein most Lisp implementations a pointer is essentially a memory address, we are *"solving the problem"” of
defining the identity of objects by stipulating that a data object “itself" is the information stored in some particular set of memory locationsin
the computer. This suffices for simple Lisp programs, but is hardly a general way to resolve the issue of “sameness" in computational models.

21 On the other hand, from the viewpoint of implementation, assignment requires us to modify the environment, which isitself amutable data
structure. Thus, assignment and mutation are equipotent: Each can be implemented in terms of the other.

22 |f thefirst item is the final item in the queue, the front pointer will be the empty list after the deletion, which will mark the queue as empty;
we needn't worry about updating the rear pointer, which will still point to the deleted item, because enpt y- queue? looks only at the front

pointer.

23 Be careful not to make the interpreter try to print a structure that contains cycles. (See exercise 3.13.)

24 Because assoc usesequal ?, it can recognize keys that are symbols, numbers, or list structure.

25 Thus, the first backbone pair is the object that represents the table “itself"; that is, a pointer to the tableis a pointer to this pair. This same
backbone pair aways starts the table. If we did not arrange thingsin thisway, i nsert! would have to return anew value for the start of the

table when it added a new record.

26 A full-adder is abasic circuit element used in adding two binary numbers. Here A and B are the bits at corresponding positions in the two
numbers to be added, and C;,, is the carry bit from the addition one place to the right. The circuit generates SUM, which is the sum bit in the

corresponding position, and C,,;, which is the carry bit to be propagated to the | eft.

27 These procedures are simply syntactic sugar that allow us to use ordinary procedural syntax to access the local procedures of objects. It is
striking that we can interchange the role of ““procedures” and ““data" in such asimple way. For example, if wewrite(w re ' get -

si gnal) wethink of wi r e asaprocedurethat is called with the message get - si gnal asinput. Alternatively, writing (get - si gnal
Wi r e) encourages usto think of wi r e asadata object that is the input to a procedure get - si gnal . The truth of the matter isthat, ina

language in which we can deal with procedures as objects, there is no fundamental difference between *procedures” and “data," and we can
choose our syntactic sugar to allow us to program in whatever style we choose.

28 The agendaiis a headed list, like the tables in section 3.3.3, but since the list is headed by the time, we do not need an additional dummy
header (such asthe*t abl e* symbol used with tables).

29 Observethat thei f expression in this procedure has no <alternative> expression. Such a > “one-armed i f statement" is used to decide
whether to do something, rather than to select between two expressions. Ani f expression returns an unspecified valueif the predicate is false
and there is no <alternative>.

30 |n this way, the current time will always be the time of the action most recently processed. Storing this time at the head of the agenda
ensures that it will still be available even if the associated time segment has been deleted.

31 Constraint propagation first appeared in the incredibly forward-looking SKETCHPAD system of lvan Sutherland (1963). A beautiful
constraint-propagation system based on the Smalltalk language was developed by Alan Borning (1977) at Xerox Palo Alto Research Center.
Sussman, Stallman, and Steele applied constraint propagation to electrical circuit analysis (Sussman and Stallman 1975; Sussman and Steele
1980). TK!Solver (Konopasek and Jayaraman 1984) is an extensive modeling environment based on constraints.

32 Theset t er might not be a constraint. In our temperature example, we used user asthesetter.

33 The expression-oriented format is convenient because it avoids the need to name the intermediate expressions in a computation. Our
original formulation of the constraint language is cumbersome in the same way that many languages are cumbersome when dealing with
operations on compound data. For example, if we wanted to compute the product (a + b) - (c + d), where the variables represent vectors, we
could work in ““imperative style," using procedures that set the values of designated vector arguments but do not themselves return vectors as
values:

(v-suma b tenpl)
(v-sumc d tenp2)
(v-prod tenpl tenp2 answer)

Alternatively, we could deal with expressions, using procedures that return vectors as values, and thus avoid explicitly mentioning t enp1 and

tenp2:

(define answer (v-prod (v-suma b) (v-sumc d)))

Since Lisp allows us to return compound objects as values of procedures, we can transform our imperative-style constraint language into an
expression-oriented style as shown in this exercise. In languages that are impoverished in handling compound objects, such as Algol, Basic,
and Pascal (unless one explicitly uses Pascal pointer variables), oneis usually stuck with the imperative style when manipulating compound
objects. Given the advantage of the expression-oriented format, one might ask if there is any reason to have implemented the system in
imperative style, as we did in this section. One reason is that the non-expression-oriented constraint language provides a handle on constraint
objects (e.g., the value of theadder procedure) as well as on connector objects. Thisis useful if we wish to extend the system with new
operations that communicate with constraints directly rather than only indirectly via operations on connectors. Although it is easy to
implement the expression-oriented style in terms of the imperative implementation, it is very difficult to do the converse.

[Gotofirgt, previous, next page; contents; index|

[Gotofirdt, previous, next page; contents; index|

3.4 Concurrency: Time Is of the Essence

We've seen the power of computational objects with local state astools for modeling. Y et, as section 3.1.3

warned, this power extracts a price: the loss of referential transparency, giving rise to athicket of
guestions about sameness and change, and the need to abandon the substitution model of evaluation in
favor of the more intricate environment model.

The central issue lurking beneath the complexity of state, sameness, and change is that by introducing
assignment we are forced to admit time into our computational models. Before we introduced assignment,
al our programs were timeless, in the sense that any expression that has a value always has the same
value. In contrast, recall the example of modeling withdrawals from a bank account and returning the
resulting balance, introduced at the beginning of section 3.1.1.

(wi t hdraw 25)

75
(wi t hdraw 25)

50

Here successive evaluations of the same expression yield different values. This behavior arises from the
fact that the execution of assignment statements (in this case, assignments to the variable bal ance)

delineates moments in time when values change. The result of evaluating an expression depends not only
on the expression itself, but also on whether the evaluation occurs before or after these moments. Building
models in terms of computational objects with local state forces usto confront time as an essential concept
in programming.

We can go further in structuring computational models to match our perception of the physical world.
Objectsin the world do not change one at atime in sequence. Rather we perceive them as acting
concurrently -- all at once. So it is often natural to model systems as collections of computational
processes that execute concurrently. Just as we can make our programs modular by organizing modelsin
terms of objects with separate local state, it is often appropriate to divide computational models into parts
that evolve separately and concurrently. Even if the programs are to be executed on a sequential computer,
the practice of writing programs as if they were to be executed concurrently forces the programmer to
avoid inessential timing constraints and thus makes programs more modular.

In addition to making programs more modular, concurrent computation can provide a speed advantage
over sequential computation. Sequential computers execute only one operation at atime, so the amount of
time it takes to perform atask is proportional to the total number of operations performed.34 However, if it
is possible to decompose a problem into pieces that are relatively independent and need to communicate
only rarely, it may be possible to allocate pieces to separate computing processors, producing a speed
advantage proportional to the number of processors available.

Unfortunately, the complexities introduced by assignment become even more problematic in the presence
of concurrency. The fact of concurrent execution, either because the world operates in parallel or because
our computers do, entails additional complexity in our understanding of time.

3.4.1 The Nature of Time in Concurrent Systems

On the surface, time seems straightforward. It is an ordering imposed on events.22 For any events A and B,
either A occurs before B, A and B are simultaneous, or A occurs after B. For instance, returning to the bank
account example, suppose that Peter withdraws $10 and Paul withdraws $25 from ajoint account that
initially contains $100, leaving $65 in the account. Depending on the order of the two withdrawals, the
sequence of balancesin the account is either $100 — $90 — $65 or $100 — $75 — $65. In a computer
implementation of the banking system, this changing sequence of balances could be modeled by
successive assignmentsto avariable bal ance.

In complex situations, however, such aview can be problematic. Suppose that Peter and Paul, and other
people besides, are accessing the same bank account through a network of banking machines distributed
al over the world. The actual sequence of balances in the account will depend critically on the detailed
timing of the accesses and the details of the communication among the machines.

This indeterminacy in the order of events can pose serious problemsin the design of concurrent systems.
For instance, suppose that the withdrawals made by Peter and Paul are implemented as two separate
processes sharing a common variable bal ance, each process specified by the procedure givenin

section 3.1.1:

(define (wthdraw anmount)
(i f (>= bal ance ampunt)
(begin (set! bal ance (- bal ance anopunt))
bal ance)
"I nsufficient funds"))

If the two processes operate independently, then Peter might test the balance and attempt to withdraw a
legitimate amount. However, Paul might withdraw some funds in between the time that Peter checks the
balance and the time Peter completes the withdrawal, thus invalidating Peter's test.

Things can be worse still. Consider the expression

(set! bal ance (- bal ance anount))

executed as part of each withdrawal process. This consists of three steps: (1) accessing the value of the
bal ance variable; (2) computing the new balance; (3) setting bal ance to this new value. If Peter and

Paul's withdrawal s execute this statement concurrently, then the two withdrawals might interleave the
order in which they accessbal ance and set it to the new value.

The timing diagram in figure 3.29 depicts an order of events where bal ance starts at 100, Peter
withdraws 10, Paul withdraws 25, and yet the final value of bal ance is75. As shown in the diagram, the
reason for this anomaly isthat Paul's assignment of 75 to bal ance is made under the assumption that the
value of bal ance to be decremented is 100. That assumption, however, became invalid when Peter

changed bal ance to 90. Thisis a catastrophic failure for the banking system, because the total amount of
money in the system is not conserved. Before the transactions, the total amount of money was $100.
Afterwards, Peter has $10, Paul has $25, and the bank has $75.36

The general phenomenon illustrated hereis that several processes may share acommon state variable.
What makes this complicated is that more than one process may be trying to manipulate the shared state at
the same time. For the bank account example, during each transaction, each customer should be able to act
asif the other customers did not exist. When a customer changes the balance in away that depends on the
balance, he must be able to assume that, just before the moment of change, the balance is still what he
thought it was.

Correct behavior of concurrent programs

The above example typifies the subtle bugs that can creep into concurrent programs. The root of this
complexity liesin the assignments to variables that are shared among the different processes. We already
know that we must be careful in writing programsthat useset ! , because the results of a computation

depend on the order in which the assignments occur.37 With concurrent processes we must be especially
careful about assignments, because we may not be able to control the order of the assignments made by
the different processes. If several such changes might be made concurrently (as with two depositors
accessing ajoint account) we need some way to ensure that our system behaves correctly. For example, in
the case of withdrawals from ajoint bank account, we must ensure that money is conserved. To make
concurrent programs behave correctly, we may have to place some restrictions on concurrent execution.

Petec Eank Paul

3100

(_Av:ms balance: $100 _-j I:Ams balance: §L100 -:I

(-_ncw value: LO0 [0=90 j

¥
I:ncw valoe: L0 25=75 jl

|::s|:t1 balance to §940 :j

¥o0

¥
@:ﬂ balance to §75 ;j

¥7s

\

time

Figure 3.29: Timing diagram showing how interleaving the order of eventsin two banking withdrawals
can lead to an incorrect final balance.

One possible restriction on concurrency would stipulate that no two operations that change any shared
state variables can occur at the sametime. Thisis an extremely stringent requirement. For distributed
banking, it would require the system designer to ensure that only one transaction could proceed at atime.
Thiswould be both inefficient and overly conservative. Figure 3.30 shows Peter and Paul sharing a bank
account, where Paul has a private account as well. The diagram illustrates two withdrawals from the
shared account (one by Peter and one by Paul) and a deposit to Paul's private account.38 The two
withdrawals from the shared account must not be concurrent (since both access and update the same
account), and Paul's deposit and withdrawal must not be concurrent (since both access and update the
amount in Paul's wallet). But there should be no problem permitting Paul's deposit to his private account to
proceed concurrently with Peter's withdrawal from the shared account.

Peter Eankl Paul Eank?2

100 3300

&)
&) ©
\

®

Ry

W

kﬂh A

~,

D

Q0

365 3308

& (&))
_/
\
s
& &)

"
Ve
®)

\

time

Figure 3.30: Concurrent deposits and withdrawals from ajoint account in Bank1 and a private account
in Bank2.

A less stringent restriction on concurrency would ensure that a concurrent system produces the same result
asif the processes had run sequentially in some order. There are two important aspects to this requirement.
First, it does not require the processes to actually run sequentially, but only to produce results that are the
same as if they had run sequentially. For the example in figure 3.30, the designer of the bank account
system can safely allow Paul's deposit and Peter's withdrawal to happen concurrently, because the net
result will be the same asiif the two operations had happened sequentially. Second, there may be more than
one possible "correct” result produced by a concurrent program, because we require only that the result be
the same as for some sequential order. For example, suppose that Peter and Paul's joint account starts out
with $100, and Peter deposits $40 while Paul concurrently withdraws half the money in the account. Then
sequential execution could result in the account balance being either $70 or $90 (see exercise 3.38).39

There are still weaker requirements for correct execution of concurrent programs. A program for
simulating diffusion (say, the flow of heat in an object) might consist of alarge number of processes, each
one representing a small volume of space, that update their values concurrently. Each process repeatedly
changes its value to the average of its own value and its neighbors values. This agorithm converges to the
right answer independent of the order in which the operations are done; there is no need for any
restrictions on concurrent use of the shared values.

Exercise 3.38. Suppose that Peter, Paul, and Mary share ajoint bank account that initially contains $100.
Concurrently, Peter deposits $10, Paul withdraws $20, and Mary withdraws half the money in the account,
by executing the following commands:

Peter: (set! bal ance (+ bal ance 10))
aul: (set! bal ance (- bal ance 20))

Mary: (set! bal ance (- bal ance (/ bal ance 2)))

a. List all the different possible valuesfor bal ance after these three transactions have been completed,
assuming that the banking system forces the three processes to run sequentialy in some order.

b. What are some other values that could be produced if the system allows the processes to be interleaved?
Draw timing diagrams like the one in figure 3.29 to explain how these values can occur.

3.4.2 Mechanisms for Controlling Concurrency

We've seen that the difficulty in dealing with concurrent processes is rooted in the need to consider the
interleaving of the order of eventsin the different processes. For example, suppose we have two processes,
one with three ordered events (a,b,c) and one with three ordered events (x,y,2). If the two processes run
concurrently, with no constraints on how their execution isinterleaved, then there are 20 different possible
orderings for the events that are consistent with the individual orderings for the two processes:

(a,b,c, x,y,2) (o, r,byc3) (raboyz) (ray b
(a,b,r,c,y,2) (orbyz0) (I, u.by,c',u} (r,y,8, b0 z)
(a,b,r,y,0c,3) (or b) (raeby . (ryaebs
(Eﬂbﬂ I:' y:‘ C} {E I y:‘] UJC} {I E y:‘ b:' C:' u} {I y:lﬂ u b C}
(EJ I:lb:l C:' y:‘ } (EJ I:' y:‘ :' } {I E y:‘ b:' u:' C} {I y:‘“ E b C}

As programmers designing this system, we would have to consider the effects of each of these 20
orderings and check that each behavior is acceptable. Such an approach rapidly becomes unwieldy as the
numbers of processes and events increase.

A more practical approach to the design of concurrent systems is to devise general mechanisms that allow

us to constrain the interleaving of concurrent processes so that we can be sure that the program behavior is
correct. Many mechanisms have been developed for this purpose. In this section, we describe one of them,
the serializer.

Serializing access to shared state

Serialization implements the following idea: Processes will execute concurrently, but there will be certain
collections of procedures that cannot be executed concurrently. More precisely, serialization creates
distinguished sets of procedures such that only one execution of a procedure in each serialized set is
permitted to happen at atime. If some procedure in the set is being executed, then a process that attempts
to execute any procedure in the set will be forced to wait until the first execution has finished.

We can use seriaization to control accessto shared variables. For example, if we want to update a shared
variable based on the previous value of that variable, we put the access to the previous value of the
variable and the assignment of the new value to the variable in the same procedure. We then ensure that no
other procedure that assigns to the variable can run concurrently with this procedure by serializing all of
these procedures with the same serializer. This guarantees that the value of the variable cannot be changed
between an access and the corresponding assignment.

Serializers in Scheme

To make the above mechanism more concrete, suppose that we have extended Scheme to include a
procedure called par al | el - execut e:

(paral l el -execute <p;> <py> ... <py>)

Each <p> must be a procedure of no arguments. Par al | el - execut e creates a separate process for
each <p>, which applies <p> (to no arguments). These processes all run concurrently.40

As an example of how thisis used, consider

(define x 10)

(parallel-execute (lanmbda () (set! x (* x X)))
(lanbda () (set! x (+ x 1))))

This creates two concurrent processes -- P4, which setsx to x times x, and P,, which increments x. After
execution is complete, x will beleft with one of five possible values, depending on the interleaving of the
events of P, and P,:

101: P4 setsx to 100 and then P, increments x to 101.
121: P, increments x to 11 and then P setsx to x times X.

110: P, changes x from 10 to 11 between the two times that P, accesses the value of x during the
evauationof (* x X).

11: P, accesses x, then P, sets x to 100, then P, sets x.

100: P, accesses x (twice), then P, setsx to 11, then P4 sets x.

We can constrain the concurrency by using serialized procedures, which are created by serializers.
Serializers are constructed by make- seri al i zer , whose implementation is given below. A serializer
takes a procedure as argument and returns a serialized procedure that behaves like the original procedure.
All callsto agiven serializer return serialized procedures in the same set.

Thus, in contrast to the example above, executing

(define x 10)
(define s (make-serializer))

(parallel-execute (s (lanmbda () (set! x (* x x))))
(s (lanmbda () (set! x (+ x 1)))))

can produce only two possible values for x, 101 or 121. The other possibilities are eliminated, because the
execution of P, and P, cannot be interleaved.

Hereisaversion of the make- account procedure from section 3.1.1, where the deposits and
withdrawal s have been serialized:

(define (make-account bal ance)
(define (w thdraw anount)
(i f (>= bal ance anount)
(begin (set! balance (- bal ance anmount))
bal ance)
"I nsufficient funds"))
(define (deposit anount)
(set! bal ance (+ bal ance anount))
bal ance)
(let ((protected (nake-serializer)))
(define (dispatch m
(cond ((eq? m'w thdraw) (protected w thdraw))
((eq? m'deposit) (protected deposit))
((eq? m' bal ance) bal ance)
(el se (error "Unknown request -- MAKE- ACCOUNT"

m)))
di spat ch))

With this implementation, two processes cannot be withdrawing from or depositing into a single account
concurrently. This eliminates the source of the error illustrated in figure 3.29, where Peter changes the
account balance between the times when Paul accesses the balance to compute the new value and when
Paul actually performs the assignment. On the other hand, each account has its own serializer, so that
deposits and withdrawal s for different accounts can proceed concurrently.

Exercise 3.39. Which of the five possibilitiesin the parallel execution shown above remain if we instead
serialize execution as follows:

(define x 10)
(define s (make-serializer))

(parallel-execute (lanmbda () (set! x ((s (lambda () (* x X))))))
(s (lanmbda () (set! x (+ x 1)))))

Exercise 3.40. Giveall possible values of x that can result from executing

(define x 10)

(parallel-execute (lanbda () (set! x (* x X)))
(lambda () (set! x (* x x X))))

Which of these possibilities remain if we instead use serialized procedures:

(define x 10)
(define s (make-serializer))

(parallel-execute (s (lanmbda () (set! x (* x x))))
(s (lanmbda () (set! x (* x x xX)))))

Exercise 3.41. Ben Bitdiddle worries that it would be better to implement the bank account as follows
(where the commented line has been changed):

(defi ne (nake-account bal ance)
(define (wthdraw anmount)
(i f (>= bal ance anpunt)
(begin (set! balance (- bal ance anopunt))
bal ance)
"I nsufficient funds"))
(define (deposit anobunt)
(set! bal ance (+ bal ance anount))
bal ance)

conti nued on next page

(let ((protected (nmake-serializer)))
(define (dispatch m
(cond ((eg? m'w thdraw) (protected w thdraw))
((eq? m'deposit) (protected deposit))
((eg? m' bal ance)
((protected (lanbda () balance)))) ; serialized
(el se (error "Unknown request -- MAKE- ACCOUNT"

m)))
di spat ch))

because allowing unserialized access to the bank balance can result in anomal ous behavior. Do you agree?

|s there any scenario that demonstrates Ben's concern?

Exercise 3.42. Ben Bitdiddle suggeststhat it's a waste of time to create anew serialized procedure in
responseto every wi t hdr awand deposi t message. He saysthat nake- account could be changed
so that the callsto pr ot ect ed are done outside the di spat ch procedure. That is, an account would
return the same serialized procedure (which was created at the same time as the account) each timeit is
asked for awithdrawal procedure.

(defi ne (nmake-account bal ance)
(define (wthdraw anmount)
(i f (>= bal ance anmpunt)
(begin (set! bal ance (- bal ance anopunt))
bal ance)
"I nsufficient funds"))
(define (deposit anobunt)
(set! bal ance (+ bal ance anount))
bal ance)
(let ((protected (nake-serializer)))
(let ((protected-wi thdraw (protected w thdraw))
(protected-deposit (protected deposit)))
(define (dispatch nm
(cond ((eq? m'w thdraw) protected-w thdraw)
((eq? m ' deposit) protected-deposit)
((eq? m' bal ance) bal ance)
(el se (error "Unknown request -- MAKE- ACCOUNT"

m)))
di spatch)))

Is this a safe change to make? In particular, is there any difference in what concurrency is allowed by these
two versions of make- account ?

Complexity of using multiple shared resources

Serializers provide a powerful abstraction that hel ps isolate the complexities of concurrent programs so
that they can be dealt with carefully and (hopefully) correctly. However, while using serializersis
relatively straightforward when there is only a single shared resource (such as a single bank account),
concurrent programming can be treacheroudly difficult when there are multiple shared resources.

Toillustrate one of the difficulties that can arise, suppose we wish to swap the balances in two bank
accounts. We access each account to find the balance, compute the difference between the balances,
withdraw this difference from one account, and deposit it in the other account. We could implement this as

follows:41

(defi ne (exchange accountl account 2)
(let ((difference (- (accountl 'bal ance)
(account 2 ' bal ance))))
((accountl "withdraw) difference)

((account2 'deposit) difference)))

This procedure works well when only a single process istrying to do the exchange. Suppose, however,
that Peter and Paul both have access to accounts al, a2, and a3, and that Peter exchanges al and a2 while
Paul concurrently exchanges al and a3. Even with account deposits and withdrawals serialized for
individual accounts (asinthe make- account procedure shown above in this section), exchange can
still produce incorrect results. For example, Peter might compute the difference in the balances for al and
a2, but then Paul might change the balance in al before Peter is able to complete the exchange.42 For
correct behavior, we must arrange for the exchange procedure to lock out any other concurrent accesses
to the accounts during the entire time of the exchange.

One way we can accomplish thisis by using both accounts serializersto serialize the entireexchange
procedure. To do this, we will arrange for access to an account's serializer. Note that we are deliberately
breaking the modularity of the bank-account object by exposing the serializer. The following version of
make- account isidentical to the original version given in section 3.1.1, except that a serializer is
provided to protect the balance variable, and the serializer is exported via message passing:

(defi ne (nake-account-and-serializer bal ance)
(define (wthdraw anmount)
(i f (>= bal ance anpunt)
(begin (set! bal ance (- bal ance anopunt))
bal ance)
"I nsufficient funds"))
(define (deposit anobunt)
(set! bal ance (+ bal ance anount))
bal ance)
(let ((balance-serializer (make-serializer)))
(define (dispatch nm
(cond ((eg? m'w thdraw) wi thdraw)
((eq? m ' deposit) deposit)
((eq? m' bal ance) bal ance)
((eq? m'serializer) balance-serializer)
(el se (error "Unknown request -- MAKE- ACCOUNT"

m)))
di spat ch))

We can use thisto do serialized deposits and withdrawals. However, unlike our earlier serialized account,
itis now the responsibility of each user of bank-account objects to explicitly manage the serialization, for
example as follows:43

(define (deposit account anpunt)
(let ((s (account "serializer))
(d (account 'deposit)))
((s d) anount)))

Exporting the serializer in thisway gives us enough flexibility to implement a serialized exchange
program. We simply serialize the original exchange procedure with the serializers for both accounts:

(define (serialized-exchange account1l account 2)
(let ((serializerl (accountl 'serializer))
(serializer2 (account2 'serializer)))
((serializerl (serializer2 exchange))
account 1
account 2)))

Exercise 3.43. Suppose that the balances in three accounts start out as $10, $20, and $30, and that
multiple processes run, exchanging the balances in the accounts. Argue that if the processes are run
sequentialy, after any number of concurrent exchanges, the account balances should be $10, $20, and $30
in some order. Draw atiming diagram like the one in figure 3.29 to show how this condition can be

violated if the exchanges are implemented using the first version of the account-exchange program in this
section. On the other hand, argue that even with thisexchange program, the sum of the balancesin the

accounts will be preserved. Draw atiming diagram to show how even this condition would be violated if
we did not serialize the transactions on individual accounts.

Exercise 3.44. Consider the problem of transferring an amount from one account to another. Ben
Bitdiddle claims that this can be accomplished with the following procedure, even if there are multiple
people concurrently transferring money among multiple accounts, using any account mechanism that
serializes deposit and withdrawal transactions, for example, the version of make- account inthetext

above.

(define (transfer fromaccount to-account anount)
((fromaccount 'w thdraw) anount)
((to-account 'deposit) anmount))

Louis Reasoner claims that there is a problem here, and that we need to use a more sophisticated method,
such as the one required for dealing with the exchange problem. Is Louisright? If not, what is the essential
difference between the transfer problem and the exchange problem? (Y ou should assume that the balance
infrom account isat least anount .)

Exercise 3.45. Louis Reasoner thinks our bank-account system is unnecessarily complex and error-prone
now that deposits and withdrawals aren't automatically serialized. He suggests that make- account -

and-seri al i zer should have exported the serializer (for use by such proceduresasseri al i zed-
exchange) in addition to (rather than instead of) using it to serialize accounts and deposits as mak e-
account did. He proposes to redefine accounts as follows:

(define (make-account-and-serializer bal ance)
(define (w thdraw anount)
(i f (>= bal ance anount)
(begin (set! balance (- bal ance anount))
bal ance)
"I'nsufficient funds"))
(define (deposit anount)
(set! bal ance (+ bal ance anobunt))

bal ance)
(let ((balance-serializer (make-serializer)))
(define (dispatch m
(cond ((eq? m'w thdraw) (bal ance-serializer wthdraw))

((eq? m'deposit) (bal ance-serializer deposit))
((eg? m' bal ance) bal ance)
((eq? m'serializer) balance-serializer)
(el se (error "Unknown request -- MAKE- ACCOUNT"

m)))
di spatch))

Then deposits are handled as with the original nake- account :

(define (deposit account amnpunt)
((account 'deposit) anount))

Explain what is wrong with Louis's reasoning. In particular, consider what happenswhen seri al i zed-
exchange iscalled.

Implementing serializers

We implement serializersin terms of a more primitive synchronization mechanism called a mutex. A
mutex is an object that supports two operations -- the mutex can be acquired, and the mutex can be
released. Once amutex has been acquired, no other acquire operations on that mutex may proceed until
the mutex is released.44 In our implementation, each serializer has an associated mutex. Given a procedure
p, the serializer returns a procedure that acquires the mutex, runs p, and then rel eases the mutex. This
ensures that only one of the procedures produced by the serializer can be running at once, whichis
precisely the serialization property that we need to guarantee.

(define (nmake-serializer)
(let ((nutex (make-nutex)))
(lambda (p)
(define (serialized-p . args)
(mutex 'acquire)
(let ((val (apply p args)))
(mutex 'rel ease)
val))
serialized-p)))

The mutex is a mutable object (here we'll use a one-element list, which we'll refer to as a cell) that can
hold the value true or false. When the value is false, the mutex is available to be acquired. When the value
istrue, the mutex is unavailable, and any process that attempts to acquire the mutex must wait.

Our mutex constructor make- mut ex begins by initializing the cell contents to false. To acquire the
mutex, we test the cell. If the mutex is available, we set the cell contents to true and proceed. Otherwise,
we wait in aloop, attempting to acquire over and over again, until we find that the mutex is available.42

To release the mutex, we set the cell contents to false.

(defi ne (make- nut ex)
(let ((cell (list false)))
(define (the-mutex m
(cond ((eq? m'acquire)
(1f (test-and-set! cell)
(the-nutex "acquire))) ; retry
((eq? m'release) (clear! cell))))
t he- nut ex))
(define (clear! cell)
(set-car! cell false))

Test - and- set ! teststhe cell and returns the result of the test. In addition, if the test wasfalse, t est -
and- set ! setsthe cell contents to true before returning false. We can express this behavior asthe
following procedure:

(define (test-and-set! cell)
(if (car cell)
true
(begin (set-car! cell true)
fal se)))

However, thisimplementation of t est - and- set ! doesnot suffice asit stands. Thereisacrucial
subtlety here, which isthe essentia place where concurrency control enters the system: Thet est - and-
set ! operation must be performed atomically. That is, we must guarantee that, once a process has tested

the cell and found it to be false, the cell contents will actually be set to true before any other process can
test the cell. If we do not make this guarantee, then the mutex can fail in away similar to the bank-account
failurein figure 3.29. (See exercise 3.46.)

The actual implementation of t est - and- set ! depends on the details of how our system runs
concurrent processes. For example, we might be executing concurrent processes on a sequential processor
using atime-slicing mechanism that cycles through the processes, permitting each processto run for a
short time before interrupting it and moving on to the next process. In that case, t est - and- set ! can
work by disabling time dlicing during the testing and setting.46 Alternatively, multiprocessing computers
provide instructions that support atomic operations directly in hardware.4?

Exercise 3.46. Suppose that we implement t est - and- set ! using an ordinary procedure as shown in
the text, without attempting to make the operation atomic. Draw atiming diagram like the one in

figure 3.29 to demonstrate how the mutex implementation can fail by allowing two processes to acquire
the mutex at the same time.

Exercise 3.47. A semaphore (of size n) is ageneralization of amutex. Like a mutex, a semaphore
supports acquire and release operations, but it is more general in that up to n processes can acquire it
concurrently. Additional processes that attempt to acquire the semaphore must wait for release operations.
Give implementations of semaphores

a. in terms of mutexes

b. interms of atomict est - and- set ! operations.
Deadlock

Now that we have seen how to implement serializers, we can see that account exchanging still has a
problem, even with theser i al i zed- exchange procedure above. Imagine that Peter attempts to

exchange al with a2 while Paul concurrently attempts to exchange a2 with al. Suppose that Peter's
process reaches the point where it has entered a serialized procedure protecting al and, just after that,
Paul's process enters a serialized procedure protecting a2. Now Peter cannot proceed (to enter a serialized
procedure protecting a2) until Paul exits the serialized procedure protecting a2. Similarly, Paul cannot
proceed until Peter exits the serialized procedure protecting al. Each processis stalled forever, waiting for
the other. This situation is called a deadlock. Deadlock is always a danger in systems that provide
concurrent access to multiple shared resources.

One way to avoid the deadlock in this situation is to give each account a unigue identification number and
rewriteseri al i zed- exchange so that aprocess will aways attempt to enter a procedure protecting
the lowest-numbered account first. Although this method works well for the exchange problem, there are
other situations that require more sophisticated deadlock-avoidance techniques, or where deadlock cannot
be avoided at all. (See exercises 3.48 and 3.49.)48

Exercise 3.48. Explainin detail why the deadl ock-avoidance method described above, (i.e., the accounts
are numbered, and each process attempts to acquire the smaller-numbered account first) avoids deadlock
in the exchange problem. Rewriteser i al i zed- exchange to incorporate thisidea. (You will also
need to modify make- account so that each account is created with a number, which can be accessed by
sending an appropriate message.)

Exercise 3.49. Give a scenario where the deadl ock-avoidance mechanism described above does not work.
(Hint: In the exchange problem, each process knows in advance which accounts it will need to get access
to. Consider a situation where a process must get access to some shared resources before it can know
which additional shared resourcesit will require.)

Concurrency, time, and communication

We've seen how programming concurrent systems requires controlling the ordering of events when
different processes access shared state, and we've seen how to achieve this control through judicious use of
serializers. But the problems of concurrency lie deeper than this, because, from a fundamental point of
view, it's not always clear what is meant by " “shared state."

Mechanismssuch ast est - and- set ! require processes to examine a global shared flag at arbitrary
times. Thisis problematic and inefficient to implement in modern high-speed processors, where due to
optimization techniques such as pipelining and cached memory, the contents of memory may not bein a
consistent state at every instant. In contemporary multiprocessing systems, therefore, the serializer

paradigm is being supplanted by new approaches to concurrency control 42

The problematic aspects of shared state also arisein large, distributed systems. For instance, imagine a
distributed banking system where individual branch banks maintain local values for bank balances and
periodically compare these with values maintained by other branches. In such a system the value of “"the
account balance" would be undetermined, except right after synchronization. If Peter deposits money in an
account he holds jointly with Paul, when should we say that the account balance has changed -- when the
balance in the local branch changes, or not until after the synchronization? And if Paul accesses the
account from a different branch, what are the reasonable constraints to place on the banking system such
that the behavior is “"correct™? The only thing that might matter for correctness is the behavior observed by
Peter and Paul individually and the ""state” of the account immediately after synchronization. Questions
about the "“real" account balance or the order of events between synchronizations may be irrelevant or

meaningless.50

The basic phenomenon hereis that synchronizing different processes, establishing shared state, or
imposing an order on events requires communication among the processes. In essence, any notion of time
in concurrency control must be intimately tied to communication.2 It isintriguing that a similar
connection between time and communication also arises in the Theory of Relativity, where the speed of
light (the fastest signal that can be used to synchronize events) is afundamental constant relating time and
gpace. The complexities we encounter in dealing with time and state in our computational models may in
fact mirror afundamental complexity of the physical universe.

34 Most real processors actually execute afew operations at atime, following a strategy called pipelining. Although this technique greatly
improves the effective utilization of the hardware, it is used only to speed up the execution of a sequential instruction stream, while retaining
the behavior of the sequential program.

35 To quote some graffiti seen on a Cambridge building wall: " Timeis a device that was invented to keep everything from happening at
once."

36 An even worse failure for this system could occur if thetwo set | operations attempt to change the balance simultaneously, in which case

the actual data appearing in memory might end up being arandom combination of the information being written by the two processes. Most
computers have interlocks on the primitive memory-write operations, which protect against such simultaneous access. Even this seemingly
simple kind of protection, however, raises implementation challenges in the design of multiprocessing computers, where elaborate cache-
coherence protocols are required to ensure that the various processors will maintain a consistent view of memory contents, despite the fact
that data may be replicated (" cached") among the different processors to increase the speed of memory access.

37 Thefactorial program in section 3.1.3 illustrates this for asingle sequential process.

38 The columns show the contents of Peter's wallet, the joint account (in Bank1), Paul's wallet, and Paul's private account (in Bank?2), before
and after each withdrawal (W) and deposit (D). Peter withdraws $10 from Bank1; Paul deposits $5 in Bank2, then withdraws $25 from
Bank1.

39 A more formal way to express thisideaisto say that concurrent programs are inherently nondeterministic. That is, they are described not
by single-valued functions, but by functions whose results are sets of possible values. In section 4.3 we will study alanguage for expressing

nondeterministic computations.

40 Par al | el - execut e isnot part of standard Scheme, but it can be implemented in MIT Scheme. In our implementation, the new
concurrent processes also run concurrently with the original Scheme process. Also, in our implementation, the value returned by par al | el -

execut e isaspecial control object that can be used to halt the newly created processes.

41 We have simplified exchange by exploiting the fact that our deposi t message accepts negative amounts. (Thisis a serious bug in our
banking system!)

42 |f the account balances start out as $10, $20, and $30, then after any number of concurrent exchanges, the balances should still be $10, $20,
and $30 in some order. Seriaizing the deposits to individual accountsis not sufficient to guarantee this. See exercise 3.43.

43 Exercise 3.45 investigates why deposits and withdrawals are no longer automatically serialized by the account.

44 The term ~“mutex” is an abbreviation for mutual exclusion. The general problem of arranging a mechanism that permits concurrent
processes to safely share resourcesis called the mutual exclusion problem. Our mutex is asimple variant of the semaphore mechanism (see
exercise 3.47), which was introduced in the “" THE" Multiprogramming System developed at the Technological University of Eindhoven and
named for the university'sinitials in Dutch (Dijkstra 1968a). The acquire and rel ease operations were originally called P and V, from the
Dutch words passeren (to pass) and vrijgeven (to release), in reference to the semaphores used on railroad systems. Dijkstra's classic
exposition (1968b) was one of thefirst to clearly present the issues of concurrency control, and showed how to use semaphores to handle a
variety of concurrency problems.

45 In most time-shared operating systems, processes that are blocked by a mutex do not waste time ™ busy-waiting" as above. Instead, the
system schedules another process to run while the first is waiting, and the blocked process is awakened when the mutex becomes available.

46 |n MIT Scheme for asingle processor, which uses atime-slicing model, t est - and- set ! can be implemented as follows:

(define (test-and-set! cell)
(without-interrupts

(lanbda ()
(if (car cell)
true
(begin (set-car! cell true)

false)))))

W't hout - i nt er r upt s disablestime-slicing interrupts while its procedure argument is being executed.

47 There are many variants of such instructions -- including test-and-set, test-and-clear, swap, compare-and-exchange, load-reserve, and store-
conditional -- whose design must be carefully matched to the machine's processor-memory interface. One issue that arises here isto determine
what happensif two processes attempt to acquire the same resource at exactly the same time by using such an instruction. This requires some
mechanism for making a decision about which process gets control. Such a mechanism is called an arbiter. Arbiters usually boil down to
some sort of hardware device. Unfortunately, it is possible to prove that one cannot physically construct afair arbiter that works 100% of the
time unless one allows the arbiter an arbitrarily long time to make its decision. The fundamental phenomenon here was originally observed by
the fourteenth-century French philosopher Jean Buridan in his commentary on Aristotle's De caelo. Buridan argued that a perfectly rational
dog placed between two equally attractive sources of food will starve to death, because it is incapable of deciding which to go to first.

48 The general technique for avoiding deadlock by numbering the shared resources and acquiring them in order is due to Havender (1968).
Situations where deadlock cannot be avoided require deadl ock-recovery methods, which entail having processes “"back out" of the deadlocked
state and try again. Deadlock-recovery mechanisms are widely used in database management systems, atopic that is treated in detail in Gray
and Reuter 1993.

49 One such alternative to serialization is called barrier synchronization. The programmer permits concurrent processes to execute as they
please, but establishes certain synchronization points (""barriers") through which no process can proceed until all the processes have reached
the barrier. Modern processors provide machine instructions that permit programmers to establish synchronization points at places where
consistency is required. The PowerPC T, for example, includes for this purpose two instructions called SYNC and EIEIO (Enforced In-order
Execution of |nput/QOutput).

50 This may seem like a strange point of view, but there are systems that work this way. International charges to credit-card accounts, for
example, are normally cleared on a per-country basis, and the charges made in different countries are periodically reconciled. Thusthe

account balance may be different in different countries.

51 For distributed systems, this perspective was pursued by Lamport (1978), who showed how to use communication to establish “global
clocks" that can be used to establish orderings on eventsin distributed systems.

[Gotofirgt, previous, next page; contents; index]

[Go tofirst, previous, next page; contents; index]

3.5 Streams

We've gained a good understanding of assignment as atool in modeling, as well as an appreciation of the
complex problems that assignment raises. It is time to ask whether we could have gone about thingsin a
different way, so as to avoid some of these problems. In this section, we explore an alternative approach to
modeling state, based on data structures called streams. Aswe shall see, streams can mitigate some of the
complexity of modeling state.

Let's step back and review where this complexity comes from. In an attempt to model real-world
phenomena, we made some apparently reasonable decisions: We modeled real-world objects with local
state by computational objects with local variables. We identified time variation in the real world with time
variation in the computer. We implemented the time variation of the states of the model objectsin the
computer with assignments to the local variables of the model objects.

Is there another approach? Can we avoid identifying time in the computer with time in the modeled world?
Must we make the model change with time in order to model phenomena in a changing world? Think about
theissue in terms of mathematical functions. We can describe the time-varying behavior of aquantity x asa
function of time x(t). If we concentrate on x instant by instant, we think of it as a changing quantity. Yet if
we concentrate on the entire time history of values, we do not emphasize change -- the function itself does
not change.2

If timeis measured in discrete steps, then we can model atime function as a (possibly infinite) sequence. In
this section, we will see how to model change in terms of sequences that represent the time histories of the
systems being modeled. To accomplish this, we introduce new data structures called streams. From an
abstract point of view, a stream is simply a sequence. However, we will find that the straightforward
implementation of streams aslists (asin section 2.2.1) doesn't fully reveal the power of stream processing.
As an dternative, we introduce the technique of delayed evaluation, which enables us to represent very
large (even infinite) sequences as streams.

Stream processing lets us model systems that have state without ever using assignment or mutable data.
This has important implications, both theoretical and practical, because we can build models that avoid the
drawbacks inherent in introducing assignment. On the other hand, the stream framework raises difficulties
of its own, and the question of which modeling technique leads to more modular and more easily
maintained systems remains open.

3.5.1 Streams Are Delayed Lists

Aswe saw in section 2.2.3, sequences can serve as standard interfaces for combining program modules. We
formulated powerful abstractions for manipulating sequences, suchasmap,fi |l t er,andaccunul at e,
that capture awide variety of operationsin amanner that is both succinct and elegant.

Unfortunately, if we represent sequences as lists, this elegance is bought at the price of severe inefficiency
with respect to both the time and space required by our computations. When we represent manipulations on

sequences as transformations of lists, our programs must construct and copy data structures (which may be
huge) at every step of a process.

To seewhy thisistrue, let us compare two programs for computing the sum of al the prime numbersin an
interval. The first program is written in standard iterative style:53

(define (sumprines a b)
(define (iter count accumnm
(cond ((> count b) accum
((prime? count) (iter (+ count 1) (+ count accunm))
(else (iter (+ count 1) accum))))
(iter a 0))

The second program performs the same computation using the sequence operations of section 2.2.3:

(define (sumprines a b)
(accumul ate +
0
(filter prine? (enunerate-interval a b))))

In carrying out the computation, the first program needs to store only the sum being accumulated. In
contrast, the filter in the second program cannot do any testing until enuner at e-i nt er val has

constructed a complete list of the numbersin the interval. The filter generates another list, which in turnis
passed to accunul at e before being collapsed to form a sum. Such large intermediate storage is not

needed by the first program, which we can think of as enumerating the interval incrementally, adding each
prime to the sum as it is generated.

The inefficiency in using lists becomes painfully apparent if we use the sequence paradigm to compute the
second primein the interval from 10,000 to 1,000,000 by evaluating the expression

(car (cdr (filter prinme?
(enunerate-interval 10000 1000000))))

This expression does find the second prime, but the computational overhead is outrageous. We construct a
list of almost a million integers, filter thislist by testing each element for primality, and then ignore almost
all of theresult. In amoretraditional programming style, we would interleave the enumeration and the
filtering, and stop when we reached the second prime.

Streams are a clever idea that allows one to use sequence manipulations without incurring the costs of
manipulating sequences as lists. With streams we can achieve the best of both worlds: We can formulate
programs elegantly as sequence manipulations, while attaining the efficiency of incremental computation.
The basic ideais to arrange to construct a stream only partially, and to pass the partial construction to the
program that consumes the stream. If the consumer attempts to access a part of the stream that has not yet
been constructed, the stream will automatically construct just enough more of itself to produce the required
part, thus preserving the illusion that the entire stream exists. In other words, although we will write
programs as if we were processing complete sequences, we design our stream implementation to
automatically and transparently interleave the construction of the stream with its use.

On the surface, streams are just lists with different names for the procedures that manipulate them. Thereis
aconstructor, cons- st r eam and two selectors, st r eam car and st r eam cdr , which satisfy the

constraints

(stream—car {(cons-stream x ¥)) =

(ztream—cdr {(conz-stream x ¥)) =

There is adistinguishable object, t he- enpt y- st r eam which cannot be the result of any cons-
st r eamoperation, and which can be identified with the predicate st r eam nul | ?.54 Thus we can make

and use streams, in just the same way as we can make and use lists, to represent aggregate data arranged in
asequence. In particular, we can build stream analogs of the list operations from chapter 2, such asl i st -

ref, map, andf or - each:5

(define (streamref s n)
(if (=n0)
(streamcar s)
(streamref (streamcdr s) (- n 1))))
(define (stream map proc s)
(if (streamnull? s)
t he- enpty-stream
(cons-stream (proc (streamcar S))
(streammap proc (streamcdr s)))))
(define (streamfor-each proc s)
(if (streamnull? s)
" done
(begin (proc (streamcar s))
(streamfor-each proc (streamcdr s)))))

St ream f or - each isuseful for viewing streams:

(define (display-streams)
(stream for-each display-line s))

(define (display-line x)
(new i ne)
(display x))

To make the stream implementation automatically and transparently interleave the construction of a stream
with its use, we will arrange for the cdr of astream to be evaluated when it is accessed by the st r eam
cdr procedure rather than when the stream is constructed by cons- st r eam Thisimplementation choice
isreminiscent of our discussion of rational numbersin section 2.1.2, where we saw that we can choose to
implement rational numbers so that the reduction of numerator and denominator to lowest termsis
performed either at construction time or at selection time. The two rational-number implementations
produce the same data abstraction, but the choice has an effect on efficiency. Thereisasimilar relationship
between streams and ordinary lists. As a data abstraction, streams are the same aslists. The differenceisthe

time at which the elements are evaluated. With ordinary lists, both thecar and the cdr are evaluated at
construction time. With streams, the cdr is evaluated at selection time.

Our implementation of streamswill be based on a special form called del ay. Evaluating (del ay
<exp>) does not evaluate the expression <exp>, but rather returns a so-called delayed object, which we
can think of asa " "promise" to evaluate <exp> at some future time. Asacompanion to del ay, thereisa
procedure called f or ce that takes a delayed object as argument and performs the evaluation -- in effect,
forcing thedel ay to fulfill its promise. We will see below how del ay and f or ce can be implemented,
but first let us use these to construct streams.

Cons- st r eamisaspecia form defined so that
(cons-stream <a>)

is equivalent to

(cons <a> (delay))

What this meansis that we will construct streams using pairs. However, rather than placing the value of the
rest of the stream into the cdr of the pair we will put there a promise to compute therest if it isever

requested. St r eam car and st r eam cdr can now be defined as procedures:

(define (streamcar stream) (car stream)

(define (streamcdr stream) (force (cdr strean)))

St ream car selectsthecar of thepair; st ream cdr selectsthecdr of the pair and evaluates the
delayed expression found there to obtain the rest of the stream.26

The stream implementation in action

To see how this implementation behaves, let us analyze the " outrageous" prime computation we saw
above, reformulated in terms of streams:

(streamcar
(streamcdr
(streamfilter prinme?
(stream enunerate-interval 10000 1000000))))

We will seethat it doesindeed work efficiently.

We begin by calling st r eam enuner at e- i nt er val with the arguments 10,000 and 1,000,000.
St ream enuner at e- i nt er val isthe stream analog of enuner at e-i nt er val (section 2.2.3):

(define (streamenunerate-interval |ow high)
(if (> low high)
t he- enpty-stream
(cons-stream
| ow
(streamenunerate-interval (+ low 1) high))))

and thus the result returned by st r eam enumer at e- i nt er val , formed by thecons- st r eam is>/

(cons 10000
(delay (stream enunerate-interval 10001 1000000)))

Thatis, st r eam enuner at e- i nt er val returns astream represented as a pair whose car is 10,000
and whose cdr isapromise to enumerate more of the interval if so requested. This stream is now filtered
for primes, using the stream analog of thef i | t er procedure (section 2.2.3):

(define (streamfilter pred stream
(cond ((streamnull? strean) the-enpty-strean)
((pred (streamcar stream)
(cons-stream (streamcar stream
(streamfilter pred
(streamcdr stream)))
(el se (streamfilter pred (streamcdr strean)))))

Streamfilter teststhest ream car of the stream (the car of the pair, which is 10,000). Since this
iIsnot prime, stream filter examinesthest r eam cdr of itsinput stream. Thecall tost r eam
cdr forces evauation of the delayed st r eamt enuner at e- i nt er val , which now returns

(cons 10001
(del ay (stream enunerate-interval 10002 1000000)))

Streamfilter nowlooksatthest ream car of thisstream, 10,001, seesthat thisis not prime either,
forces another st r eam cdr , and so on, until st r eam enuner at e- i nt er val yieldsthe prime
10,007, whereupon st ream f i | t er , according to its definition, returns

(cons-stream (streamcar stream
(streamfilter pred (streamcdr stream))

whichinthiscaseis

(cons 10007
(del ay
(streamfilter
prinme?
(cons 10008

(del ay
(stream enunerate-interval 10009
1000000))))))

Thisresult isnow passed to st r eam cdr in our original expression. Thisforcesthe delayed st r eam
filter,whichinturnkeepsforcingthedelayed st r eam enuner at e-i nt er val until it finds the
next prime, which is 10,009. Finally, the result passed to st r eam car inour original expression is

(cons 10009
(del ay
(streamfilter
prinme?
(cons 10010
(del ay
(stream enunerate-interval 10011
1000000))))))

St r eam car returns 10,009, and the computation is complete. Only as many integers were tested for

primality as were necessary to find the second prime, and the interval was enumerated only as far as was
necessary to feed the prime filter.

In general, we can think of delayed evaluation as *"demand-driven" programming, whereby each stagein
the stream process is activated only enough to satisfy the next stage. What we have done is to decouple the
actual order of eventsin the computation from the apparent structure of our procedures. We write
procedures asif the streams existed “all at once" when, in reality, the computation is performed
incrementally, asin traditional programming styles.

Implementing del ay and f orce

Although del ay and f or ce may seem like mysterious operations, their implementation is really quite
straightforward. Del ay must package an expression so that it can be evaluated later on demand, and we
can accomplish this simply by treating the expression as the body of a procedure. Del ay can be a specia
form such that

(del ay <exp>)
IS syntactic sugar for
(lambda () <exp>)

For ce ssimply calls the procedure (of no arguments) produced by del ay, so we canimplement f or ce as
aprocedure:

(define (force del ayed-object)
(del ayed- obj ect))

This implementation sufficesfor del ay and f or ce to work as advertised, but there is an important

optimization that we can include. In many applications, we end up forcing the same delayed object many
times. This can lead to serious inefficiency in recursive programs involving streams. (See exercise 3.57.)

The solution is to build delayed objects so that the first time they are forced, they store the value that is
computed. Subsequent forcings will ssimply return the stored val ue without repeating the computation. In
other words, we implement del ay as a special-purpose memoized procedure similar to the one described
in exercise 3.27. One way to accomplish thisisto use the following procedure, which takes as argument a

procedure (of no arguments) and returns a memoized version of the procedure. The first time the memoized
procedureisrun, it saves the computed result. On subsequent evaluations, it simply returns the result.

(define (meno-proc proc)
(let ((already-run? false) (result false))
(lambda ()
(if (not already-run?)

(begin (set! result (proc))
(set! already-run? true)
resul t)

result))))

Del ay isthen defined sothat (del ay <exp>) isequivaent to
(menmo-proc (lanbda () <exp>))
and f or ce is as defined previously.28

Exercise 3.50. Complete the following definition, which generalizes st r eam map to alow procedures
that take multiple arguments, analogous to map in section 2.2.3, footnote 12.

(define (streamnmap proc . argstreans)
(if (<??> (car argstreans))
t he- enpty-stream
(<??7>
(apply proc (map <??> argstreans))
(apply stream nmap
(cons proc (map <??> argstreans))))))

Exercise 3.51. Inorder to take a closer look at delayed evaluation, we will use the following procedure,
which simply returns its argument after printing it:

(define (show x)

(di splay-1line x)
X)

What does the interpreter print in response to eval uating each expression in the following sequence??

(define x (streammap show (streamenunerate-interval 0 10)))
(streamref x 5)
(streamref x 7)

Exercise 3.52. Consider the sequence of expressions

(define sum 0)
(define (accum x)
(set! sum (+ x sum)

sum
(define seq (stream nmap accum (stream enunerate-interval 1 20)))
(define y (streamfilter even? seq))
(define z (streamfilter (lanbda (x) (= (remainder x 5) 0))

seq))
(streamref y 7)

(di spl ay-stream z)

What is the value of sumafter each of the above expressionsis evaluated? What is the printed response to
evauatingthest r eam r ef anddi spl ay- st r eamexpressions? Would these responses differ if we
had implemented (del ay <exp>) simply as(| anbda () <exp>) without using the optimization
provided by meno- pr oc ? Explain.

3.5.2 Infinite Streams

We have seen how to support the illusion of manipulating streams as complete entities even though, in
actuality, we compute only as much of the stream as we need to access. We can exploit this technique to
represent sequences efficiently as streams, even if the sequences are very long. What is more striking, we
can use streams to represent sequences that are infinitely long. For instance, consider the following
definition of the stream of positive integers.

(define (integers-starting-fromn)
(cons-streamn (integers-starting-from(+ n 1))))

(define integers (integers-starting-from1))

This makes sense because i nt eger s will beapair whose car is1and whosecdr isapromiseto

produce the integers beginning with 2. Thisis an infinitely long stream, but in any given time we can
examine only afinite portion of it. Thus, our programs will never know that the entire infinite stream is not
there.

Using i nt eger s we can define other infinite streams, such as the stream of integers that are not divisible
by 7:

(define (divisible? x y) (= (remainder x y) 0))
(define no-sevens

(streamfilter (lanmbda (x) (not (divisible? x 7)))
I nt egers))

Then we can find integers not divisible by 7 ssmply by accessing elements of this stream:

(streamref no-sevens 100)
117

In analogy with i nt eger s, we can define the infinite stream of Fibonacci numbers:

(define (fibgen a b)
(cons-streama (fibgen b (+ a b))))
(define fibs (fibgen 0 1))

Fi bs isapair whosecar is0and whosecdr isapromiseto evaluate (fi bgen 1 1).Whenwe
evaluatethisdelayed (fi bgen 1 1), itwill produce apair whose car is1 and whose cdr isapromise
toevauate (fi bgen 1 2),andsoon.

For alook at a more exciting infinite stream, we can generalize the no- sevens example to construct the

infinite stream of prime numbers, using a method known as the sieve of Eratosthenes.€0 We start with the
integers beginning with 2, which isthe first prime. To get the rest of the primes, we start by filtering the
multiples of 2 from the rest of the integers. This leaves a stream beginning with 3, which is the next prime.
Now we filter the multiples of 3 from the rest of this stream. This leaves a stream beginning with 5, which
is the next prime, and so on. In other words, we construct the primes by a sieving process, described as
follows: To sieve astream S, form a stream whose first element is the first element of S and the rest of
which is obtained by filtering all multiples of the first element of S out of the rest of S and sieving the

result. This processis readily described in terms of stream operations:

(define (sieve stream
(cons-stream
(stream car stream
(sieve (streamfilter
(lambda (x)
(not (divisible? x (streamcar stream)))
(streamcdr stream))))

(define prines (sieve (integers-starting-from2)))

Now to find a particular prime we need only ask for it:

(streamref prinmes 50)
233

It isinteresting to contemplate the signal-processing system set up by si eve, shown in the "Henderson

diagram"” in figure 3.31.61 The input stream feedsinto an ““unconser" that separates the first element of the
stream from the rest of the stream. The first element is used to construct a divisibility filter, through which

therest is passed, and the output of the filter is fed to another sieve box. Then the original first element is
consed onto the output of the internal sieve to form the output stream. Thus, not only is the stream infinite,

but the signal processor is also infinite, because the sieve contains a sieve within it.

2igve

—_ "1" COnE —ar
filtar: 2imva

not ——n
divizibla?

Figure 3.31: The prime sieve viewed as a signal-processing system.

Defining streams implicitly

Thei nt eger s andf i bs streams above were defined by specifying —generating” procedures that

explicitly compute the stream elements one by one. An alternative way to specify streamsisto take
advantage of delayed evaluation to define streams implicitly. For example, the following expression defines
the stream ones to be an infinite stream of ones:

(define ones (cons-stream 1 ones))

This works much like the definition of arecursive procedure: ones isapair whose car is 1 and whose
cdr isapromiseto evaluate ones. Evaluating the cdr givesusagain al and apromiseto evaluate ones,
and so on.

We can do more interesting things by manipulating streams with operations such asadd- st r eans, which
produces the elementwise sum of two given streams:62

(define (add-streans sl s2)
(streammap + sl s2))

Now we can define the integers as follows:

(define integers (cons-stream 1l (add-streans ones integers)))

Thisdefinesi nt eger s to be astream whose first element is 1 and the rest of which isthe sum of ones
andi nt eger s. Thus, the second element of i nt eger s is1 plusthefirst element of i nt eger s, or 2;
the third element of i nt eger s is 1 plusthe second element of i nt eger s, or 3; and so on. This
definition works because, at any point, enough of thei nt eger s stream has been generated so that we can
feed it back into the definition to produce the next integer.

We can define the Fibonacci numbers in the same style:

(define fibs
(cons-stream O
(cons-stream 1
(add-streans (streamcdr fibs)

fibs))))

Thisdefinition saysthat f i bs isastream beginning with 0 and 1, such that the rest of the stream can be
generated by adding f i bs to itself shifted by one place:

112358 1321... =(streamcdr fibs)
011235 8 13... =fibs
0112358132134... =fibs

Scal e- st r eamis another useful procedure in formulating such stream definitions. This multiplies each
item in a stream by a given constant:

(define (scal e-stream stream factor)
(streammap (lanmbda (x) (* x factor)) stream)

For example,

(define double (cons-stream 1 (scal e-stream double 2)))
produces the stream of powersof 2: 1, 2,4, 8, 16,32,

An dternate definition of the stream of primes can be given by starting with the integers and filtering them
by testing for primality. We will need the first prime, 2, to get started:

(define prines
(cons-stream
2
(streamfilter prine? (integers-starting-from3))))

This definition is not so straightforward as it appears, because we will test whether a number n is prime by
checking whether nis divisible by a prime (not by just any integer) less than or equal to Vn:

(define (prime? n)
(define (iter ps)
(cond ((> (square (streamcar ps)) n) true)
((divisible? n (streamcar ps)) false)
(else (iter (streamcdr ps)))))
(iter prines))

Thisisarecursive definition, since pr i nmes isdefined in terms of the pr i me? predicate, which itself uses
the pr i mes stream. The reason this procedure works is that, at any point, enough of the pri mes stream

has been generated to test the primality of the numbers we need to check next. That is, for every n we test
for primality, either nisnot prime (in which case thereis a prime already generated that dividesit) or nis
prime (in which case there is a prime aready generated -- i.e., aprime lessthan n -- that is greater than

') 63

Exercise 3.53. Without running the program, describe the elements of the stream defined by

(define s (cons-stream 1l (add-streans s s)))

Exercise 3.54. Defineaprocedurerul - st r eans, analogousto add- st r eans, that produces the
elementwise product of its two input streams. Use this together with the stream of i nt eger s to complete
the following definition of the stream whose nth element (counting from 0) isn + 1 factorial:

(define factorials (cons-stream 1l (mul-streans <??> <?7?7>)))

Exercise 3.55. Defineaprocedureparti al - suns that takes as argument a stream Sand returns the
stream whose elementsare §), §+ S, §+ 5 +S,, For example, (parti al - suns i nt egers)
should bethe stream 1, 3, 6, 10, 15,

Exercise 3.56. A famous problem, first raised by R. Hamming, isto enumerate, in ascending order with no
repetitions, al positive integers with no prime factors other than 2, 3, or 5. One obvious way to do thisisto
simply test each integer in turn to see whether it has any factors other than 2, 3, and 5. But thisis very
inefficient, since, as the integers get larger, fewer and fewer of them fit the requirement. As an alternative,
let us call the required stream of numbers S and notice the following facts about it.

. Sbeginswith 1.

. Theelementsof (scal e-stream S 2) areaso elementsof S.

. Thesameistruefor (scal e-stream S 3) and(scal e-stream5 S).
. Theseareall the elementsof S.

Now all we have to do is combine elements from these sources. For this we define a procedure mer ge that
combines two ordered streams into one ordered result stream, eliminating repetitions:

(define (nmerge sl s2)
(cond ((streamnull? sl1) s2)
((streamnul | ? s2) sl)
(el se
(let ((slcar (streamcar sl))

(s2car (streamcar s2)))
(cond ((< slcar sZ2car)

(cons-stream slcar (nerge (streamcdr sl1) s2)))
((> slcar sZ2car)

(cons-stream s2car (nerge sl (streamcdr s2))))
(el se

(cons-stream slcar

(nmerge (streamcdr sl)
(streamcdr s2)))))))))

Then the required stream may be constructed with mer ge, asfollows:
(define S (cons-stream 1 (nerge <??> <??>)))
Fill in the missing expressions in the places marked <??> above.

Exercise 3.57. How many additions are performed when we compute the nth Fibonacci number using the
definition of f i bs based on theadd- st r eans procedure? Show that the number of additions would be

exponentially greater if we had implemented (del ay <exp>) smply as(| anbda () <exp>),
without using the optimization provided by the meno- pr oc procedure described in section 3.5.1.64

Exercise 3.58. Give an interpretation of the stream computed by the following procedure:

(define (expand num den radi x)
(cons-stream
(quotient (* numradix) den)
(expand (remai nder (* numradi x) den) den radix)))

(Quot i ent isaprimitive that returns the integer quotient of two integers.) What are the successive
elements produced by (expand 1 7 10) ?What isproduced by (expand 3 8 10) ?

Exercise 3.59. In section 2.5.3 we saw how to implement a polynomial arithmetic system representing
polynomials as lists of terms. In asimilar way, we can work with power series, such as

k) 4

T 1 I? r r

Tttty at ety
1 I? .'l'-JI

cesr=logt e

. .T."3I I“Illl

ST =F — + —

represented as infinite streams. We will represent the seriesag + a; X+ a, X2 + agx3 + - - - asthe stream

whose elements are the coefficients ay, a3, ap, ag,

a Theintegra of the seriesag + a; X+ ay X2+ agx3 + - - - isthe series

faor + ez’ 4 saprt 4 caart4
c+anr + To1xr + —aar —@ar
] 7 1 3 2 _Lﬂa
where c is any constant. Define aprocedurei nt egr at e- ser i es that takes asinput a stream ag, a4, ay,
. representing a power series and returns the stream ag, (1/2)ay, (1/3)ay, . . . of coefficients of the non-

constant terms of the integral of the series. (Since the result has no constant term, it doesn't represent a
power series; when we usei nt egr at e- seri es, wewill cons on the appropriate constant.)

b. The function x— eXisits own derivative. Thisimplies that €< and the integral of ex are the same series,
except for the constant term, which is €9 = 1. Accordingly, we can generate the series for eX as

(define exp-series
(cons-stream 1l (integrate-series exp-series)))

Show how to generate the series for sine and cosine, starting from the facts that the derivative of sineis
cosine and the derivative of cosine is the negative of sine:

(define cosine-series

(cons-stream 1 <?7?7>))
(define sine-series

(cons-stream 0 <?7?7>))

Exercise 3.60. With power series represented as streams of coefficients asin exercise 3.59, adding seriesis
implemented by add- st r eans. Complete the definition of the following procedure for multiplying
series:

(define (mul-series sl s2)
(cons-stream <??> (add-streans <??> <??7>)))

Y ou can test your procedure by verifying that sin? x + cos? x = 1, using the series from exercise 3.59.

Exercise 3.61. Let Sbe apower series (exercise 3.59) whose constant term is 1. Suppose we want to find
the power series 1/S, that is, the series X such that S+ X = 1. Write S= 1 + Sy where Sz is the part of Safter
the constant term. Then we can solve for X asfollows:

S X =1
(1+85) X =1
X+85 X =1

X =1-8X

In other words, X isthe power series whose constant term is 1 and whose higher-order terms are given by
the negative of Sz times X. Usethisideato write aprocedurei nvert - uni t - seri es that computes 1/S

for a power series Swith constant term 1. Y ou will need to usemul - ser i es from exercise 3.60.

Exercise 3.62. Usetheresults of exercises 3.60 and 3.61 to define aprocedure di v- ser i es that divides
two power series. Di v- ser i es should work for any two series, provided that the denominator series
begins with a nonzero constant term. (If the denominator has a zero constant term, then di v- seri es
should signal an error.) Show how to usedi v- ser i es together with the result of exercise 3.59 to
generate the power series for tangent.

3.5.3 Exploiting the Stream Paradigm

Streams with delayed evaluation can be a powerful modeling tool, providing many of the benefits of local
state and assignment. Moreover, they avoid some of the theoretical tangles that accompany the introduction
of assignment into a programming language.

The stream approach can be illuminating because it allows us to build systems with different module
boundaries than systems organized around assignment to state variables. For example, we can think of an
entire time series (or signal) as afocus of interest, rather than the values of the state variables at individual
moments. This makes it convenient to combine and compare components of state from different moments.

Formulating iterations as stream processes

In section 1.2.1, we introduced iterative processes, which proceed by updating state variables. We know
now that we can represent state asa " timeless' stream of values rather than as a set of variablesto be
updated. Let's adopt this perspective in revisiting the square-root procedure from section 1.1.7. Recall that
the ideaisto generate a sequence of better and better guesses for the square root of x by applying over and
over again the procedure that improves guesses:

(define (sqgrt-inprove guess Xx)
(average guess (/ x guess)))

Inour original sqrt procedure, we made these guesses be the successive values of a state variable. Instead
we can generate the infinite stream of guesses, starting with an initial guess of 1:63

(define (sqgrt-stream x)

(define guesses

(cons-stream 1.0
(streammap (| anmbda (guess)
(sqgrt-inprove guess X))
guesses)))

guesses)
(di spl ay-stream (sqrt-stream 2))
1.
1.5

1. 4166666666666665
1.4142156862745097
1.4142135623746899

We can generate more and more terms of the stream to get better and better guesses. If we like, we can
write a procedure that keeps generating terms until the answer is good enough. (See exercise 3.64.)

Another iteration that we can treat in the same way is to generate an approximation to r, based upon the
aternating series that we saw in section 1.3.1:

—1—

oo
=Tl

+ oo

Lo | —

ri)
4

We first generate the stream of summands of the series (the reciprocals of the odd integers, with aternating
signs). Then we take the stream of sums of more and more terms (using thepar t i al - suns procedure of

exercise 3.55) and scale the result by 4:

(define (pi-summands n)
(cons-stream (/ 1.0 n)
(streammap - (pi-sumands (+ n 2)))))
(define pi-stream
(scal e-stream (partial -suns (pi-summands 1)) 4))
(di spl ay-stream pi -strean)

. 666666666666667
. 466666666666667
. 8952380952380956
. 3396825396825403
. 9760461760461765
. 2837384837384844
.017071817071818

WWNWNWN A

This gives us a stream of better and better approximations to zr, although the approximations converge
rather slowly. Eight terms of the sequence bound the value of ar between 3.284 and 3.017.

So far, our use of the stream of states approach is not much different from updating state variables. But
streams give us an opportunity to do some interesting tricks. For example, we can transform a stream with a
sequence accelerator that converts a sequence of approximations to a new sequence that converges to the
same value as the original, only faster.

One such accelerator, due to the eighteenth-century Swiss mathematician Leonhard Euler, works well with
sequences that are partial sums of alternating series (series of terms with alternating signs). In Euler's
technique, if S, isthe nth term of the original sum sequence, then the accel erated sequence has terms

I:":':’|'|1'1+1 — Sn:]?
Sn—i - Esﬂ + Sn-l-i

Sn+1 -

Thus, if the original sequence is represented as a stream of values, the transformed sequence is given by

(define (euler-transforms)

(let ((sO (streamref s 0)) 7 Sho1
(sl (streamref s 1)) v Sh
(s2 (streamref s 2))) v Sph+1

(cons-stream (- s2 (/ (square (- s2 sl))
(+ sO0 (* -2 s1) s2)))
(euler-transform (streamcdr s)))))

We can demonstrate Euler acceleration with our sequence of approximationsto ar:

(di spl ay-stream (eul er-transform pi-stream)

166666666666667
1333333333333337
1452380952380956
13968253968254
1427128427128435
1408813408813416
142071817071818
1412548236077655

Even better, we can accel erate the accel erated sequence, and recursively accelerate that, and so on. Namely,
we create a stream of streams (a structure wel'll call atableau) in which each stream is the transform of the
preceding one:

(define (make-tabl eau transforms)
(cons-streams
(make-t abl eau transform
(transforms))))

The tableau has the form

0 01 S0 Foa SOl
Fo 511 F1? F1a
S S31 S22

Finally, we form a sequence by taking the first term in each row of the tableau:

(define (accel erated-sequence transforms)
(stream nap streamcar

(make-tabl eau transforms)))

We can demonstrate this kind of " super-acceleration” of the r sequence:

(di spl ay-stream (accel er at ed- sequence eul er-transform
pi -strean))

166666666666667
142105263157895
141599357319005
1415927140337785
1415926539752927
1415926535911765
141592653589778

Wwwwwowwh

Theresult isimpressive. Taking eight terms of the sequence yields the correct value of ar to 14 decimal
places. If we had used only the original 7 sequence, we would need to compute on the order of 1013 terms
(i.e., expanding the series far enough so that the individual terms are less then 10-13) to get that much
accuracy! We could have implemented these accel eration techniques without using streams. But the stream
formulation is particularly elegant and convenient because the entire sequence of statesis availableto us as
adata structure that can be manipulated with a uniform set of operations.

Exercise 3.63. Louis Reasoner askswhy thesqrt - st r eamprocedure was not written in the following
more straightforward way, without the local variable guesses:

(define (sgrt-stream x)
(cons-stream 1.0
(streammap (| anmbda (guess)
(sqgrt-inprove guess X))
(sqrt-streamx))))

Alyssa P. Hacker replies that this version of the procedure is considerably less efficient because it performs
redundant computation. Explain Alyssa's answer. Would the two versions still differ in efficiency if our
implementation of del ay usedonly (| anbda () <exp>) without using the optimization provided by

meno- pr oc (section 3.5.1)?

Exercise 3.64. Writeaprocedurest ream | i m t that takes as arguments a stream and a number (the

tolerance). It should examine the stream until it finds two successive elements that differ in absolute value
by less than the tolerance, and return the second of the two elements. Using this, we could compute square
roots up to agiven tolerance by

(define (sqgrt x tol erance)
(streamlimt (sqrt-streamx) tol erance))

Exercise 3.65. Usethe series

In?=1-2+ 4

|

2| =
Lo | =

to compute three sequences of approximations to the natural logarithm of 2, in the same way we did above
for 7r. How rapidly do these sequences converge?

Infinite streams of pairs

In section 2.2.3, we saw how the sequence paradigm handles traditional nested loops as processes defined

on sequences of pairs. If we generalize this technique to infinite streams, then we can write programs that
are not easily represented as loops, because the ““looping" must range over an infinite set.

For example, suppose we want to generalizethe pr i me- sum pai r s procedure of section 2.2.3to
produce the stream of pairs of all integers (i,j) withi <j suchthati +jisprime. Ifi nt - pai r s isthe
sequence of all pairs of integers (i,j) withi < j, then our required stream is simplyS6

(streamfilter (lanbda (pair)
(prime? (+ (car pair) (cadr pair))))
i nt-pairs)

Our problem, then, isto produce the stream i nt - pai r s. More generally, suppose we have two streams S
=(§) and T = (T;), and imagine the infinite rectangular array

(So, To) (S0, T1) (So, T3]
(51, To) (Su.7T1) (51,1
(53,70} (52,7h) (55, T)

We wish to generate a stream that contains all the pairsin the array that lie on or above the diagonal, i.e.,
the pairs
(S0, o) (S0, Th) (S0, T3)

(51, T1) (51,13
(52, T3)

(If we take both Sand T to be the stream of integers, then thiswill be our desired streami nt - pai rs.)

Call the genera stream of pairs(pai rs S T), and consider it to be composed of three parts: the pair
(S0, To), the rest of the pairsin the first row, and the remaining pairs:67

(S0, I | (S0, i) (S, T3}
(51, 1) (51,73)
(52, T3)

Observe that the third piece in this decomposition (pairs that are not in the first row) is (recursively) the
pairsformed from (stream cdr S) and (stream cdr T) . Also notethat the second piece (the rest

of thefirst row) is

(streammap (lanbda (x) (list (streamcar s) X))
(streamcdr t))

Thus we can form our stream of pairs as follows:

(define (pairs s t)
(cons-stream
(list (streamcar s) (streamcar t))
(<conbi ne-i n- some- way>
(streammap (lanmbda (x) (list (streamcar s) X))
(streamcdr t))
(pairs (streamcdr s) (streamcdr t)))))

In order to complete the procedure, we must choose some way to combine the two inner streams. One idea
Isto use the stream analog of the append procedure from section 2.2.1:

(define (stream append sl s2)
(if (streamnull? sl)
s2
(cons-stream (streamcar sl)
(stream append (streamcdr sl1) s2))))

Thisis unsuitable for infinite streams, however, because it takes all the elements from the first stream
before incorporating the second stream. In particular, if wetry to generate all pairs of positive integers
using

(pairs integers integers)

our stream of results will first try to run through all pairs with the first integer equal to 1, and hence will
never produce pairs with any other value of thefirst integer.

To handleinfinite streams, we need to devise an order of combination that ensures that every element will
eventually be reached if we let our program run long enough. An elegant way to accomplish thisiswith the

followingi nt er | eave procedure:68

(define (interleave sl s2)

(if (streamnull? s1)
s2
(cons-stream (streamcar sl)
(interleave s2 (streamcdr sl1)))))

Sincei nt er | eave takes elements alternately from the two streams, every element of the second stream
will eventually find its way into the interleaved stream, even if the first stream isinfinite.

We can thus generate the required stream of pairs as

(define (pairs s t)
(cons-stream
(list (streamcar s) (streamcar t))
(interl eave
(streammap (lambda (x) (list (streamcar s) X))
(streamcdr t))
(pairs (streamcdr s) (streamcdr t)))))

Exercise 3.66. Examinethestream (pairs i ntegers i ntegers).Canyoumakeany genera

comments about the order in which the pairs are placed into the stream? For example, about how many
pairs precede the pair (1,100)? the pair (99,100)? the pair (100,100)? (If you can make precise mathematical
statements here, all the better. But feel free to give more qualitative answers if you find yourself getting
bogged down.)

Exercise 3.67. Modify the pai r s proceduresothat (pai rs i ntegers integers) will producethe

stream of all pairs of integers (i,j) (without the condition i <j). Hint: You will need to mix in an additional
stream.

Exercise 3.68. Louis Reasoner thinks that building a stream of pairs from three parts is unnecessarily
complicated. Instead of separating the pair (§,,Tp) from the rest of the pairsin the first row, he proposes to

work with the whole first row, as follows;

(define (pairs s t)
(interl eave
(streammap (lanmbda (x) (list (streamcar s) X))

t)

(pairs (streamcdr s) (streamcdr t))))

Does thiswork? Consider what happensif weevaluate (pai rs i ntegers i ntegers) usingLouiss
definition of pai r s.

Exercise 3.69. Writeaproceduret ri pl es that takesthreeinfinite streams, S T, and U, and produces the
stream of triples (S, Tj,Uy) suchthati <j <k Usetri pl es to generate the stream of all Pythagorean

triples of positive integers, i.e., thetriples (i,j,k) suchthat i <j and i2 + j2 = k2.

Exercise 3.70. It would be nice to be able to generate streams in which the pairs appear in some useful

order, rather than in the order that results from an ad hoc interleaving process. We can use a technique
similar to the mer ge procedure of exercise 3.56, if we define away to say that one pair of integersis " less

than" another. One way to do thisis to define a "weighting function" W(i,j) and stipulate that (i4,j;) isless
than (i5,jo) iIf W(i1,j1) <W(i,,j0). Write aprocedure mer ge- wei ght ed that islike mer ge, except that
mer ge- wei ght ed takes an additional argument wei ght , which is a procedure that computes the weight
of apair, and is used to determine the order in which elements should appear in the resulting merged
stream.89 Using this, generalize pai r s to aprocedure wei ght ed- pai r s that takes two streams,

together with a procedure that computes a weighting function, and generates the stream of pairs, ordered
according to weight. Use your procedure to generate

a. the stream of all pairs of positive integers (i,j) with i <j ordered according to the sumi +j

b. the stream of all pairs of positiveintegers (i,j) withi <j, where neither i nor j isdivisible by 2, 3, or 5,
and the pairs are ordered according tothesum2i + 3 + 51 .

Exercise 3.71. Numbersthat can be expressed as the sum of two cubes in more than one way are
sometimes called Ramanujan numbers, in honor of the mathematician Srinivasa Ramanujan./9 Ordered
streams of pairs provide an elegant solution to the problem of computing these numbers. To find a number
that can be written as the sum of two cubes in two different ways, we need only generate the stream of pairs
of integers (i,j) weighted according to the sum i3 + j3 (see exercise 3.70), then search the stream for two

consecutive pairs with the same weight. Write a procedure to generate the Ramanujan numbers. The first
such number is 1,729. What are the next five?

Exercise 3.72. Inasimilar way to exercise 3.71 generate a stream of all numbers that can be written as the
sum of two squares in three different ways (showing how they can be so written).

Streams as signals

We began our discussion of streams by describing them as computational analogs of the ““signals" in signal-
processing systems. In fact, we can use streams to model signal-processing systemsin avery direct way,
representing the values of asignal at successive time intervals as consecutive elements of a stream. For
instance, we can implement an integrator or summer that, for an input stream x = (x;), an initial value C,

and asmall increment dt, accumul ates the sum
Si=C+ 3 r;dt
=1

and returns the stream of values S= (§). Thefollowing i nt egr al procedure isreminiscent of the
“implicit style" definition of the stream of integers (section 3.5.2):

(define (integral integrand initial-value dt)
(define int
(cons-streaminitial-val ue
(add-streans (scal e-streamintegrand dt)

int)))

int)

initial-valus

input
L 2cala: 4+t

Figure3.32: Thei nt egr al procedure viewed as a signal-processing system.

Figure 3.32 isapicture of a signal-processing system that correspondsto thei nt egr al procedure. The

input stream is scaled by dt and passed through an adder, whose output is passed back through the same
adder. The self-reference in the definition of i nt isreflected in the figure by the feedback loop that

connects the output of the adder to one of the inputs.

Exercise 3.73.

* \ }? V=g + (UC)J i dt + Ri

—M =cale: §

—a—> =cala: L/C —3M integral

Figure 3.33: An RC circuit and the associated signal-flow diagram.

We can model electrical circuits using streams to represent the values of currents or voltages at a sequence
of times. For instance, suppose we have an RC circuit consisting of aresistor of resistance R and a capacitor
of capacitance C in series. The voltage response v of the circuit to an injected current i is determined by the
formulain figure 3.33, whose structure is shown by the accompanying signal-flow diagram.

Write a procedure RC that models this circuit. RC should take as inputs the values of R, C, and dt and
should return a procedure that takes as inputs a stream representing the current i and an initial value for the

capacitor voltage v and produces as output the stream of voltages v. For example, you should be able to
use RC to model an RC circuit with R=5 ohms, C = 1 farad, and a 0.5-second time step by evaluating
(define RC1 (RC 5 1 0.5)).Thisdefines RC1 as aprocedure that takes a stream representing the
time sequence of currents and an initial capacitor voltage and produces the output stream of voltages.

Exercise 3.74. Alyssa P. Hacker is designing a system to process signals coming from physical sensors.
One important feature she wishesto produceis asignal that describes the zero crossings of the input signal.
That is, the resulting signal should be + 1 whenever the input signal changes from negative to positive, - 1
whenever the input signal changes from positive to negative, and 0 otherwise. (Assume that the sign of a0
input is positive.) For example, atypical input signal with its associated zero-crossing signal would be

...1 2 1.5 1 0.5 -0.1 -2 -3 -2 -
0.5 0.2 3 4 0 O 0 O 0 -
1 0 0 0 0 1 0 0 ...

In Alyssa's system, the signal from the sensor is represented as a stream sense- dat a and the stream
zer o- cr ossi ngs isthe corresponding stream of zero crossings. Alyssafirst writes a procedure si gn-
change- det ect or that takes two values as arguments and compares the signs of the values to produce
an appropriate 0, 1, or - 1. She then constructs her zero-crossing stream as follows:

(define (make-zero-crossings input-stream| ast-val ue)
(cons-stream
(sign-change-detector (streamcar input-stream |ast-val ue)
(make-zero-crossi ngs (streamcdr input-stream
(streamcar input-stream)))

(define zero-crossings (nake-zero-crossings sense-data 0))

Alyssa's boss, Eva Lu Ator, walks by and suggests that this program is approximately equivalent to the
following one, which uses the generalized version of st r eam map from exercise 3.50:

(define zero-crossings
(stream map si gn-change-det ector sense-data <expression>))

Complete the program by supplying the indicated <expression>.

Exercise 3.75. Unfortunately, Alyssa's zero-crossing detector in exercise 3.74 provesto be insufficient,

because the noisy signal from the sensor leads to spurious zero crossings. Lem E. Tweakit, a hardware
specialist, suggests that Alyssa smooth the signal to filter out the noise before extracting the zero crossings.
Alyssatakes his advice and decides to extract the zero crossings from the signal constructed by averaging
each value of the sense data with the previous value. She explains the problem to her assistant, Louis
Reasoner, who attempts to implement the idea, altering Alyssa's program as follows:

(define (make-zero-crossings input-stream | ast-val ue)
(let ((avpt (/ (+ (streamcar input-stream |ast-value) 2)))
(cons-stream (sign-change-detector avpt | ast-val ue)

(make-zero-crossings (streamcdr input-strean
avpt))))

This does not correctly implement Alyssa's plan. Find the bug that Louis has installed and fix it without
changing the structure of the program. (Hint: Y ou will need to increase the number of argumentsto make-

Zer o- Cr ossi ngs.)

Exercise 3.76. EvalLu Ator has acriticism of Louis's approach in exercise 3.75. The program hewrote is

not modular, because it intermixes the operation of smoothing with the zero-crossing extraction. For
example, the extractor should not have to be changed if Alyssa finds a better way to condition her input
signal. Help Louis by writing a procedure snoot h that takes a stream as input and produces a stream in

which each element is the average of two successive input stream elements. Then use snoot h asa
component to implement the zero-crossing detector in a more modular style.

3.5.4 Streams and Delayed Evaluation

Thei nt egr al procedure at the end of the preceding section shows how we can use streams to model

signal-processing systems that contain feedback loops. The feedback loop for the adder shown in
figure 3.32 ismodeled by the fact that i nt egr al 'sinternal stream i nt isdefined in terms of itself:

(define int
(cons-streaminitial-val ue
(add-streans (scal e-streamintegrand dt)

int)))

The interpreter's ability to deal with such an implicit definition depends on the del ay that isincorporated
into cons- st r eam Without thisdel ay, the interpreter could not construct i nt before evaluating both
argumentsto cons- st r eam which would requirethat i nt aready be defined. In general, del ay is
crucia for using streams to model signal-processing systems that contain loops. Without del ay, our

models would have to be formulated so that the inputs to any signal-processing component would be fully
evaluated before the output could be produced. Thiswould outlaw |oops.

Unfortunately, stream models of systems with loops may require uses of del ay beyond the “"hidden"
del ay supplied by cons- st r eam For instance, figure 3.34 shows a signal-processing system for

solving the differential equation dy/dt = f(y) where f is a given function. The figure shows a mapping
component, which appliesf to itsinput signal, linked in afeedback loop to an integrator in a manner very
similar to that of the analog computer circuits that are actually used to solve such equations.

M

ey »
map: f ———m dintegral =]

Figure 3.34: An "analog computer circuit” that solves the equation dy/dt = f(y).
Assuming we are given an initial value y, for y, we could try to model this system using the procedure

(define (solve f y0O dt)
(define y (integral dy yO dt))
(define dy (streammap f y))

y)

This procedure does not work, because in the first line of sol ve thecall toi nt egr al requiresthat the
input dy be defined, which does not happen until the second line of sol ve.

On the other hand, the intent of our definition does make sense, because we can, in principle, begin to
generate they stream without knowing dy. Indeed, i nt egr al and many other stream operations have

properties similar to those of cons- st r eam in that we can generate part of the answer given only partial
information about the arguments. For i nt egr al , thefirst element of the output stream is the specified

i ni tial-val ue. Thus, we can generate the first element of the output stream without evaluating the
integrand dy . Once we know the first element of y, the st r eam map in the second line of sol ve can
begin working to generate the first element of dy, which will produce the next element of y, and so on.

To take advantage of thisidea, we will redefinei nt egr al to expect the integrand stream to be a delayed
argument. | nt egr al will f or ce the integrand to be evaluated only when it is required to generate more
than the first element of the output stream:

(define (integral delayed-integrand initial-value dt)
(define int
(cons-streaminitial-val ue
(let ((integrand (force del ayed-integrand)))
(add-streans (scal e-streamintegrand dt)

int))))
int)

Now we can implement our sol ve procedure by delaying the evaluation of dy in the definition of y:71

(define (solve f y0O dt)
(define y (integral (delay dy) yO dt))
(define dy (streammap f y))

y)

In general, every caler of i nt egr al must now del ay the integrand argument. We can demonstrate that
the sol ve procedure works by approximating e == 2.718 by computing the value at y = 1 of the solution to
the differential equation dy/dt = y with initial condition y(0) = 1:

(streamref (solve (lanbda (y) y) 1 0.001) 1000)
2.716924

Exercise 3.77. Thei nt egr al procedure used above was analogous to the ““implicit" definition of the
infinite stream of integersin section 3.5.2. Alternatively, we can give adefinition of i nt egr al thatis
morelikei nt eger s- starti ng-from(asoin section 3.5.2):

(define (integral integrand initial-value dt)
(cons-streaminitial-val ue
(if (streamnull? integrand)
t he- enpt y-stream
(integral (streamcdr integrand)
(+ (* dt (streamcar integrand))
initial-value)

dt))))

When used in systems with loops, this procedure has the same problem as does our original version of
I nt egr al . Modify the procedure so that it expectsthei nt egr and as a delayed argument and hence can

be used in the sol ve procedure shown above.

Exercise 3.78.

efyg Yo
| |
| |
| |

L' W

efely of ¥
3 intagral integral —¢—>
2cala: o
gcala; b M

Figure 3.35: Signal-flow diagram for the solution to a second-order linear differential equation.

Consider the problem of designing a signal-processing system to study the homogeneous second-order
linear differential equation

The output stream, modeling y, is generated by a network that contains aloop. Thisis because the value of

d2y/dt2 depends upon the values of y and dy/dt and both of these are determined by integrating d2y/dt2. The
diagram we would like to encode is shown in figure 3.35. Write a procedure sol ve- 2nd that takes as

arguments the constants a, b, and dt and the initial valuesyp and dy for y and dy/dt and generates the
stream of successive values of .

Exercise 3.79. Generalizethesol ve- 2nd procedure of exercise 3.78 so that it can be used to solve
general second-order differential equations d2 y/dt2 = f(dy/dt, y).

Exercise 3.80. A seriesRLC circuit consists of aresistor, a capacitor, and an inductor connected in series,
asshownin figure 3.36. If R, L, and C are the resistance, inductance, and capacitance, then the relations

between voltage (v) and current (i) for the three components are described by the equations

g = igH
"
2

. _ pie

' dt

and the circuit connections dictate the relations

lg = if = —i
ur = ug 4 ug

Combining these equations shows that the state of the circuit (summarized by v, the voltage across the
capacitor, and i, the current in the inductor) is described by the pair of differential equations

e _ _i__{,
&
dig 1 R
W = FYC T L

dt L L

The signal-flow diagram representing this system of differential equationsis shown in figure 3.37.

Figure 3.36: A seriesRLC circuit.

2cala: LiL

v
e intagral

)

F—¥r,

gcala:; L' e

u"r'L r.L
imtagral

.

L_Ty

¥

ol

gcala: —fA/L F

Figure 3.37: A signal-flow diagram for the solution to a series RLC circuit.

Write a procedure RLC that takes as arguments the parameters R, L, and C of the circuit and the time
increment dt. In amanner similar to that of the RC procedure of exercise 3.73, RLC should produce a
procedure that takes theinitial values of the state variables, v . and i o and produces apair (using cons)

of the streams of states v and i . Using RLC, generate the pair of streams that models the behavior of a
seriesRLC circuit withR=1ohm, C = 0.2 farad, L = 1 henry, dt = 0.1 second, and initial valuesi, =0
ampsand v = 10 volts.

Normal-order evaluation

The examplesin this section illustrate how the explicit use of del ay and f or ce provides great

programming flexibility, but the same examples also show how this can make our programs more complex.
Our new i nt egr al procedure, for instance, gives us the power to model systems with loops, but we must

now remember that i nt egr al should be called with a delayed integrand, and every procedure that uses

I nt egr al must be aware of this. In effect, we have created two classes of procedures: ordinary
procedures and procedures that take delayed arguments. In general, creating separate classes of procedures
forces us to create separate classes of higher-order procedures as well.72

One way to avoid the need for two different classes of procedures isto make all procedures take delayed
arguments. We could adopt a model of evaluation in which all arguments to procedures are automatically
delayed and arguments are forced only when they are actually needed (for example, when they are required
by a primitive operation). This would transform our language to use normal-order evaluation, which we
first described when we introduced the substitution model for evaluation in section 1.1.5. Converting to
normal-order evaluation provides a uniform and elegant way to simplify the use of delayed evaluation, and
thiswould be a natural strategy to adopt if we were concerned only with stream processing. In section 4.2,
after we have studied the evaluator, we will see how to transform our language in just this way.
Unfortunately, including delays in procedure calls wreaks havoc with our ability to design programs that
depend on the order of events, such as programs that use assignment, mutate data, or perform input or
output. Even the singledel ay incons- st r eamcan cause great confusion, asillustrated by

exercises 3.51 and 3.52. Asfar as anyone knows, mutability and delayed evaluation do not mix well in
programming languages, and devising ways to deal with both of these at once is an active area of research.

3.5.5 Modularity of Functional Programs and Modularity of Objects

Aswe saw in section 3.1.2, one of the major benefits of introducing assignment is that we can increase the

modularity of our systems by encapsulating, or "hiding," parts of the state of alarge system within local
variables. Stream models can provide an equivalent modularity without the use of assignment. Asan
illustration, we can reimplement the Monte Carlo estimation of zr, which we examined in section 3.1.2,

from a stream-processing point of view.

The key modularity issue was that we wished to hide the internal state of a random-number generator from
programs that used random numbers. We began with a procedure r and- updat e, whose successive

values furnished our supply of random numbers, and used this to produce a random-number generator:

(define rand
(let ((x randominit))

(lanbda ()
(set! x (rand-update x))
x)))

In the stream formulation there is no random-number generator per se, just a stream of random numbers
produced by successive callstor and- updat e:

(define random nunbers
(cons-stream randominit
(stream nmap rand-updat e randon nunbers)))

We use this to construct the stream of outcomes of the Cesaro experiment performed on consecutive pairs
inther andom nunber s stream:

(define cesaro-stream
(map-successive-pairs (lanmbda (r1 r2) (= (gcd rl r2) 1))
random nunbers))

(define (map-successive-pairs f s)
(cons-stream
(f (streamcar s) (streamcar (streamcdr s)))
(map-successive-pairs f (streamcdr (streamcdr s)))))

Thecesar o- st r eamisnow fed to anont e- car | o procedure, which produces a stream of estimates

of probahilities. The results are then converted into a stream of estimates of zr. This version of the program
doesn't need a parameter telling how many trials to perform. Better estimates of ar (from performing more
experiments) are obtained by looking farther into the pi stream:

(define (nonte-carl o experinent-stream passed fail ed)
(define (next passed failed)
(cons-stream
(/ passed (+ passed failed))
(nonte-carlo
(stream cdr experinent-strean) passed failed)))
(if (streamcar experinent-strean)
(next (+ passed 1) failed)
(next passed (+ failed 1))))

(define pi
(streamnmap (lanbda (p) (sqrt (/ 6 p)))
(nonte-carl o cesaro-stream 0 0)))

There is considerable modularity in this approach, because we still can formulate ageneral nont e- car | o
procedure that can deal with arbitrary experiments. Y et there is no assignment or local state.

Exercise 3.81. Exercise 3.6 discussed generalizing the random-number generator to allow one to reset the

random-number sequence so as to produce repeatable sequences of ~ random" numbers. Produce a stream
formulation of this same generator that operates on an input stream of requeststo gener at e anew

random number or tor eset the sequence to a specified value and that produces the desired stream of
random numbers. Don't use assignment in your solution.

Exercise 3.82. Redo exercise 3.5 on Monte Carlo integration in terms of streams. The stream version of
esti mat e-i nt egral will not have an argument telling how many trials to perform. Instead, it will

produce a stream of estimates based on successively moretrials.

A functional-programming view of time

Let us now return to the issues of objects and state that were raised at the beginning of this chapter and
examine them in anew light. We introduced assignment and mutabl e objects to provide a mechanism for
modular construction of programs that model systems with state. We constructed computational objects
with local state variables and used assignment to modify these variables. We model ed the temporal

behavior of the objects in the world by the temporal behavior of the corresponding computational objects.

Now we have seen that streams provide an aternative way to model objects with local state. We can model
achanging quantity, such as the local state of some object, using a stream that represents the time history of
successive states. In essence, we represent time explicitly, using streams, so that we decouple time in our
simulated world from the sequence of events that take place during evaluation. Indeed, because of the
presence of del ay there may be little relation between simulated time in the model and the order of events

during the evaluation.

In order to contrast these two approaches to modeling, let us reconsider the implementation of a
“withdrawal processor” that monitors the balance in a bank account. In section 3.1.3 we implemented a

simplified version of such a processor:

(define (make-sinplified-w thdraw bal ance)
(I anbda (anount)
(set! bal ance (- bal ance anopunt))
bal ance))

Cdlstonake- si npl i fi ed-w t hdr aw produce computational objects, each with alocal state variable
bal ance that is decremented by successive calls to the object. The object takes an anount asan

argument and returns the new balance. We can imagine the user of a bank account typing a sequence of
inputs to such an object and observing the sequence of returned values shown on adisplay screen.

Alternatively, we can model awithdrawal processor as a procedure that takes as input a balance and a
stream of amounts to withdraw and produces the stream of successive balances in the account:

(define (stream w t hdraw bal ance anopunt - stream
(cons-stream
bal ance
(streamw thdraw (- bal ance (stream car anount-strean))
(stream cdr anount-strean))))

St ream wi t hdr awimplements a well-defined mathematical function whose output is fully determined
by itsinput. Suppose, however, that the input anount - st r eamis the stream of successive values typed

by the user and that the resulting stream of balancesis displayed. Then, from the perspective of the user
who is typing values and watching results, the stream process has the same behavior as the object created
by make- si npl i fi ed-w t hdr aw. However, with the stream version, there is no assignment, no local

state variable, and consequently none of the theoretical difficulties that we encountered in section 3.1.3. Yet
the system has state!

Thisisreally remarkable. Even though st r eam wi t hdr awimplements awell-defined mathematical

function whose behavior does not change, the user's perception here is one of interacting with a system that
has a changing state. One way to resolve this paradox isto realize that it is the user's temporal existence
that imposes state on the system. If the user could step back from the interaction and think in terms of
streams of balances rather than individual transactions, the system would appear stateless.’3

From the point of view of one part of acomplex process, the other parts appear to change with time. They
have hidden time-varying local state. If we wish to write programs that model this kind of natural
decomposition in our world (as we see it from our viewpoint as a part of that world) with structuresin our
computer, we make computational objects that are not functional -- they must change with time. We model
state with local state variables, and we model the changes of state with assignments to those variables. By
doing this we make the time of execution of a computation model time in the world that we are part of, and
thus we get “"objects" in our computer.

Modeling with objectsis powerful and intuitive, largely because this matches the perception of interacting
with aworld of which we are part. However, as we've seen repeatedly throughout this chapter, these models
raise thorny problems of constraining the order of events and of synchronizing multiple processes. The
possibility of avoiding these problems has stimulated the development of functional programming
languages, which do not include any provision for assignment or mutable data. In such alanguage, all
procedures implement well-defined mathematical functions of their arguments, whose behavior does not

change. The functional approach is extremely attractive for dealing with concurrent systems.’4

On the other hand, if we look closely, we can see time-related problems creeping into functional models as
well. One particularly troublesome area arises when we wish to design interactive systems, especially ones
that model interactions between independent entities. For instance, consider once more the implementation
a banking system that permits joint bank accounts. In a conventional system using assignment and objects,
we would model the fact that Peter and Paul share an account by having both Peter and Paul send their
transaction requests to the same bank-account object, as we saw in section 3.1.3. From the stream point of

view, where there are no “"objects’ per se, we have aready indicated that a bank account can be modeled as
aprocess that operates on a stream of transaction requests to produce a stream of responses. Accordingly,
we could model the fact that Peter and Paul have ajoint bank account by merging Peter's stream of
transaction requests with Paul's stream of requests and feeding the result to the bank-account stream
process, as shown in figure 3.38.

Petec’s cequests
= — bank
s account E

Paul’s requests

Figure 3.38: A joint bank account, modeled by merging two streams of transaction requests.

The trouble with this formulation is in the notion of merge. It will not do to merge the two streams by
simply taking alternately one request from Peter and one request from Paul. Suppose Paul accesses the
account only very rarely. We could hardly force Peter to wait for Paul to access the account before he could
issue a second transaction. However such amerge isimplemented, it must interleave the two transaction
streams in some way that is constrained by "real time" as perceived by Peter and Paul, in the sense that, if
Peter and Paul meet, they can agree that certain transactions were processed before the meeting, and other
transactions were processed after the meeting.”2 Thisis precisely the same constraint that we had to deal
with in section 3.4.1, where we found the need to introduce explicit synchronization to ensure a " correct"

order of eventsin concurrent processing of objects with state. Thus, in an attempt to support the functional
style, the need to merge inputs from different agents reintroduces the same problems that the functional
style was meant to eliminate.

We began this chapter with the goal of building computational models whose structure matches our

perception of the real world we are trying to model. We can model the world as a collection of separate,
time-bound, interacting objects with state, or we can model the world as asingle, timeless, stateless unity.
Each view has powerful advantages, but neither view alone is completely satisfactory. A grand unification
has yet to emerge./6

52 physicists sometimes adopt this view by introducing the ““world lines" of particles as a device for reasoning about motion. We've also
aready mentioned (section 2.2.3) that thisisthe natural way to think about signal-processing systems. We will explore applications of streams

to signal processing in section 3.5.3.

53 Assume that we have a predicate pr i ne? (e.g., asin section 1.2.6) that tests for primality.

54 |In the MIT implementation, t he- enpt y- st r eamisthe same astheempty list' (), and st r eam nul | ? isthesameasnul | 2.

55 This should bother you. The fact that we are defining such similar procedures for streams and lists indicates that we are missing some
underlying abstraction. Unfortunately, in order to explait this abstraction, we will need to exert finer control over the process of evaluation than
we can at present. We will discuss this point further at the end of section 3.5.4. In section 4.2, we'll develop aframework that unifieslists and

streams.

56 Although st r eam car and st r eam cdr can be defined as procedures, cons- st r eammust be aspecia form. If cons- st r eamwere
aprocedure, then, according to our model of evaluation, evaluating (cons- st ream <a>) would automatically cause to be
evaluated, which is precisely what we do not want to happen. For the same reason, del ay must be a special form, though f or ce can be an
ordinary procedure.

57 The numbers shown here do not really appear in the delayed expression. What actually appears is the original expression, in an environment
in which the variables are bound to the appropriate numbers. For example, (+ | ow 1) with| owbound to 10,000 actually appears where
10001 is shown.

58 There are many possible implementations of streams other than the one described in this section. Delayed evaluation, which isthe key to
making streams practical, was inherent in Algol 60's call-by-name parameter-passing method. The use of this mechanism to implement streams
was first described by Landin (1965). Delayed evaluation for streams was introduced into Lisp by Friedman and Wise (1976). In their
implementation, cons aways delays evaluating its arguments, so that lists automatically behave as streams. The memoizing optimization is
also known as call-by-need. The Algol community would refer to our original delayed objects as call-by-name thunks and to the optimized
versions as call-by-need thunks.

59 Exercises such as 3.51 and 3.52 are valuable for testing our understanding of how del ay works. On the other hand, intermixing delayed

evauation with printing -- and, even worse, with assignment -- is extremely confusing, and instructors of courses on computer languages have
traditionally tormented their students with examination questions such as the ones in this section. Needless to say, writing programs that depend
on such subtletiesis odious programming style. Part of the power of stream processing isthat it lets usignore the order in which events actually
happen in our programs. Unfortunately, thisis precisely what we cannot afford to do in the presence of assignment, which forces usto be
concerned with time and change.

60 Eratosthenes, a third-century B.C. Alexandrian Greek philosopher, is famous for giving the first accurate estimate of the circumference of
the Earth, which he computed by observing shadows cast at noon on the day of the summer solstice. Eratosthenes's sieve method, although
ancient, has formed the basis for special-purpose hardware “sieves' that, until recently, were the most powerful toolsin existence for locating
large primes. Since the 70s, however, these methods have been superseded by outgrowths of the probabilistic techniques discussed in

section 1.2.6.

61 We have named these figures after Peter Henderson, who was the first person to show us diagrams of this sort as away of thinking about
stream processing. Each solid line represents a stream of values being transmitted. The dashed line from thecar tothecons andthefil ter
indicates that this is a single value rather than a stream.

62 This uses the generalized version of st r eam map from exercise 3.50.

63 Thislast point is very subtle and relies on the fact that p,,.1 < p,2. (Here, p, denotes the kth prime.) Estimates such as these are very difficult
to establish. The ancient proof by Euclid that there are an infinite number of primes showsthat p,.1<pP; P2 - - * Pn + 1, and no substantially
better result was proved until 1851, when the Russian mathematician P. L. Chebyshev established that p,+1< 2p,, for al n. Thisresult,
originally conjectured in 1845, is known as Bertrand's hypothesis. A proof can be found in section 22.3 of Hardy and Wright 1960.

64 This exercise shows how call-by-need is closely related to ordinary memoization as described in exercise 3.27. In that exercise, we used

assignment to explicitly construct alocal table. Our call-by-need stream optimization effectively constructs such atable automatically, storing
valuesin the previously forced parts of the stream.

65 \Wecan't usel et to bind thelocal variable guesses, because the value of guesses depends on guesses itself. Exercise 3.63 addresses
why we want alocal variable here.

86 Asin section 2.2.3, we represent a pair of integers as alist rather than a Lisp pair.

67 See exercise 3.68 for some insight into why we chose this decomposition.

68 The precise statement of the required property on the order of combination is as follows: There should be a function f of two arguments such
that the pair corresponding to element i of the first stream and element j of the second stream will appear as element number f(i,j) of the output
stream. Thetrick of using i nt er | eave to accomplish this was shown to us by David Turner, who employed it in the language KRC (Turner

1981).

89 We will require that the weighting function be such that the weight of a pair increases as we move out along arow or down aong a column
of the array of pairs.

70 To quote from G. H. Hardy's obituary of Ramanujan (Hardy 1921): “*It was Mr. Littlewood (I believe) who remarked that “every positive
integer was one of hisfriends.' | remember once going to see him when hewaslying ill at Putney. | had ridden in taxi-cab No. 1729, and
remarked that the number seemed to me arather dull one, and that | hoped it was not an unfavorable omen. “No," he replied, “itisavery
interesting number; it is the smallest number expressible as the sum of two cubes in two different ways.' " Thetrick of using weighted pairs to
generate the Ramanujan numbers was shown to us by Charles Leiserson.

71 This procedure is not guaranteed to work in all Scheme implementations, although for any implementation there is a simple variation that
will work. The problem has to do with subtle differences in the ways that Scheme implementations handle internal definitions. (See
section 4.1.6.)

72 Thisisasmall reflection, in Lisp, of the difficulties that conventional strongly typed languages such as Pascal have in coping with higher-
order procedures. In such languages, the programmer must specify the data types of the arguments and the result of each procedure: number,
logical value, sequence, and so on. Consequently, we could not express an abstraction such as *"map a given procedure pr oc over al the
elementsin a sequence” by a single higher-order procedure such as st r eam nmap. Rather, we would need a different mapping procedure for
each different combination of argument and result data types that might be specified for apr oc. Maintaining a practical notion of **data type"
in the presence of higher-order procedures raises many difficult issues. One way of dealing with this problem isillustrated by the language ML
(Gordon, Milner, and Wadsworth 1979), whose " polymorphic data types" include templates for higher-order transformations between data
types. Moreover, data types for most proceduresin ML are never explicitly declared by the programmer. Instead, ML includes a type-
inferencing mechanism that uses information in the environment to deduce the data types for newly defined procedures.

73 Similarly in physics, when we observe a moving particle, we say that the position (state) of the particle is changing. However, from the
perspective of the particle's world line in space-time there is no change involved.

74 John Backus, the inventor of Fortran, gave high visibility to functional programming when he was awarded the ACM Turing award in 1978.
His acceptance speech (Backus 1978) strongly advocated the functional approach. A good overview of functional programming isgivenin
Henderson 1980 and in Darlington, Henderson, and Turner 1982.

75 Observe that, for any two streams, there isin general more than one acceptable order of interleaving. Thus, technically, “merge” isarelation
rather than a function -- the answer is not a deterministic function of the inputs. We already mentioned (footnote 39) that nondeterminismis
essential when dealing with concurrency. The merge relation illustrates the same essential nondeterminism, from the functional perspective. In
section 4.3, we will ook at nondeterminism from yet another point of view.

76 The object model approximates the world by dividing it into separate pieces. The functional model does not modularize along object
boundaries. The object model is useful when the unshared state of the ““objects" is much larger than the state that they share. An example of a
place where the object viewpoint failsis quantum mechanics, where thinking of things as individual particles leads to paradoxes and
confusions. Unifying the object view with the functional view may have little to do with programming, but rather with fundamental
epistemological issues.

[Gotofirst, previous, next page; contents; index]

[Gotofirgt, previous, next page; contents; index]

Chapter 4

Metalinguistic Abstraction

. It'sin words that the magic is -- Abracadabra, Open Sesame, and the rest -- but

the magic words in one story aren't magical in the next. The real magicisto
understand which words work, and when, and for what; the trick isto learn the
trick.

... And those words are made from the | etters of our aphabet: a couple-dozen

squiggles we can draw with the pen. Thisisthe key! And the treasure, too, if we can
only get our handson it! It'sasif -- asif the key to the treasure is the treasure!

John Barth, Chimera

In our study of program design, we have seen that expert programmers control the complexity of their
designs with the same general techniques used by designers of all complex systems. They combine
primitive elements to form compound objects, they abstract compound objects to form higher-level
building blocks, and they preserve modularity by adopting appropriate large-scale views of system
structure. In illustrating these techniques, we have used Lisp as alanguage for describing processes and for
constructing computational data objects and processes to model complex phenomenain the real world.
However, as we confront increasingly complex problems, we will find that Lisp, or indeed any fixed
programming language, is not sufficient for our needs. We must constantly turn to new languages in order
to express our ideas more effectively. Establishing new languages is a powerful strategy for controlling
complexity in engineering design; we can often enhance our ability to deal with acomplex problem by
adopting a new language that enables us to describe (and hence to think about) the problem in a different
way, using primitives, means of combination, and means of abstraction that are particularly well suited to

the problem at hand.1

Programming is endowed with a multitude of languages. There are physical languages, such as the machine
languages for particular computers. These languages are concerned with the representation of data and
control in terms of individual bits of storage and primitive machine instructions. The machine-language
programmer is concerned with using the given hardware to erect systems and utilities for the efficient
implementation of resource-limited computations. High-level languages, erected on a machine-language
substrate, hide concerns about the representation of data as collections of bits and the representation of
programs as sequences of primitive instructions. These languages have means of combination and
abstraction, such as procedure definition, that are appropriate to the larger-scal e organization of systems.

Metalinguistic abstraction -- establishing new languages -- plays an important role in all branches of
engineering design. It is particularly important to computer programming, because in programming not
only can we formulate new languages but we can a so implement these languages by constructing
evaluators. An evaluator (or interpreter) for a programming language is a procedure that, when applied to
an expression of the language, performs the actions required to evaluate that expression.

It is no exaggeration to regard this as the most fundamental ideain programming:

The evaluator, which determines the meaning of expressions in a programming language,
IS just another program.

To appreciate this point is to change our images of ourselves as programmers. We come to see ourselves as
designers of languages, rather than only users of languages designed by others.

In fact, we can regard almost any program as the evaluator for some language. For instance, the polynomial
mani pulation system of section 2.5.3 embodies the rules of polynomial arithmetic and implements them in
terms of operations on list-structured data. If we augment this system with procedures to read and print
polynomial expressions, we have the core of a special-purpose language for dealing with problemsin
symbolic mathematics. The digital-logic simulator of section 3.3.4 and the constraint propagator of

section 3.3.5 are legitimate languages in their own right, each with its own primitives, means of
combination, and means of abstraction. Seen from this perspective, the technology for coping with large-
scale computer systems merges with the technology for building new computer languages, and computer
science itself becomes no more (and no less) than the discipline of constructing appropriate descriptive
languages.

We now embark on atour of the technology by which languages are established in terms of other
languages. In this chapter we shall use Lisp as a base, implementing evaluators as Lisp procedures. Lisp is
particularly well suited to this task, because of its ability to represent and manipulate symbolic expressions.
We will take the first step in understanding how languages are implemented by building an evaluator for
Lisp itself. The language implemented by our evaluator will be a subset of the Scheme dialect of Lisp that
we use in this book. Although the evaluator described in this chapter iswritten for a particular dialect of
Lisp, it contains the essential structure of an evaluator for any expression-oriented language designed for
writing programs for a sequential machine. (In fact, most language processors contain, deep within them, a
little "Lisp" evaluator.) The evaluator has been simplified for the purposes of illustration and discussion,
and some features have been left out that would be important to include in a production-quality Lisp
system. Nevertheless, this simple evaluator is adequate to execute most of the programs in this book.2

An important advantage of making the evaluator accessible as aLisp program is that we can implement
alternative evaluation rules by describing these as modifications to the evaluator program. One place where
we can use this power to good effect isto gain extra control over the ways in which computational models
embody the notion of time, which was so central to the discussion in chapter 3. There, we mitigated some
of the complexities of state and assignment by using streams to decoupl e the representation of time in the
world from time in the computer. Our stream programs, however, were sometimes cumbersome, because
they were constrained by the applicative-order evaluation of Scheme. In section 4.2, we'll change the

underlying language to provide for a more elegant approach, by modifying the evaluator to provide for
normal-order evaluation.

Section 4.3 implements a more ambitious linguistic change, whereby expressions have many values, rather
than just asingle value. In this language of nondeterministic computing, it is natural to express processes
that generate all possible values for expressions and then search for those values that satisfy certain
constraints. In terms of models of computation and time, thisis like having time branch into a set of

“possible futures” and then searching for appropriate time lines. With our nondeterministic evaluator,
keeping track of multiple values and performing searches are handled automatically by the underlying

mechanism of the language.

In section 4.4 we implement a logic-programming language in which knowledge is expressed in terms of
relations, rather than in terms of computations with inputs and outputs. Even though this makes the
language drastically different from Lisp, or indeed from any conventional language, we will see that the
logic-programming evaluator shares the essential structure of the Lisp evaluator.

1 The same ideais pervasive throughout all of engineering. For example, electrical engineers use many different languages for describing
circuits. Two of these are the language of electrical networks and the language of electrical systems. The network language emphasizes the
physical modeling of devicesin terms of discrete electrical elements. The primitive objects of the network language are primitive electrical
components such as resistors, capacitors, inductors, and transistors, which are characterized in terms of physical variables called voltage and
current. When describing circuits in the network language, the engineer is concerned with the physical characteristics of a design. In contrast,
the primitive objects of the system language are signal-processing modules such as filters and amplifiers. Only the functional behavior of the
modulesis relevant, and signals are manipulated without concern for their physical realization as voltages and currents. The system language is
erected on the network language, in the sense that the elements of signal-processing systems are constructed from electrical networks. Here,
however, the concerns are with the large-scale organization of electrical devices to solve a given application problem; the physical feasibility
of the partsis assumed. This layered collection of languages is another example of the stratified design technique illustrated by the picture
language of section 2.2.4.

2 The most important features that our evaluator |eaves out are mechanisms for handling errors and supporting debugging. For amore
extensive discussion of evaluators, see Friedman, Wand, and Haynes 1992, which gives an exposition of programming languages that proceeds
viaa sequence of evaluators written in Scheme.

[Gotofirst, previous, next page; contents;, index|

[Gotofirst, previous, next page; contents; index]

4.1 The Metacircular Evaluator

Our evaluator for Lisp will be implemented as a Lisp program. It may seem circular to think about
evaluating Lisp programs using an evaluator that isitself implemented in Lisp. However, evaluationis a
process, so it is appropriate to describe the evaluation process using Lisp, which, after all, is our tool for

describing processes.3 An evaluator that is written in the same language that it evaluatesis said to be
metacircular.

The metacircular evaluator is essentialy a Scheme formulation of the environment model of evaluation
described in section 3.2. Recall that the model has two basic parts:

1. To evaluate a combination (a compound expression other than a specia form), evaluate
the subexpressions and then apply the value of the operator subexpression to the values of
the operand subexpressions.

2. To apply acompound procedure to a set of arguments, evaluate the body of the
procedure in a new environment. To construct this environment, extend the environment
part of the procedure object by aframe in which the formal parameters of the procedure
are bound to the arguments to which the procedure is applied.

These two rules describe the essence of the evaluation process, abasic cycle in which expressionsto be
evaluated in environments are reduced to procedures to be applied to arguments, which in turn are reduced
to new expressions to be evaluated in new environments, and so on, until we get down to symbols, whose
values are looked up in the environment, and to primitive procedures, which are applied directly (see

figure 4.1).4 This evaluation cycle will be embodied by the interplay between the two critical proceduresin
the evaluator, eval and appl y, which are described in section 4.1.1 (seefigure 4.1).

The implementation of the evaluator will depend upon procedures that define the syntax of the expressions
to be evaluated. We will use data abstraction to make the evaluator independent of the representation of the
language. For example, rather than committing to a choice that an assignment isto be represented by alist
beginning with the symbol set ! we use an abstract predicate assi gnnment ? to test for an assignment,

and we use abstract selectorsassi gnnent - var i abl e and assi gnnent - val ue to access the parts
of an assignment. Implementation of expressions will be described in detail in section 4.1.2. There are also
operations, described in section 4.1.3, that specify the representation of procedures and environments. For
example, make- pr ocedur e constructs compound procedures, | ookup- var i abl e- val ue accesses
the values of variables, and appl y- pri m ti ve- procedur e applies aprimitive procedure to agiven
list of arguments.

4.1.1 The Core of the Evaluator

Expression,
Procedure, Enviconment
Arguments

o, o

Figure4.1: Theeval -appl y cycle exposes the essence of a computer language.
The evaluation process can be described as the interplay between two procedures: eval and appl y.

Eval

Eval takesasarguments an expression and an environment. It classifies the expression and directsits
evaluation. Eval isstructured as a case analysis of the syntactic type of the expression to be evaluated. In
order to keep the procedure general, we express the determination of the type of an expression abstractly,
making no commitment to any particular representation for the various types of expressions. Each type of
expression has a predicate that tests for it and an abstract means for selecting its parts. This abstract syntax
makes it easy to see how we can change the syntax of the language by using the same evaluator, but with a
different collection of syntax procedures.

Primitive expressions

. For self-evaluating expressions, such as numbers, eval returnsthe expression itself.

. Eval must look up variablesin the environment to find their values.

Special forms

. For quoted expressions, eval returns the expression that was quoted.

. An assignment to (or adefinition of) avariable must recursively call eval to compute the new

value to be associated with the variable. The environment must be modified to change (or create)
the binding of the variable.

. Ani f expression requires specia processing of its parts, so as to evaluate the consequent if the
predicate is true, and otherwise to evaluate the alternative.

. Al anbda expression must be transformed into an applicable procedure by packaging together
the parameters and body specified by the | anbda expression with the environment of the

evaluation.

. A begi n expression requires evaluating its sequence of expressions in the order in which they
appear.

. A caseanaysis(cond) istransformed into anest of i f expressions and then eval uated.
Combinations

. For aprocedure application, eval must recursively evaluate the operator part and the operands of
the combination. The resulting procedure and arguments are passed to appl y, which handles the
actual procedure application.

Here isthe definition of eval :

(define (eval exp env)
(cond ((sel f-evaluating? exp) exp)
((variabl e? exp) (! ookup-vari abl e-val ue exp env))
((quot ed? exp) (text-of-quotation exp))
((assignment ? exp) (eval -assi gnnment exp env))
((definition? exp) (eval-definition exp env))
((if? exp) (eval-if exp env))
((l anbda? exp)
(make- procedure (| anbda- paraneters exp)
(1 anbda- body exp)
env))
((begi n? exp)
(eval - sequence (begin-actions exp) env))
((cond? exp) (eval (cond->if exp) env))
((application? exp)
(apply (eval (operator exp) env)
(l'ist-of -val ues (operands exp) env)))
(el se
(error "Unknown expression type -- EVAL" exp))))

For clarity, eval has been implemented as a case analysis using cond. The disadvantage of thisis that
our procedure handles only a few distinguishable types of expressions, and no new ones can be defined
without editing the definition of eval . In most Lisp implementations, dispatching on the type of an
expression is done in a data-directed style. This allows a user to add new types of expressions that eval
can distinguish, without modifying the definition of eval itself. (See exercise 4.3.)

Apply

Appl y takestwo arguments, a procedure and alist of arguments to which the procedure should be
applied. Appl y classifies proceduresinto two kinds: It callsappl y- pri mi ti ve- procedur e to apply

primitives; it applies compound procedures by sequentially evaluating the expressions that make up the
body of the procedure. The environment for the evaluation of the body of a compound procedure is
constructed by extending the base environment carried by the procedure to include aframe that binds the
parameters of the procedure to the arguments to which the procedure isto be applied. Here is the definition

of appl y:

(define (apply procedure argunents)
(cond ((primtive-procedure? procedure)
(apply-primtive-procedure procedure argunents))
((conpound- procedure? procedure)
(eval - sequence
(procedur e- body procedure)
(ext end- envi r onnent
(procedure-paraneters procedure)
argunent s
(procedure-environnent procedure))))
(el se
(error
"Unknown procedure type -- APPLY" procedure))))

Procedure arguments

When eval processes aprocedure application, it uses! i st - of - val ues to produce the list of
arguments to which the procedure isto be applied. Li st - of - val ues takes as an argument the operands
of the combination. It evaluates each operand and returns alist of the corresponding values:2

(define (list-of-values exps env)
(if (no-operands? exps)
()
(cons (eval (first-operand exps) env)
(list-of-values (rest-operands exps) env))))

Conditionals

Eval - i f evaluatesthe predicate part of ani f expression in the given environment. If the result istrue,
eval -i f evauates the consequent, otherwise it evaluates the alternative:

(define (eval -if exp env)
(if (true? (eval (if-predicate exp) env))
(eval (if-consequent exp) env)
(eval (if-alternative exp) env)))

Theuseof t rue? ineval -i f highlightsthe issue of the connection between an implemented language
and an implementation language. Thei f - pr edi cat e isevaluated in the language being implemented
and thus yields avalue in that language. The interpreter predicatet r ue? trandates that value into a value
that can be tested by thei f in the implementation language: The metacircular representation of truth

might not be the same as that of the underlying Scheme.6

Sequences

Eval - sequence isused by appl y to evaluate the sequence of expressionsin a procedure body and by
eval toevauate the sequence of expressionsinabegi n expression. It takes as arguments a sequence of

expressions and an environment, and eval uates the expressions in the order in which they occur. The value
returned is the value of the final expression.

(define (eval -sequence exps env)
(cond ((last-exp? exps) (eval (first-exp exps) env))
(el se (eval (first-exp exps) env)
(eval - sequence (rest-exps exps) env))))

Assignments and definitions

The following procedure handles assignmentsto variables. It callseval to find the value to be assigned
and transmits the variable and the resulting valueto set - var i abl e- val ue! tobeinstalled in the
designated environment.

(define (eval -assignment exp env)
(set-variabl e-val ue! (assignnent-variabl e exp)
(eval (assignnent-val ue exp) env)
env)
' ok)

Definitions of variables are handled in a similar manner.”

(define (eval -definition exp env)
(define-variable! (definition-variable exp)
(eval (definition-value exp) env)
env)
' ok)

We have chosen here to return the symbol ok as the value of an assignment or a definition.8

Exercise 4.1. Notice that we cannot tell whether the metacircular evaluator evaluates operands from left to
right or from right to left. Its evaluation order is inherited from the underlying Lisp: If the argumentsto
cons inli st - of - val ues are evaluated from left to right, then | i st - of - val ues will evaluate

operands from left to right; and if the argumentsto cons are evaluated from right to left, then| i st - of -
val ues will evaluate operands from right to left.

Writeaversion of | i st - of - val ues that evaluates operands from left to right regardless of the order of
evaluation in the underlying Lisp. Also writeaversion of | i st - of - val ues that evaluates operands

from right to left.

4.1.2 Representing Expressions

The evaluator is reminiscent of the symbolic differentiation program discussed in section 2.3.2. Both

programs operate on symbolic expressions. In both programs, the result of operating on a compound
expression is determined by operating recursively on the pieces of the expression and combining the
resultsin away that depends on the type of the expression. In both programs we used data abstraction to
decoupl e the general rules of operation from the details of how expressions are represented. In the
differentiation program this meant that the same differentiation procedure could deal with algebraic
expressionsin prefix form, in infix form, or in some other form. For the evaluator, this means that the
syntax of the language being evaluated is determined solely by the procedures that classify and extract
pieces of expressions.

Here is the specification of the syntax of our language:

a The only self-evaluating items are numbers and strings:

(define (self-evaluating? exp)
(cond ((nunber? exp) true)
((string? exp) true)
(el se false)))

a Variables are represented by symbols:

(define (variable? exp) (synbol? exp))

a Quotations have the form (quot e <t ext - of - quot ati on>) :2

(define (quoted? exp)
(tagged-list? exp 'quote))

(define (text-of-quotation exp) (cadr exp))

Quot ed? isdefined in terms of the proceduret agged- | i st ?, which identifies lists beginning with a
designated symbol:

(define (tagged-list? exp tag)
(if (pair? exp)

(eq? (car exp) tag)
fal se))

a Assignments havetheform (set! <var> <val ue>):

(define (assignnent? exp)

(tagged-list? exp '"set!))
(define (assignnent-variable exp) (cadr exp))
(define (assignnent-value exp) (caddr exp))

o Definitions have the form

(define <var> <val ue>)

or the form

(define (<var> <paraneter,> ... <paraneter,>)
<body>)

The latter form (standard procedure definition) is syntactic sugar for

(define <var>
(lanbda (<paraneter,> ... <paraneter,>)
<body>))

The corresponding syntax procedures are the following:

(define (definition? exp)
(tagged-list? exp 'define))
(define (definition-variable exp)
(if (synbol? (cadr exp))
(cadr exp)
(caadr exp)))
(define (definition-val ue exp)
(i f (synbol? (cadr exp))
(caddr exp)
(make- | anbda (cdadr exp) ; formal paraneters

(cddr exp)))) ; body

a Lanbda expressions are lists that begin with the symbol | anbda:

(define (lanbda? exp) (tagged-list? exp 'lanbda))
(define (lanbda-paranmeters exp) (cadr exp))
(define (lanbda-body exp) (cddr exp))

We also provide a constructor for | ambda expressions, whichisused by def i ni ti on- val ue, above:

(define (make-|anbda paraneters body)
(cons 'l anbda (cons paraneters body)))

a Conditionals begin withi f and have a predicate, a consequent, and an (optional) aternative. If the
expression has no alternative part, we providef al se asthe alternative.10

(define (if? exp) (tagged-list? exp "if))
(define (if-predicate exp) (cadr exp))
(define (if-consequent exp) (caddr exp))
(define (if-alternative exp)
(if (not (null? (cdddr exp)))
(cadddr exp)
"fal se))

We also provide a constructor for i f expressions, to be used by cond- >i f to transform cond
expressionsintoi f expressions:

(define (make-if predicate consequent alternative)
(list "if predicate consequent alternative))

a Begi n packages a sequence of expressions into a single expression. We include syntax operations on
begi n expressions to extract the actual sequence from the begi n expression, aswell as selectors that
return the first expression and the rest of the expressions in the sequence.1l

(define (begin? exp) (tagged-list? exp 'begin))
(define (begin-actions exp) (cdr exp))

(define (last-exp? seq) (null? (cdr seq)))
(define (first-exp seq) (car seq))

(define (rest-exps seq) (cdr seq))

We also include a constructor sequence- >exp (for use by cond- >i f) that transforms a sequence into
asingle expression, using begi n if necessary:

(define (sequence->exp seq)
(cond ((null? seq) seq)
((last-exp? seq) (first-exp seq))
(el se (make-begin seq))))
(define (nmake-begin seq) (cons 'begin seq))

a A procedure application is any compound expression that is not one of the above expression types. The
car of the expression isthe operator, and the cdr isthelist of operands:

(define (application? exp) (pair? exp))
(define (operator exp) (car exp))
(define (operands exp) (cdr exp))
(define (no-operands? ops) (null? ops))
(define (first-operand ops) (car ops))
(define (rest-operands ops) (cdr ops))

Derived expressions

Some special formsin our language can be defined in terms of expressions involving other special forms,
rather than being implemented directly. One exampleiscond, which can be implemented asanest of i f

expressions. For example, we can reduce the problem of evaluating the expression
(cond ((> x 0) x)

((= x 0) (display 'zero) 0)
(else (- x)))

to the problem of evaluating the following expression involving i f and begi n expressions:

(if (> x 0)
X
(if (=x 0)
(begin (display 'zero)
0)
(- x)))

Implementing the evaluation of cond in thisway simplifies the evaluator because it reduces the number of
special forms for which the evaluation process must be explicitly specified.

We include syntax procedures that extract the parts of acond expression, and a procedure cond- >i f
that transforms cond expressionsintoi f expressions. A case analysis beginswith cond and has alist of
predicate-action clauses. A clauseisan el se clauseif its predicate is the symbol el se.12

(define (cond? exp) (tagged-list? exp 'cond))
(define (cond-cl auses exp) (cdr exp))
(define (cond-el se-clause? cl ause)

(eq? (cond-predicate clause) 'else))
(define (cond-predicate clause) (car clause))
(define (cond-actions clause) (cdr clause))
(define (cond->if exp)

(expand- cl auses (cond-cl auses exp)))

(define (expand-cl auses cl auses)
(if (null? clauses)

'fal se ; no else clause
(let ((first (car clauses))
(rest (cdr clauses)))
(if (cond-el se-clause? first)
(if (null? rest)
(sequence->exp (cond-actions first))
(error "ELSE clause isn't |last -- COND >IF"
cl auses))
(make-if (cond-predicate first)

(sequence->exp (cond-actions first))
(expand-cl auses rest))))))

Expressions (such as cond) that we choose to implement as syntactic transformations are called derived
expressions. Let expressions are also derived expressions (see exercise 4.6).13

Exercise 4.2. Louis Reasoner plansto reorder the cond clausesin eval so that the clause for procedure

applications appears before the clause for assignments. He argues that this will make the interpreter more
efficient: Since programs usually contain more applications than assignments, definitions, and so on, his
modified eval will usually check fewer clauses than the original eval before identifying the type of an

expression.

a. What iswrong with Louis's plan? (Hint: What will Louis's evaluator do with the expression (def i ne
x 3)?

b. Louisis upset that his plan didn't work. He iswilling to go to any lengths to make his evaluator
recognize procedure applications before it checks for most other kinds of expressions. Help him by
changing the syntax of the evaluated language so that procedure applications start with cal | . For

example, instead of (f act ori al 3) wewill now havetowrite(cal |l factorial 3) andinstead
of (+ 1 2) wewill havetowrite(call + 1 2).

Exercise 4.3. Rewriteeval sothat the dispatch is donein data-directed style. Compare this with the data-
directed differentiation procedure of exercise 2.73. (You may use the car of acompound expression as
the type of the expression, asis appropriate for the syntax implemented in this section.) .

Exercise 4.4. Recall the definitions of the special formsand and or from chapter 1.

. and: The expressions are evaluated from left to right. If any expression evaluatesto false, faseis

returned; any remaining expressions are not evaluated. If all the expressions evaluate to true
values, the value of the last expression is returned. If there are no expressions then true is returned.

. or: Theexpressions are evaluated from left to right. If any expression evaluates to atrue value,

that value is returned; any remaining expressions are not evaluated. If all expressions evaluate to
false, or if there are no expressions, then falseis returned.

Install and and or as new special forms for the evaluator by defining appropriate syntax procedures and
evaluation procedures eval - and and eval - or . Alternatively, show how to implement and and or as
derived expressions.

Exercise 4.5. Scheme allows an additional syntax for cond clauses, (<t est > => <reci pi ent>) . If
<test> evaluates to atrue value, then <recipient> is evaluated. Its value must be a procedure of one
argument; this procedure is then invoked on the value of the <test>, and the result is returned as the value
of the cond expression. For example

(cond ((assoc 'b '((a 1) (b 2))) => cadr)
(el se false))

returns 2. Modify the handling of cond so that it supports this extended syntax.
Exercise4.6. Let expressions are derived expressions, because

(let ((<var,> <expy;>) ... (<var,> <exp,>))
<body>)

IS equivalent to

((lanmbda (<var,> ... <var,>)
<body>)
<eXp1>

<expy>)

Implement a syntactic transformation | et - >conbi nat i on that reduces evaluating | et expressionsto
evaluating combinations of the type shown above, and add the appropriate clauseto eval tohandlel et
expressions.

Exercise4.7. Let * issimilartol et , except that the bindings of the | et variables are performed

sequentially from left to right, and each binding is made in an environment in which all of the preceding
bindings are visible. For example

(let* ((x 3)
(y (+ x 2))
(z (+xy95)))
(* x 2))

returns 39. Explain how al et * expression can be rewritten as a set of nested | et expressions, and write
aprocedurel et *- >nest ed- | et s that performs this transformation. If we have already implemented

| et (exercise4.6) and we want to extend the evaluator to handle| et *, isit sufficient to add a clause to
eval whoseactionis

(eval (let*->nested-lets exp) env)

or must we explicitly expand | et * in terms of non-derived expressions?

Exercise4.8. “"Named| et "isavariant of | et that hasthe form

(l et <var> <bi ndi ngs> <body>)

The <bindings> and <body> are just asin ordinary | et , except that <var> is bound within <body> to a
procedure whose body is <body> and whose parameters are the variables in the <bindings>. Thus, one can
repeatedly execute the <body> by invoking the procedure named <var>. For example, the iterative
Fibonacci procedure (section 1.2.2) can be rewritten using named | et asfollows:

(define (fib n)
(let fib-iter ((a 1)
(b 0)
(count n))
(if (= count 0)
b
(fib-iter (+ a b) a (- count 1)))))

Modify | et - >conbi nat i on of exercise 4.6 to aso support named | et .

Exercise 4.9. Many languages support a variety of iteration constructs, such asdo, f or , whi | e, and
unt i | . In Scheme, iterative processes can be expressed in terms of ordinary procedure calls, so special

iteration constructs provide no essential gain in computational power. On the other hand, such constructs
are often convenient. Design some iteration constructs, give examples of their use, and show how to
implement them as derived expressions.

Exercise 4.10. By using data abstraction, we were able to write an eval procedure that is independent of

the particular syntax of the language to be evaluated. To illustrate this, design and implement a new syntax
for Scheme by modifying the procedures in this section, without changing eval or appl y.

4.1.3 Evaluator Data Structures

In addition to defining the external syntax of expressions, the evaluator implementation must also define
the data structures that the evaluator manipulates internally, as part of the execution of a program, such as
the representation of procedures and environments and the representation of true and false.

Testing of predicates

For conditionals, we accept anything to be true that is not the explicit f al se object.

(define (true? x)
(not (eq? x false)))
(define (fal se? x)
(eq? x false))

Representing procedures

To handle primitives, we assume that we have available the following procedures:

. (apply-primtive-procedure <proc> <args>)
applies the given primitive procedure to the argument values in the list <args> and returns the
result of the application.

« (primtive-procedure? <proc>)
tests whether <proc> is a primitive procedure.

These mechanisms for handling primitives are further described in section 4.1.4.

Compound procedures are constructed from parameters, procedure bodies, and environments using the
constructor make- pr ocedur e:

(define (nmake-procedure paraneters body env)
(l'ist '"procedure paraneters body env))
(define (conpound-procedure? p)
(tagged-1ist? p 'procedure))
(define (procedure-paraneters p) (cadr p))
(define (procedure-body p) (caddr p))
(define (procedure-environnent p) (cadddr p))

Operations on Environments

The evaluator needs operations for manipulating environments. As explained in section 3.2, an

environment is a sequence of frames, where each frame is atable of bindings that associate variables with
their corresponding values. We use the following operations for manipulating environments:

. (l ookup-vari abl e-val ue <var> <env>)

returns the value that is bound to the symbol <var> in the environment <env>, or signals an error
if the variable is unbound.

. (extend-environment <vari abl es> <val ues> <base- env>)

returns a new environment, consisting of a new frame in which the symbolsin the list <variables>
are bound to the corresponding elementsin the list <values>, where the enclosing environment is
the environment <base-env>.

. (define-variable! <var> <val ue> <env>)

adds to the first frame in the environment <env> a new binding that associates the variable <var>
with the value <value>.

. (set-variabl e-val ue! <var> <val ue> <env>)

changes the binding of the variable <var> in the environment <env> so that the variable is now
bound to the value <value>, or signals an error if the variable is unbound.

To implement these operations we represent an environment as alist of frames. The enclosing environment

of an environment isthe cdr of thelist. The empty environment is simply the empty list.

(define (enclosing-environnent env) (cdr env))
(define (first-frame env) (car env))
(define the-enpty-environment '())

Each frame of an environment is represented as a pair of lists: alist of the variables bound in that frame
and alist of the associated values.14

(define (nmake-franme vari abl es val ues)
(cons vari abl es val ues))
(define (frane-variables franme) (car frane))
(define (frame-values frane) (cdr frane))
(define (add-binding-to-frame! var val frane)
(set-car! frame (cons var (car frame)))
(set-cdr! franme (cons val (cdr frame))))

To extend an environment by a new frame that associates variables with values, we make aframe
consisting of thelist of variables and the list of values, and we adjoin this to the environment. We signal an
error if the number of variables does not match the number of values.

(define (extend-environnent vars vals base-env)
(if (= (length vars) (length vals))
(cons (make-frane vars vals) base-env)
(if (< (length vars) (length vals))
(error "Too many argunents supplied" vars vals)
(error "Too few argunments supplied" vars vals))))

To look up avariable in an environment, we scan the list of variablesin the first frame. If we find the
desired variable, we return the corresponding element in the list of values. If we do not find the variablein
the current frame, we search the enclosing environment, and so on. If we reach the empty environment, we
signal an ““unbound variable" error.

(define (Il ookup-variabl e-val ue var env)
(define (env-1oop env)
(define (scan vars vals)
(cond ((null? vars)
(env-1oo0p (enclosing-environnent env)))
((eq? var (car vars))
(car val s))
(el se (scan (cdr vars) (cdr vals)))))
(if (eg? env the-enpty-environment)
(error "Unbound vari abl e" var)
(let ((frame (first-frame env)))
(scan (franme-variables frane)
(frame-val ues franme)))))
(env-1oop env))

To set avariable to anew value in a specified environment, we scan for the variable, just asin| ookup-
var i abl e- val ue, and change the corresponding value when we find it.

(define (set-variabl e-value! var val env)
(define (env-1oop env)
(define (scan vars vals)
(cond ((null? vars)
(env-1o0o0p (enclosing-environnent env)))
((eq? var (car vars))
(set-car! vals val))
(el se (scan (cdr vars) (cdr vals)))))
(if (eqg? env the-enpty-environment)
(error "Unbound variable -- SET!"™ var)
(let ((frame (first-frame env)))
(scan (franme-variables frane)
(frame-val ues frane)))))
(env-1oop env))

To define avariable, we search the first frame for abinding for the variable, and change the binding if it
exists (just asinset - var i abl e- val ue!). If no such binding exists, we adjoin one to the first frame.

(define (define-variable! var val env)
(let ((frame (first-franme env)))
(define (scan vars vals)
(cond ((null? vars)
(add- bi ndi ng-to-frame! var val frane))
((eqg? var (car vars))
(set-car! vals val))
(el se (scan (cdr vars) (cdr vals)))))
(scan (frane-variables frane)
(franme-val ues frame))))

The method described here is only one of many plausible ways to represent environments. Since we used
data abstraction to isolate the rest of the evaluator from the detailed choice of representation, we could
change the environment representation if we wanted to. (See exercise 4.11.) In a production-quality Lisp

system, the speed of the evaluator's environment operations -- especially that of variable lookup -- hasa
major impact on the performance of the system. The representation described here, although conceptually

simple, is not efficient and would not ordinarily be used in a production system.1>

Exercise4.11. Instead of representing aframe as a pair of lists, we can represent aframe as alist of
bindings, where each binding is a name-value pair. Rewrite the environment operations to use this
alternative representation.

Exercise 4.12. The proceduresset - vari abl e- val ue! ,defi ne-vari abl e! ,and| ookup-
vari abl e- val ue can be expressed in terms of more abstract procedures for traversing the environment
structure. Define abstractions that capture the common patterns and redefine the three procedures in terms

of these abstractions.

Exercise 4.13. Scheme allows us to create new bindings for variables by means of def i ne, but provides
no way to get rid of bindings. Implement for the evaluator a special form make- unbound! that removes
the binding of a given symbol from the environment in which the make- unbound! expressionis

evaluated. This problem is not completely specified. For example, should we remove only the binding in
the first frame of the environment? Complete the specification and justify any choices you make.

4.1.4 Running the Evaluator as a Program

Given the evaluator, we have in our hands a description (expressed in Lisp) of the process by which Lisp
expressions are evaluated. One advantage of expressing the evaluator as a program is that we can run the
program. This gives us, running within Lisp, aworking model of how Lisp itself evaluates expressions.
This can serve as aframework for experimenting with evaluation rules, as we shall do later in this chapter.

Our evaluator program reduces expressions ultimately to the application of primitive procedures.
Therefore, all that we need to run the evaluator is to create a mechanism that calls on the underlying Lisp
system to model the application of primitive procedures.

There must be abinding for each primitive procedure name, so that when eval evaluates the operator of
an application of aprimitive, it will find an object to passto appl y. We thus set up aglobal environment

that associates unigue objects with the names of the primitive procedures that can appear in the expressions
we will be evaluating. The global environment also includes bindings for the symbolst r ue andf al se,

so that they can be used as variables in expressions to be evaluated.

(define (setup-environnent)
(let ((initial-env
(extend-environnent (primtive-procedure-nanes)
(primtive-procedure-objects)
t he-enpty-environnent)))
(define-variable! "true true initial-env)
(define-variable! 'false false initial-env)
initial-env))
(define the-gl obal -environnent (setup-environnent))

It does not matter how we represent the primitive procedure objects, so long asappl y can identify and
apply them by using the procedurespri m ti ve- procedure? andappl y-primtive-

pr ocedur e. We have chosen to represent a primitive procedure as a list beginning with the symbol
pri m tive and containing a procedure in the underlying Lisp that implements that primitive.

(define (primtive-procedure? proc)
(tagged-list? proc '"primtive))

(define (primtive-inplenentation proc) (cadr proc))

Set up- envi r onment will get the primitive names and implementation procedures from a list:16

(define primtive-procedures
(list (list 'car car)
(list "cdr cdr)
(l'ist '"cons cons)
(list "null? null?)
<nore primtives>

))
(define (primtive-procedure-nanes)
(map car

primtive-procedures))

(define (primtive-procedure-objects)
(map (lanmbda (proc) (list "primtive (cadr proc)))
primtive-procedures))

To apply aprimitive procedure, we simply apply the implementation procedure to the arguments, using the
underlying Lisp system:1/

(define (apply-primtive-procedure proc args)
(appl y-i n-underl yi ng- schene
(primtive-inplenmentati on proc) args))

For convenience in running the metacircular evaluator, we provide adriver loop that models the read-eval-
print loop of the underlying Lisp system. It prints a prompt, reads an input expression, evaluates this
expression in the global environment, and prints the result. We precede each printed result by an output
prompt so as to distinguish the value of the expression from other output that may be printed.18

(define input-pronpt ";;; MEval input:")
(define output-pronpt ";;; MEval value:")
(define (driver-1|oop)
(prompt-for-input input-pronpt)
(let ((input (read)))
(let ((output (eval input the-global-environnent)))
(announce- out put out put - pronpt)
(user-print output)))
(driver-1oo0p))
(define (pronmpt-for-input string)
(newine) (newine) (display string) (newine))

(define (announce-output string)
(newline) (display string) (newine))

We use a specia printing procedure, user - pri nt , to avoid printing the environment part of acompound
procedure, which may be avery long list (or may even contain cycles).

(define (user-print object)
(i f (conpound-procedure? object)
(display (list 'conmpound-procedure
(procedure-paraneters object)
(procedur e-body object)
' <procedure-env>))
(di spl ay object)))

Now all we need to do to run the evaluator isto initialize the global environment and start the driver loop.
Here is a sample interaction:

(define the-global -environnent (setup-environnent))
(driver-1oop)
7, MEval input:
(define (append x vy)
(if (null? x)
y
(cons (car x)
(append (cdr x) y))))

... MEval val ue:
ok
.., MEval input:
(append "(a b c) "(d e f))
;.. MEval val ue:
(abcdef)

Exercise4.14. EvalLu Ator and Louis Reasoner are each experimenting with the metacircular evaluator.
Evatypesin the definition of map, and runs some test programs that use it. They work fine. Louis, in

contrast, has installed the system version of map as a primitive for the metacircular evaluator. When he
triesit, things go terribly wrong. Explain why Louiss map fails even though Eva's works.

4.1.5 Data as Programs

In thinking about a Lisp program that evaluates Lisp expressions, an analogy might be helpful. One
operational view of the meaning of a program is that a program is a description of an abstract (perhaps
infinitely large) machine. For example, consider the familiar program to compute factorials:

(define (factorial n)
(if (=n1)
1
(* (factorial (- n 1)) n)))

We may regard this program as the description of a machine containing parts that decrement, multiply, and
test for equality, together with atwo-position switch and another factorial machine. (The factorial machine
isinfinite because it contains another factorial machine within it.) Figure 4.2 is aflow diagram for the

factorial machine, showing how the parts are wired together.

factorial

I |a=z=— =

T20

l
am

— factorial
1,

Figure4.2: Thefactoria program, viewed as an abstract machine.

In asimilar way, we can regard the evaluator as a very special machine that takes as input a description of
amachine. Given thisinput, the evaluator configures itself to emulate the machine described. For example,
if we feed our evaluator the definition of f act or i al , asshown infigure 4.3, the evaluator will be ableto

compute factorials.

5§ ——== eval T20

(define (factorial)
(if {=n 1}

1
(* [(factorial (— nn 1)))}

Figure4.3: Theevaluator emulating a factorial machine.

From this perspective, our evaluator is seen to be a universal machine. It mimics other machines when
these are described as Lisp programs.9 Thisis striking. Try to imagine an anal ogous evaluator for
electrical circuits. Thiswould be acircuit that takes as input a signal encoding the plans for some other
circuit, such as afilter. Given thisinput, the circuit evaluator would then behave like afilter with the same
description. Such a universal electrical circuit is almost unimaginably complex. It is remarkable that the

program evaluator is arather simple program.29

Another striking aspect of the evaluator is that it acts as a bridge between the data objects that are
manipulated by our programming language and the programming language itself. Imagine that the
evaluator program (implemented in Lisp) isrunning, and that a user istyping expressions to the evaluator

and observing the results. From the perspective of the user, an input expressionsuchas(* x X) isan

expression in the programming language, which the evaluator should execute. From the perspective of the
evaluator, however, the expression issimply alist (in this case, alist of three symbols: *, x, and x) that is
to be manipulated according to awell-defined set of rules.

That the user's programs are the evaluator's data need not be a source of confusion. In fact, it is sometimes
convenient to ignore this distinction, and to give the user the ability to explicitly evaluate a data object as a
Lisp expression, by making eval available for usein programs. Many Lisp dialects provide a primitive
eval procedure that takes as arguments an expression and an environment and eval uates the expression
relative to the environment.21 Thus,

(eval "(* 5 5) user-initial-environnment)

and

(eval (cons '"* (list 5 5)) user-initial-environnent)

will both return 25.22

Exercise 4.15. Given a one-argument procedure p and an object a, p issaid to ""halt" on a if evaluating
the expression (p a) returns avalue (as opposed to terminating with an error message or running
forever). Show that it isimpossible to write a procedure hal t s? that correctly determines whether p halts
on a for any procedure p and object a. Use the following reasoning: If you had such aprocedure hal t s?,
you could implement the following program:

(define (run-forever) (run-forever))

(define (try p)
(if (halts? p p)
(run-forever)

"hal ted))

Now consider evaluating the expression (try try) and show that any possible outcome (either halting
or running forever) violates the intended behavior of hal t s?.23

4.1.6 Internal Definitions

Our environment model of evaluation and our metacircular evaluator execute definitions in sequence,
extending the environment frame one definition at atime. Thisis particularly convenient for interactive
program development, in which the programmer needs to freely mix the application of procedures with the
definition of new procedures. However, if we think carefully about the internal definitions used to
implement block structure (introduced in section 1.1.8), we will find that name-by-name extension of the

environment may not be the best way to define local variables.

Consider a procedure with internal definitions, such as

(define (f x)
(define (even? n)
(if (=n0)
true
(odd? (- n 1))))
(define (odd? n)
(if (=n0)
fal se
(even? (- n 1))))
<rest of body of f>)

Our intention here is that the name odd? in the body of the procedure even? should refer to the
procedure odd? that is defined after even?. The scope of the name odd? isthe entire body of f , not just
the portion of the body of f starting at the point where the def i ne for odd? occurs. Indeed, when we
consider that odd? isitself defined in terms of even? -- so that even? and odd? are mutually recursive
procedures -- we see that the only satisfactory interpretation of the two def i nesisto regard them asif the
names even? and odd? were being added to the environment simultaneously. More generally, in block
structure, the scope of alocal nameis the entire procedure body in which the def i ne is evaluated.

Asit happens, our interpreter will evaluate callsto f correctly, but for an ““accidental” reason: Since the

definitions of the internal procedures come first, no callsto these procedures will be evaluated until all of
them have been defined. Hence, odd? will have been defined by the time even? is executed. In fact, our

sequential evaluation mechanism will give the same result as a mechanism that directly implements
simultaneous definition for any procedure in which the internal definitions come first in abody and
evaluation of the value expressions for the defined variables doesn't actually use any of the defined
variables. (For an example of a procedure that doesn't obey these restrictions, so that sequential definition

isn't equivalent to simultaneous definition, see exercise 4.19.)24

Thereis, however, asimple way to treat definitions so that internally defined names have truly
simultaneous scope -- just create al local variables that will be in the current environment before
evaluating any of the value expressions. One way to do thisis by a syntax transformation on | anbda

expressions. Before evaluating the body of al anmbda expression, we " “scan out" and eliminate all the
internal definitionsin the body. The internally defined variables will be created with al et and then set to
their values by assignment. For example, the procedure

(1 amrbda <var s>
(define u <el>)
(define v <e2>)
<e3>)

would be transformed into

(1l ambda <var s>

(let ((u '*unassigned*)
(v '*unassi gned*))
(set! u <el>)
(set! v <e2>)
<e3>))

where* unassi gned* isaspecia symbol that causes looking up avariable to signal an error if an
attempt is made to use the value of the not-yet-assigned variable.

An aternative strategy for scanning out internal definitionsis shown in exercise 4.18. Unlike the
transformation shown above, this enforces the restriction that the defined variables values can be evaluated
without using any of the variables values.22

Exercise 4.16. Inthisexercise we implement the method just described for interpreting internal
definitions. We assume that the evaluator supports| et (see exercise 4.6).

a. Changel ookup-vari abl e- val ue (section 4.1.3) to signal an error if the valueit findsisthe
symbol * unassi gned*.

b. Write aprocedure scan- out - def i nes that takes a procedure body and returns an equivalent one
that has no internal definitions, by making the transformation described above.

c. Install scan- out - def i nes intheinterpreter, either in make- pr ocedur e or in pr ocedur e-
body (see section 4.1.3). Which place is better? Why?

Exercise4.17. Draw diagrams of the environment in effect when evaluating the expression <e3> in the
procedure in the text, comparing how thiswill be structured when definitions are interpreted sequentially
with how it will be structured if definitions are scanned out as described. Why is there an extraframe in the
transformed program? Explain why this difference in environment structure can never make adifferencein
the behavior of a correct program. Design away to make the interpreter implement the "~ simultaneous’
scope rule for internal definitions without constructing the extra frame.

Exercise 4.18. Consider an aternative strategy for scanning out definitions that tranglates the examplein
thetext to

(I anbda <var s>
(let ((u '*unassigned*)
(v '*unassi gned*))
(let ((a <el>)

(b <e2>))
(set! u a)
(set! v b))

<e3>))

Herea and b are meant to represent new variable names, created by the interpreter, that do not appear in
the user's program. Consider the sol ve procedure from section 3.5.4:

(define (solve f y0O dt)
(define y (integral (delay dy) yO dt))
(define dy (streammap f y))

y)

Will this procedure work if internal definitions are scanned out as shown in this exercise? What if they are
scanned out as shown in the text? Explain.

Exercise 4.19. Ben Bitdiddle, AlyssaP. Hacker, and Eva Lu Ator are arguing about the desired result of
evaluating the expression

(let ((a 1))

(define (f x)
(define b (+ a x))
(define a 5)

(+ a b))

(f 10))

Ben asserts that the result should be obtained using the sequential rule for def i ne: b isdefined to be 11,
then a isdefined to be 5, so the result is 16. Alyssa objects that mutual recursion requires the simultaneous
scope rule for internal procedure definitions, and that it is unreasonable to treat procedure names
differently from other names. Thus, she argues for the mechanism implemented in exercise 4.16. This
would lead to a being unassigned at the time that the value for b is to be computed. Hence, in Alyssa's
view the procedure should produce an error. Eva has athird opinion. She says that if the definitions of a
and b are truly meant to be simultaneous, then the value 5 for a should be used in evaluating b. Hence, in
Evasview a should be 5, b should be 15, and the result should be 20. Which (if any) of these viewpoints
do you support? Can you devise away to implement internal definitions so that they behave as Eva
prefers?26

Exercise 4.20. Because internal definitions look sequential but are actually simultaneous, some people
prefer to avoid them entirely, and use the specia form| et r ec instead. Let r ec lookslikel et , soitis

not surprising that the variables it binds are bound simultaneously and have the same scope as each other.
The sample proceduref above can be written without internal definitions, but with exactly the same

meaning, as

(define (f x)
(letrec ((even?
(lanbda (n)
(if (=n0)
true
(odd? (- n 1)))))
(odd?
(I anbda (n)

(if (=n0)
fal se

(even? (- n 1))))))
<rest of body of f>))

Let r ec expressions, which have the form

(letrec ((<var,> <exp;>) ... (<var,> <expp>))
<body>)

areavariationon| et in which the expressions <exp,> that provide theinitial values for the variables
<var> are evaluated in an environment that includes al thel et r ec bindings. This permits recursion in
the bindings, such as the mutual recursion of even? and odd? in the example above, or the evaluation of
10 factorial with

(letrec ((fact

(lanbda (n)
(if (=n1)
1

(* n(fact (- n 1)))))))
(fact 10))

a. Implement | et r ec asaderived expression, by transforming al et r ec expressioninto al et
expression as shown in the text above or in exercise 4.18. That is, the |l et r ec variables should be created
with al et and then be assigned their valueswith set ! .

b. Louis Reasoner is confused by all this fuss about internal definitions. The way he seesit, if you don't
liketo use def i ne inside aprocedure, you can just usel et . Illustrate what is |loose about his reasoning
by drawing an environment diagram that shows the environment in which the <rest of body of f > is
evaluated during evaluation of the expression (f 5), withf defined asin this exercise. Draw an
environment diagram for the same evaluation, but with | et inplaceof | et r ec in the definition of f .

Exercise 4.21. Amazingly, Louissintuition in exercise 4.20 is correct. It isindeed possible to specify
recursive procedures without using | et r ec (or even def i ne), although the method for accomplishing
thisis much more subtle than Louis imagined. The following expression computes 10 factorial by applying
arecursive factoria procedure:27

((l anmbda (n)
((lambda (fact)
(fact fact n))
(lanbda (ft k)
(if (= k 1)
1

(* k (ft ft (- kK 1)))))))
10)

a. Check (by evaluating the expression) that this really does compute factorials. Devise an analogous
expression for computing Fibonacci numbers.

b. Consider the following procedure, which includes mutually recursive internal definitions:

(define (f x)
(define (even? n)
(if (=n0)
true
(odd? (- n 1))))
(define (odd? n)
(if (=n0
fal se
(even? (- n 1))))
(even? x))

Fill in the missing expressions to complete an alternative definition of f , which uses neither internal
definitionsnor | et r ec:

(define (f x)
((larbda (even? odd?)
(even? even? odd? x))
(lanbda (ev? od? n)
(if (= n0) true (0d? <??> <??7> <?7>)))
(lanbda (ev? od? n)
(if (= n 0) false (ev? <??> <??> <?7>)))))

4.1.7 Separating Syntactic Analysis from Execution

The evaluator implemented above is simple, but it is very inefficient, because the syntactic analysis of
expressions isinterleaved with their execution. Thusif aprogram is executed many times, its syntax is
analyzed many times. Consider, for example, evaluating (f act ori al 4) using the following definition

of factori al :

(define (factorial n)
(if (=n1)
1
(* (factorial (- n 1)) n)))

Eachtimef act ori al iscaled, the evaluator must determine that the body isani f expression and

extract the predicate. Only then can it evaluate the predicate and dispatch on its value. Each time it
evaluatestheexpression (* (factorial (- n 1)) n),orthesubexpressions(factorial (-

n 1)) and(- n 1), theevaluator must perform the case analysisin eval to determine that the

expression is an application, and must extract its operator and operands. Thisanalysisis expensive.
Performing it repeatedly is wasteful.

We can transform the evaluator to be significantly more efficient by arranging things so that syntactic
analysisis performed only once.28 We split eval , which takes an expression and an environment, into
two parts. The procedure anal yze takes only the expression. It performs the syntactic analysis and
returns a new procedure, the execution procedure, that encapsulates the work to be done in executing the

analyzed expression. The execution procedure takes an environment as its argument and completes the
evaluation. This saves work because anal yze will be called only once on an expression, while the

execution procedure may be called many times.
With the separation into analysis and execution, eval now becomes

(define (eval exp env)
((anal yze exp) env))

Theresult of calling anal yze isthe execution procedure to be applied to the environment. The
anal yze procedureisthe same case analysis as performed by the original eval of section 4.1.1, except
that the procedures to which we dispatch perform only analysis, not full evaluation:

(define (anal yze exp)
(cond ((self-evaluating? exp)
(anal yze-sel f-eval uati ng exp))
((quot ed? exp) (anal yze-quoted exp))
((variabl e? exp) (analyze-variable exp))
((assignment? exp) (anal yze-assi gnnent exp))
((definition? exp) (analyze-definition exp))
((if? exp) (analyze-if exp))
((lanrbda? exp) (anal yze-lanbda exp))
((begi n? exp) (anal yze-sequence (begin-actions exp)))
((cond? exp) (analyze (cond->if exp)))
((application? exp) (analyze-application exp))
(el se
(error "Unknown expression type -- ANALYZE" exp))))

Here isthe simplest syntactic analysis procedure, which handles self-evaluating expressions. It returns an
execution procedure that ignores its environment argument and just returns the expression:

(define (anal yze-self-eval uati ng exp)
(lanbda (env) exp))

For a quoted expression, we can gain alittle efficiency by extracting the text of the quotation only once, in
the analysis phase, rather than in the execution phase.

(define (anal yze-quoted exp)
(let ((qval (text-of-quotation exp)))
(I anbda (env) qval)))

Looking up avariable value must still be done in the execution phase, since this depends upon knowing the
environment.29

(define (anal yze-vari abl e exp)
(lanbda (env) (Il ookup-vari abl e-value exp env)))

Anal yze- assi gnnent aso must defer actually setting the variable until the execution, when the
environment has been supplied. However, the fact that the assi gnment - val ue expression can be
analyzed (recursively) during analysisisamajor gain in efficiency, becausetheassi gnment - val ue
expression will now be analyzed only once. The same holds true for definitions.

(define (anal yze-assi gnment exp)
(let ((var (assignnment-variable exp))
(vproc (analyze (assignnent-value exp))))
(I anbda (env)
(set-vari abl e-val ue! var (vproc env) env)
' 0k)))
(define (anal yze-definition exp)
(let ((var (definition-variable exp))
(vproc (analyze (definition-value exp))))
(I anbda (env)
(define-variable! var (vproc env) env)

' ok)))
For i f expressions, we extract and analyze the predicate, consequent, and alternative at analysistime.

(define (analyze-if exp)
(let ((pproc (analyze (if-predicate exp)))
(cproc (analyze (if-consequent exp)))
(aproc (analyze (if-alternative exp))))
(I anbda (env)
(if (true? (pproc env))
(cproc env)

(aproc env)))))

Anayzing al anmbda expression also achieves amajor gain in efficiency: We analyze the | anbda body
only once, even though procedures resulting from evaluation of the | ambda may be applied many times.

(define (anal yze-lanbda exp)
(let ((vars (lanbda-paraneters exp))
(bproc (anal yze-sequence (| anbda-body exp))
(I anbda (env) (nake-procedure vars bproc env)))

))
)
Analysis of a sequence of expressions (asin abegi n or the body of al anbda expression) ismore

involved.30 Each expression in the sequence is analyzed, yielding an execution procedure. These execution
procedures are combined to produce an execution procedure that takes an environment as argument and

sequentially calls each individual execution procedure with the environment as argument.

(define (anal yze-sequence exps)
(define (sequentially procl proc2)
(lanbda (env) (procl env) (proc2 env)))
(define (loop first-proc rest-procs)
(if (null? rest-procs)
first-proc
(loop (sequentially first-proc (car rest-procs))
(cdr rest-procs))))
(let ((procs (map anal yze exps)))
(if (null? procs)
(error "Enpty sequence -- ANALYZE"))
(loop (car procs) (cdr procs))))

To analyze an application, we analyze the operator and operands and construct an execution procedure that
calls the operator execution procedure (to obtain the actual procedure to be applied) and the operand
execution procedures (to obtain the actual arguments). We then passtheseto execut e- appl i cati on,

which isthe analog of appl y insection 4.1.1. Execut e- appl i cat i on differsfrom appl y in that the

procedure body for a compound procedure has already been analyzed, so there is no need to do further
analysis. Instead, we just call the execution procedure for the body on the extended environment.

(define (anal yze-application exp)
(let ((fproc (analyze (operator exp)))
(aprocs (map anal yze (operands exp))))
(1 anbda (env)
(execute-application (fproc env)
(map (Il anmbda (aproc) (aproc env))
aprocs)))))
(define (execute-application proc args)
(cond ((primtive-procedure? proc)
(apply-primtive-procedure proc args))
((conpound- procedure? proc)
((procedure-body proc)
(ext end- environnent (procedure-paraneters proc)
args
(procedure-environnent proc))))
(el se
(error
"Unknown procedure type -- EXECUTE- APPLI CATI ON'

proc))))

Our new evaluator uses the same data structures, syntax procedures, and run-time support procedures as in
sections 4.1.2, 4.1.3, and 4.1.4.

Exercise 4.22. Extend the evaluator in this section to support the special form| et . (See exercise 4.6.)

Exercise 4.23. AlyssaP. Hacker doesn't understand why anal yze- sequence needsto be so

complicated. All the other analysis procedures are straightforward transformations of the corresponding
evaluation procedures (or eval clauses) in section 4.1.1. She expected anal yze- sequence to look

likethis:

(define (anal yze-sequence exps)

(defi ne (execute-sequence procs env)

(cond ((null? (cdr procs)) ((car procs) env))

(el se ((car procs) env)
(execut e-sequence (cdr procs) env))))

(let ((procs (map anal yze exps)))

(if (null? procs)

(error "Enpty sequence -- ANALYZE"))
(lanbda (env) (execute-sequence procs env))))

EvaLu Ator explainsto Alyssathat the version in the text does more of the work of evaluating a sequence
at analysistime. Alyssa's sequence-execution procedure, rather than having the calls to the individual
execution procedures built in, loops through the procedures in order to call them: In effect, although the
individual expressions in the sequence have been analyzed, the sequence itself has not been.

Compare the two versions of anal yze- sequence. For example, consider the common case (typical of
procedure bodies) where the sequence has just one expression. What work will the execution procedure
produced by Alyssa's program do? What about the execution procedure produced by the program in the
text above? How do the two versions compare for a sequence with two expressions?

Exercise 4.24. Design and carry out some experiments to compare the speed of the original metacircular
evaluator with the version in this section. Use your results to estimate the fraction of time that is spent in
analysis versus execution for various procedures.

3 Even so, there will remain important aspects of the evaluation process that are not elucidated by our evaluator. The most important of these
are the detailed mechanisms by which procedures call other procedures and return values to their callers. We will address these issuesin
chapter 5, where we take a closer 1ook at the evaluation process by implementing the evaluator as a simple register machine.

4 |f we grant ourselves the ability to apply primitives, then what remains for us to implement in