home | login | register | DMCA | contacts | help | donate |      

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я


my bookshelf | genres | recommend | rating of books | rating of authors | reviews | new | форум | collections | читалки | авторам | add

реклама - advertisement



I  Звёзды рождаются

...Ничего нет более простого, чем звезда...

(А. С. Эддингтон)

Один из основателей современной теории звездной эволюции проф. М. Шварцшильд в своей известной монографии, посвященной строению и эволюции звезд, высказал очень глубокую мысль, заключенную в фразах, которые мы сейчас процитируем:

«Если Вселенная управляется простыми универсальными законами, то разве чистое мышление оказалось бы не способным открыть эту совокупность законов? Тогда не нужно было бы опираться на наблюдения, которые приходится производить с таким трудом. Хотя законы, которые мы стремимся открыть, быть может, и совершенны, но человеческий разум далек от совершенства: представленный самому себе он склонен заблуждаться, чему мы видим печальное подтверждение среди бесчисленных примеров прошлого. Действительно, мы очень редко упускали возможность впасть в заблуждение; только новые, полученные из наблюдений данные, с трудом отвоеванные у природы, возвращали нас на правильный путь. В теории эволюции звезд они особенно необходимы, чтобы двигаться вперед, не впадая в серьезные ошибки»...

Глава 1 Звезды: основные наблюдательные характеристики

Как говорится, лучше не скажешь. Поколения астрономов кропотливо собирали огромный фактический материал, касающийся самых разнообразных характеристик звезд. Какие же из этих характеристик можно получить из анализа результатов наблюдений?

Прежде всего надо понять, что звезды, за редчайшими исключениями, наблюдаются как «точечные» источники излучения. Это означает, что их угловые размеры ничтожно малы. Даже в самые большие телескопы нельзя увидеть звезды в виде «реальных» дисков. Мы подчеркиваем слово «реальных», так как благодаря чисто инструментальным эффектам, а главным образом неспокойствию атмосферы, в фокальной плоскости телескопов получается «ложное» изображение звезды в виде некоторого диска. Угловые размеры этого диска редко бывают меньше одной секунды дуги, между тем как даже для ближайших звезд они должны были быть меньше сотой доли секунды дуги.

Итак, звезда даже в самый большой телескоп не может быть, как говорят астрономы, «разрешена». Это означает, что мы можем измерять только потоки излучения от звезд в разных спектральных участках. Мерой величины потока является видимая звездная величина, определение которой предполагается известным (см., например, книгу: П. И. Бакулин, Э. В. Кононович и В. И. Мороз, «Курс общей астрономии»). Полезно только напомнить, что самые слабые из наблюдаемых звезд имеют видимую величину m = 24, в то время как самая яркая звезда Сириус имеет звездную величину -1,6. Зная разность звездных величин двух звезд, можно найти отношение потоков от них F1/F2, если воспользоваться простой формулой:

Звезды: их рождение, жизнь и смерть
(1.1)

Полезно еще знать, что Солнце имеет визуальную звездную величину m

Звезды: их рождение, жизнь и смерть
= -26,73. В то же время прямые измерения дают значение потока солнечного излучения в абсолютных единицах, равное

Звезды: их рождение, жизнь и смерть

Эта величина носит название «солнечной постоянной». Не представляет труда по известной видимой величине какой-нибудь звезды, цвет которой такой же, как у Солнца, оценить величину ее потока в абсолютных (энергетических) единицах. Допустим, что видимая величина звезды m = 20. Тогда по формуле (1.1) получим, что логарифм отношения потока от этой звезды к потоку от Солнца будет равен

Звезды: их рождение, жизнь и смерть

откуда Fm

Звезды: их рождение, жизнь и смерть
10-12 эрг/см3
Звезды: их рождение, жизнь и смерть
с.

Если мы теперь каким-нибудь образом знаем расстояние до звезды r, то очевидно, что полная мощность ее излучения (или «светимость») может быть получена из простой формулы:

Звезды: их рождение, жизнь и смерть
(1.2)

Если, в нашем примере, расстояние до звезды равно 100 парсек (1 парсек (пс) = 3,26 светового года = 3

Звезды: их рождение, жизнь и смерть
1018 см), то ее светимость будет L = 1030 эрг/с. Полезно запомнить, что светимость Солнца L
Звезды: их рождение, жизнь и смерть
= 4
Звезды: их рождение, жизнь и смерть
1033 эрг/с. Таким образом, наша звезда излучает в несколько тысяч раз слабее Солнца — это, как говорят, «карликовая» звезда. Из формулы (1.2) следует очевидное обстоятельство, что при данной светимости поток излучения от звезды обратно пропорционален квадрату расстояния до нее. Таким образом, видимая величина определяется, с одной стороны, светимостью звезды,— с другой стороны,— расстоянием до нее. Одной и той же видимой величине может соответствовать сравнительно близко находящаяся звезда низкой светимости (карлик) или удаленная звезда высокой светимости (гигант). Поэтому характеристикой светимости звезды является ее абсолютная величина, обычно обозначаемая буквой M. Это та величина, которую имела бы интересующая нас звезда, если бы расстояние до нее было равно стандартному значению 10 парсек. Между видимой и абсолютной величинами имеется простое соотношение:

Звезды: их рождение, жизнь и смерть
(1.3)

где r выражено в парсеках.

Таким образом, одна из основных характеристик звезды — светимость— определяется, если известна видимая величина и расстояние до нее. Если для определения видимой величины астрономия располагает вполне надежными методами, то расстояния до звезд определить не так просто. Для сравнительно близких звезд, удаленных на расстояние, не превышающее нескольких десятков парсек, расстояния определяются известным еще с начала прошлого столетия тригонометрическим методом, заключающимся в измерении ничтожно малых угловых смещений звезд при их наблюдении с разных точек земной орбиты, т. е. в разное время года. Этот метод дает наибольшую точность и очень надежен. Однако для огромного большинства более удаленных звезд он уже не годится: слишком малые смещения положения звезды надо измерять — меньше сотой доли секунды дуги! На помощь приходят другие методы, значительно менее точные, но тем не менее достаточно надежные. В ряде случаев абсолютную величину звезд можно определить и непосредственно, без измерения расстояния до них, по некоторым наблюдаемым особенностям их излучения. На всех этих методах мы, конечно, останавливаться здесь не можем и отсылаем интересующихся читателей к специальным руководствам, например, к содержательной книге Ю. Н. Ефремова «В глубины Вселенной» («Наука», 1977). Вообще, проблема определения расстояния до удаленных космических объектов (звезд, туманностей, галактик) всегда была и сейчас остается одной из центральных в астрономии.

Исключительно богатую информацию дает изучение спектров звезд. В настоящее время техника астрономических спектральных исследований стала очень тонкой и рафинированной. В частности, широко применяются новейшие достижения электроники и других областей современной технической физики. Мы, естественно, не можем здесь по этому поводу писать сколько-нибудь подробно. Уже давно спектры подавляющего большинства звезд разделены на классы. Последовательность спектральных классов обозначается буквами О, В, A, F, G, К, М. Существующая система классификации звездных спектров настолько точна, что позволяет определить спектр с точностью до одной десятой класса. Например, часть последовательности звездных спектров между классами В и А обозначается как В0, В1 . . . В9, А0 и т. д. Спектр звезд в первом приближении похож на спектр излучающего «черного» тела с некоторой температурой T. Эти температуры плавно меняются от 40—50 тысяч кельвинов у звезд класса О до 3000 кельвинов у звезд спектрального класса М. В соответствии с этим основная часть излучения звезд спектральных классов О и В приходится на ультрафиолетовую часть спектра, недоступную для наблюдения с поверхности Земли. Однако в последние годы были запущены специализированные искусственные спутники Земли; на их борту были установлены телескопы, с помощью которых оказалось возможным исследовать и ультрафиолетовое излучение звезд.

Характерной особенностью звездных спектров является еще наличие у них огромного количества линий поглощения, принадлежащих различным элементам (рис. 1.1). Тонкий анализ этих линий позволил получить особенно ценную информацию о природе наружных слоев звезд. Прежде всего, в итоге большой работы удалось выполнить количественный химический анализ этих слоев. Несмотря на то, что спектры звезд очень сильно отличаются друг от друга, химический состав в первом приближении оказался удивительно сходным. Различия в спектрах в первую очередь объясняются различием в температурах наружных слоев звезд. По этой причине состояние ионизации и возбуждения разных элементов в наружных слоях звезд резко отличается, что приводит к сильным различиям в спектрах.


Звезды: их рождение, жизнь и смерть
Рис. 1.1: Спектры звезд разных классов.

Химический состав наружных слоев звезд, откуда к нам «непосредственно» приходит их излучение, характеризуется полным преобладанием водорода. На втором месте находится гелий, а обилие остальных элементов сравнительно невелико. Приблизительно на каждые 10 000 атомов водорода приходится тысяча атомов гелия, около десяти атомов кислорода, немного меньше углерода и азота и всего лишь один атом железа. Обилие остальных элементов совершенно ничтожно. Без преувеличения можно сказать, что наружные слои звезд — это гигантские водородно-гелиевые плазмы с небольшой примесью более тяжелых элементов. Этот результат, как мы увидим дальше, имеет исключительно важное значение для всей проблемы строения и эволюции звезд.

Хотя химический состав звезд в первом приближении одинаков, все же имеются звезды, показывающие определенные особенности в этом отношении. Например, есть звезды с аномально высоким содержанием углерода, или встречаются удивительные объекты с аномально высоким содержанием редких земель. Если у подавляющего большинства звезд обилие лития совершенно ничтожно (

Звезды: их рождение, жизнь и смерть
10-11 от водорода), то изредка попадаются «уникумы», где этот редкий элемент довольно обилен. Укажем еще на два редких феномена. Есть звезды, в спектрах которых обнаружены линии несуществующего на Земле в «естественном» состоянии элемента технеция. Этот элемент не имеет ни одного устойчивого изотопа. Самый долгоживущий изотоп живет всего лишь около 200 000 лет — срок по звездным масштабам совершенно ничтожный. Столь удивительная аномалия в химическом составе должна означать, что в наружных слоях этих во многом еще загадочных звезд происходят ядерные реакции, приводящие к образованию технеция. Наконец, известна звезда, в наружных слоях которой гелий представлен преимущественно в виде редчайшего на Земле изотопа 3Не.

Все эти интересные и, несомненно, очень важные аномалии химического состава звезд мы в этой книге, конечно, рассматривать не можем. Это увело бы нас слишком далеко в сторону. К счастью, для основной интересующей нас проблемы эволюции звезд эти редчайшие исключения, обусловленные некоторыми специфическими процессами в их наружных и внутренних слоях, не имеют большого значения.

Хорошим индикатором температуры наружных слоев звезды является ее цвет. Горячие звезды спектральных классов О и В имеют голубой цвет; звезды, сходные с нашим Солнцем (спектральный класс которого G2), представляются желтыми; звезды же спектральных классов К и М — красные. В астрофизике имеется тщательно разработанная и вполне объективная система цветов. Она основана на сравнении наблюдаемых звездных величин, полученных через различные строго эталонированные светофильтры. Количественно цвет звезды характеризуется разностью ее величин, полученных через два фильтра, один из которых пропускает преимущественно синие лучи («B»), а другой имеет кривую спектральной чувствительности, сходную с человеческим глазом («V »). Техника измерений цвета звезд настолько высока, что по измеренному значению B - V можно определить спектр звезды с точностью до подкласса. Для слабых звезд анализ цветов — единственная возможность их спектральной классификации. Как мы увидим в § 12, массовое определение цветов слабых звезд в скоплениях явилось наблюдательной основой современной теории звездной эволюции.

Знание спектрального класса или цвета звезды сразу же дает температуру ее поверхности. Так как (как уже говорилось выше) звезды излучают приблизительно как абсолютно черные тела соответствующей температуры, то мощность, излученная единицей их поверхности, определяется из закона Стефана — Больцмана:

Звезды: их рождение, жизнь и смерть
(1.4)

где

Звезды: их рождение, жизнь и смерть
= 5,6
Звезды: их рождение, жизнь и смерть
10-5 — постоянная Стефана. Мощность излучения всей поверхности звезды, или ее светимость, очевидно, будет равна

Звезды: их рождение, жизнь и смерть
(1.5)

где R — радиус звезды. Таким образом, для определения радиуса звезды нужно знать ее светимость и температуру поверхности. Заметим, что речь идет о «болометрической светимости», т. е. мощности излучения во всем диапазоне электромагнитных волн, включая ультрафиолетовые и инфракрасные волны. В свою очередь болометрическая светимость выводится из ее абсолютной болометрической звездной величины. Последняя получается из «обычной» абсолютной величины путем прибавления так называемой «болометрической поправки», зависящей только от температуры поверхности звезды.

Нам остается определить еще одну, едва ли не самую важную характеристику звезды — ее массу. Надо сказать, что это сделать не очень просто. А главное существует не так уже много звезд, для которых имеются надежные определения их масс. Последние легче всего определить, если звезды образуют двойную систему, для которой большая полуось орбиты a и период обращения P известны. В этом случае массы определяются из третьего закона Кеплера, который может быть записан в следующем виде:

Звезды: их рождение, жизнь и смерть
(1.6)

Здесь M1 и M2 — массы компонент системы, G = 6,67

Звезды: их рождение, жизнь и смерть
10-8 г-1
Звезды: их рождение, жизнь и смерть
см3
Звезды: их рождение, жизнь и смерть
с-2 — постоянная в законе всемирного тяготения Ньютона. Уравнение (1.6) дает сумму масс компонент системы. Если к тому же известно отношение орбитальных скоростей обеих компонент, то их массы можно определить отдельно. К сожалению, только для сравнительно небольшого количества двойных систем можно таким способом определить массы каждой из звезд. Для неотличимых по отдельности, близких друг к другу звезд («тесные пары») этого уже сделать нельзя. Например, в случае спектрально-двойных звезд (см. начало § 2) если наблюдается лишь спектр одной из компонент, то из наблюдений можно определить только «функцию масс»: комбинацию масс компонент и синуса угла наклона плоскости орбиты к лучу зрения,

Звезды: их рождение, жизнь и смерть

Если известны спектры обеих компонент (что бывает сравнительно редко), то можно определить величины M1 sin 3i и M2 sin 3i. И уже совсем плохо обстоит дело с определением масс одиночных звезд.

В сущности говоря, астрономия не располагала и не располагает в настоящее время методом прямого и независимого определения массы изолированной (т. е. не входящей в состав кратных систем) звезды. И это весьма серьезный недостаток нашей науки о Вселенной. Если бы такой метод существовал, прогресс наших знаний был бы значительно более быстрым. В такой ситуации астрономы молчаливо принимают, что звезды с одинаковой светимостью и цветом имеют одинаковые массы. Последние же определяются только для двойных систем. Утверждение, что одиночная звезда с той же светимостью и цветом имеет такую же массу, как и ее «сестра», входящая в состав двойной системы, всегда следует принимать с некоторой осторожностью. Дело в том, что, как мы увидим в конце этой части книги, сам характер звездной эволюции в тесных двойных системах не такой, как у одиночных звезд. Поэтому «представительными» являются лишь определения масс для далеко отстоящих друг от друга и поэтому, как можно полагать, независимо эволюционирующих звезд. Но и здесь следует быть осторожным (см. § 14). Крайне неудовлетворительно обстоит дело с определением масс одиночных необычных (или, как говорят астрономы, «пекулярных») звезд. Но о таких «уродах» мы пока говорить не будем... Хочется верить, что когда-нибудь астрономы научатся определять массы одиночных звезд способом, о котором сейчас мы не имеем даже понятия...

Все же для нормальных звезд с учетом оговорок, сделанных выше, массы определяются с удовлетворительной точностью.

Итак, современная астрономия располагает методами определения основных звездных характеристик: светимости, поверхностной температуры (цвета), радиуса, химического состава и массы. Возникает важный вопрос: являются ли эти характеристики независимыми? Оказывается, нет. Прежде всего имеется функциональная зависимость, связывающая радиус звезды, ее болометрическую светимость и поверхностную температуру. Эта зависимость представляется простой формулой (1.5) и является тривиальной. Наряду с этим, однако, уже давно была обнаружена зависимость между светимостью звезд и их спектральным классом (или, что фактически то же самое,— цветом). Эту зависимость эмпирически установили (независимо) на большом статистическом материале еще в начале нашего столетия выдающиеся астрономы датчанин Герцшпрунг и американец Рессел. Если нанести на диаграмму, у которой по оси абсцисс отложены спектры (или соответствующие им цвета B - V ), а по оси ординат — светимости (или абсолютные величины), положения большого количества звезд, то, как оказывается, они отнюдь не располагаются беспорядочным, случайным образом, а образуют определенные последовательности. Такая диаграмма (носящая название «диаграммы Герцшпрунга — Рессела») для близких звезд, удаленных от Солнца на расстояние, не превышающее 5 парсек, изображена на рис. 1.2. Из этого рисунка видно, что подавляющее большинство звезд сосредоточено вдоль сравнительно узкой полосы, тянущейся от верхнего левого угла диаграммы вниз вправо. Эта полоса называется «главной последовательностью». Спектральный класс звезд главной последовательности непрерывно меняется от В до М. Кроме этой последовательности, вырисовывается небольшая группа из пяти звезд, расположенная в нижнем левом углу диаграммы. Эти звезды принадлежат к сравнительно «раннему» спектральному классу и имеют абсолютную величину 10—12m, т. е. их светимость в сотню раз меньше, чем у Солнца, а цвет «белый». Поэтому эта группа звезд уже давно получила название «белых карликов».


Звезды: их рождение, жизнь и смерть
Рис. 1.2: Диаграмма Герцшпрунга — Рессела для ближайших к Солнцу звезд.

Однако изображенная на рис. 1.2 диаграмма не является, если можно так выразиться, «представительной». На рис. 1.2 нанесены подряд все близкие к Солнцу звезды и, следовательно, редкие типы звезд, удаленных от Солнца на расстояния, превышающие 5 парсек, на такую диаграмму попасть не могли — в окрестностях Солнца их просто нет. На рис. 1.3 изображена диаграмма Герцшпрунга — Рессела для звезд с известными светимостями и спектрами. Наряду с близкими звездами сюда попали и достаточно удаленные звезды с высокой светимостью. Мы видим, что эта диаграмма имеет уже другой вид по сравнению с диаграммой, изображенной на рис. 1.2. Общей для обеих диаграмм является наличие уже известной нам главной последовательности. Однако на рис. 1.3 эта последовательность продвинута еще вверх и налево, что объясняется включением в нее удаленных весьма редких звезд высокой светимости спектрального класса О. На обеих диаграммах хорошо видна группа белых карликов, однако на рис. 1.3 она продолжается в сторону более холодных звезд. На рис. 1.3 видна немногочисленная последовательность звезд, расположенная ниже главной последовательности. Это — так называемые «субкарлики». Спектральные исследования выявили очень любопытную особенность. Химический состав их резко отличается от состава звезд главной последовательности малым обилием тяжелых элементов, в частности, металлов. Как мы увидим дальше, это обстоятельство является ключом к пониманию, природы этих интересных звезд.


Звезды: их рождение, жизнь и смерть
Рис. 1.3: Диаграмма Герцшпрунга — Рессела для звезд с известными светимостями и спектрами. Крестиком обозначено Солнце.

Однако самым значительным различием между обсуждаемыми диаграммами является наличие на диаграмме, изображенной на рис. 1.3, последовательности, вернее, группы «гигантов», расположенных в верхнем правом углу. Это звезды высокой светимости, поверхностные температуры которых сравнительно низки (спектральные классы К и М). Отсюда следует, что радиусы этих звезд очень велики, в десятки раз больше солнечного. Они получили названия «красных гигантов», объекты же наибольшей светимости, принадлежащие к этой группе звезд, называются «сверхгигантами».

Особый интерес для проблемы эволюции звезд, как эта будет видно в § 12, представляют диаграммы Герцшпрунга — Рессела, построенные для более или менее компактных групп звезд, получивших название «скоплений». Различают два типа скоплений — «рассеянные» и «шаровые». Помимо своей весьма правильной, сфероидальной формы, шаровые скопления отличаются огромным количеством входящих в их состав звезд (порядка сотни тысяч) и весьма характерным пространственным распределением. Они совершенно не концентрируются к галактической плоскости и обнаруживают сильнейшую концентрацию к центру нашей звездной системы. Как показывают спектральные исследования, входящие в состав шаровых скоплений звезды бедны металлами и вообще тяжелыми элементами. В этом отношении (так же как во многих других) звезды, входящие в состав таких скоплений, тождественны субкарликам, имеющим, кстати сказать, такое же пространственное распределение в Галактике. Важность построения диаграмм Герцшпрунга — Рессела для звездных скоплений состоит в том, что все члены одного скопления по причине того, что они образовались из одного газово-пылевого облака межзвездной среды, имеют приблизительно одинаковый возраст. Бросается в глаза, что вид диаграмм Герцшпрунга — Рессела для различных скоплений весьма различен. Например, начало главной последовательности у разных скоплений приходится на различные спектральные классы. Заметим также, что общий вид диаграммы для рассеянных и шаровых скоплений весьма различен (рис. 1.4—1.8). О причине этих примечательных различий речь будет идти в § 12. Подчеркнем еще раз, что создание таких диаграмм[ 1 ], потребовавшее большого труда по прецизионному измерению видимых величин и цветов огромного количества звезд, имеет непреходящее значение для нашей науки. Построение таких диаграмм не требует знания расстояний до скоплений. Важно только то, что все звезды скопления находятся от нас на практически одинаковом расстоянии. Сейчас известны диаграммы Герцшпрунга — Рессела более чем для 300 скоплений в нашей Галактике и 50 скоплений в Магеллановых Облаках, причем не найдено ни одного скопления, для которого диаграмма была бы необъяснима сточки зрения развиваемой далее теории.


Звезды: их рождение, жизнь и смерть
Рис. 1.4: Диаграмма Герцшпрунга — Рессела для звездного скопления Плеяды.

Мы уже обратили внимание на весьма специфическое пространственное распределение шаровых скоплений и субкарликов. Эти объекты образуют в нашей Галактике подобие некоторой почти сферической «короны» с сильной концентрацией к галактическому центру. Вместе с тем, пространственное распределение других объектов сильно отличается от «сферического». Например, массивные горячие звезды главной последовательности, а также, как мы увидим в следующем параграфе, облака межзвездного газа образуют в нашей Галактике весьма уплощенную систему, концентрирующуюся к плоскости галактического экватора. На расстояниях, заметно превышающих 100 пс от указанной плоскости, таких объектов уже очень мало: Пространственное распределение большинства звезд главной последовательности с умеренной и малой массой является как бы «промежуточным» между двумя описанными выше крайними случаями. Эти звезды концентрируются одновременно и к галактическому центру, и к галактической плоскости, образуя гигантские диски толщиною в несколько сотен парсек[ 2 ].


Звезды: их рождение, жизнь и смерть
Рис. 1.5: Диаграмма Герцшпрунга — Рессела для звездного скопления Гиады.


Звезды: их рождение, жизнь и смерть
Рис. 1.6: Диаграмма Герцшпрунга — Рессела для молодого звездного скопления NGC 2264.


Звезды: их рождение, жизнь и смерть
Рис. 1.7: Диаграмма Герцшпрунга — Рессела для старого рассеянного звездного скопления М 67.


Звезды: их рождение, жизнь и смерть
Рис. 1.8: Диаграмма Герцшпрунга — Рессела для старого шарового скопления М 3.

Различие в пространственном распределении между звездами разных типов имеет очень глубокий физический смысл. Весьма примечательно, что химический состав звезд, имеющих разное пространственное распределение, заметно отличается. Мы уже обратили внимание на то, что атмосфера субкарликов весьма бедна тяжелыми элементами. То же самое относится и к звездам, входящим в состав шаровых скоплений. Таким образом, мы приходим к выводу, что объекты, образующие «корону» Галактики, имеют низкое содержание тяжелых элементов по сравнению с объектами, образующими «плоскую составляющую» и диск в нашей звездной системе. Это обстоятельство объясняется существенным различием возрастов звезд, образующих «сферическую» и «плоскую» составляющие звездного населения Галактики. Из того факта, что облака межзвездного газа имеют пространственное распределение; практически совпадающее с пространственным распределением горячих массивных звезд, вытекает наличие между ними генетической связи. Это дополняет известные в настоящее время астрономам аргументы в пользу основного предположения, что звезды «перманентно» образуются в Галактике путем конденсации облаков межзвездной среды (см. § 3). О связи между возрастом звезд и их химическим составом речь будет идти в § 12.

Звезды, образующие галактическую «корону», часто называют «населением II типа», в то время как объекты, сильно концентрирующиеся к галактической плоскости, носят название «население I типа». В окрестностях Солнца (которые находятся, как известно, на периферии Галактики очень близко от ее плоскости симметрии) преобладают объекты I типа населения. Именно по этой причине на диаграмме Герцшпрунга — Рессела ветвь субкарликов (принадлежащих ко II типу населения) представлена сравнительно небольшим числом объектов. Наоборот, в области ядра нашей звездной системы, где плотность звезд в десятки раз больше, чем в окрестностях Солнца, преобладают объекты II типа населения, прежде всего субкарлики. Их полное количество в Галактике порядка 100 миллиардов, т. е. они составляют большинство звезд.


Звезды: их рождение, жизнь и смерть
Звезды: их рождение, жизнь и смерть
Рис. 1.9: Схема затмения в тесной двойной системе с эллипсоидальными компонентами и ее кривая блеска.

Таковы самые общие сведения об основных характеристиках звезд. Они, конечно, далеко не исчерпывают всех свойств этих объектов. Среди звезд попадаются объекты, сильно отличающиеся от «нормы». Мы уже говорили выше о звездах с необычнымхимическим составом. Имеются в Галактике звезды, светимость которых меняется. Это так называемые «переменные» звезды. Последние отличаются удивительным разнообразием. Иногда переменность вызывается чисто геометрическими причинами: в тесной двойной системе, если луч зрения образует незначительный угол с плоскостью орбиты, периодически наблюдаются «затмения», когда одна звезда заходит за другую (рис. 1.9). Но чаще звездная переменность связана с вполне реальными вариациями светимости, обычно сопровождаемыми изменениями поверхностной температуры и радиуса.

Среди переменных звезд особый интерес представляют звезды, строго периодически меняющие свою светимость, радиус и температуру по причине пульсаций. Эти звезды периодически сжимаются и расширяются, меняя при этом свою температуру. Такие звезды называются цефеидами. Они сыграли выдающуюся роль в истории астрономии, так как помогли определить расстояния до очень удаленных объектов (галактик), которые другими методами измерить было невозможно. Как же это было сделано? Дело в том, что эмпирически было найдено, что чем длиннее период цефеиды, тем больше ее светимость[ 3 ]. Наблюдая в удаленных галактиках очень слабенькие цефеиды и изучив их периоды, астрономы оценили их светимости, по которым легко нашли абсолютные величины. После этого расстояние определялось по формуле (1.3). Так как светимости цефеид (особенно долгопериодических) очень велики, они видны с больших (в частности, межгалактических) расстояний. Не случайно цефеиды называются «маяками Вселенной».

Гораздо чаще встречается звездная переменность непериодического характера: время от времени наблюдаются более или менее значительные повышения уровня излучения, часто носящие «вспышечный» характер. Очень распространена «вспышечная» активность у красных карликовых звезд. Значительная, если не большая, часть красных карликов спектрального класса М — это вспыхивающие звезды. Во время вспышек, длящихся обычно десятки минут, светимость таких звезд увеличивается в десятки раз, причем одновременно наблюдаются всплески радиоизлучения, а также рентгеновского излучения. По-видимому, в этом случае наблюдается феномен, аналогичный солнечным вспышкам, но только в гораздо большем масштабе. Вообще такой тип переменности звезд связан с нестационарными процессами в их поверхностных слоях.

Особняком стоит группа «взрывающихся» звезд — новых и сверхновых. Если вспышки новых не связаны с коренным изменением структуры звезды (см. ниже § 14), то вспышки сверхновых, которые происходят чрезвычайно редко, сопровождаются катастрофическими изменениями звездной структуры. Это редчайшее явление настолько важно для астрономии, что ему будет посвящена отдельная глава этой книги.

Все же большая часть звезд в Галактике, масса которых не очень мала (например, больше 0,3M

Звезды: их рождение, жизнь и смерть
), не обнаруживает сколько-нибудь заметной нестационарности. Их светимости отличаются большим постоянством. Конечно, они меняют свои характеристики, так как эволюционируют. Однако такие изменения происходят крайне медленно.

Глава 2 Общие сведения о межзвёздной среде

Звезды, так же как Солнце, Луна и планеты, были известны человеку еще тогда, когда он человеком не был. Я полагаю, что самой примитивной астрономической информацией располагают и животные, причем не только высшие. Потребовалось, однако, тысячелетнее развитие науки, чтобы человечество осознало простой и вместе с тем величественный факт, что звезды — это объекты, более или менее похожие на Солнце, но только отстоящие от нас на несравненно большие расстояния. Этого не понимали даже такие выдающиеся мыслители, как Кеплер. Ньютон был первым, кто правильно оценил расстояния до звезд. Два столетия после великого английского ученого почти всеми молчаливо принималось, что чудовищно больших размеров пространство, в котором находятся звезды, есть абсолютная пустота. Впрочем, этот вопрос для астрономов XVIII и XIX вв. никогда не представлялся актуальным — круг интересов ученых был тогда совсем не таким, как в наши дни. Лишь отдельные астрономы время от времени поднимали вопрос о возможном поглощении света в межзвездной среде. Только в самом начале XX в. немецкий астроном Гартман убедительно доказал, что пространство между звездами представляет собой отнюдь не мифическую пустоту. Оно заполнено газом, правда, с очень малой, но вполне определенной плотностью. Это выдающееся открытие, так же как и многие другие, было сделано с помощью спектрального анализа.

Гартман исследовал спектры двойных звезд, у которых по причине орбитального движения длины волн спектральных линий строго периодически меняются на небольшую величину то в одну, то в другую сторону. Период таких изменений в точности равен периоду орбитального движения одной звезды вокруг другой. Причиной таких периодических изменений длин волн спектральных линий является хорошо известный из лабораторной физики эффект Доплера. Когда источник излучения движется на наблюдателя со скоростью 3, длина волны линии

Звезды: их рождение, жизнь и смерть
уменьшается на величину
Звезды: их рождение, жизнь и смерть
Звезды: их рождение, жизнь и смерть
, где c — скорость света, если же источник удаляется от наблюдателя с той же скоростью, длина волны увеличивается на ту же величину. Представляется очевидным, что звезда, совершающая периодическое движение по своей орбите, будет то приближаться к нам, то удаляться, что и объясняет периодические смещения длин волн линий ее спектра. Открытие немецкого ученого состояло в том, что он обнаружил в спектрах некоторых двойных звезд две линии поглощения, длины волн которых не менялись, в то время как у всех остальных спектральных линий по описанной выше причине длины волн периодически менялись. Эти «неподвижные» линии, принадлежащие ионизованному кальцию, получили название «стационарных». Они образуются не в наружных слоях звезд, а где-то «по пути» между звездой и наблюдателем. Так впервые был обнаружен межзвездный газ, который в проходящем сквозь него звездном свете производит поглощение в узких спектральных участках.

Почти половину столетия межзвездный газ исследовался главным образом путем анализа образующихся в нем линий поглощения. Выяснилось, например, что довольно часто эти линии имеют сложную структуру, т. е. состоят из нескольких близко расположенных друг к другу компонент. Каждая такая компонента возникает при поглощении света звезды в каком-нибудь определенном облаке межзвездной среды, причем облака движутся друг относительно друга со скоростью, близкой к 10 км/с. Это и приводит благодаря эффекту Доплера к незначительному смещению длин волн линий поглощения.

Тот факт, что впервые межзвездный газ был обнаружен по его поглощению в линиях кальция, конечно, не означает, что последний является там преобладающим по обилию элементом. Межзвездный газ проявляет себя и по другим линиям поглощения, например, по известной желтой линии натрия. Интенсивность линий поглощения далеко не всегда определяется обилием соответствующего химического элемента. В гораздо большей степени она определяется «удачным» расположением энергетических уровней соответствующего атома, переходы между которыми эту линию реализуют. Весьма важно то обстоятельство, что в межзвездном пространстве практически все атомы, ионы и молекулы должны находиться на самом «нижнем», т. е. «невозбужденном» энергетическом уровне. Дело в том, что процессы возбуждения атомов, связанные, как обычно, либо с поглощением излучения, либо со столкновениями между частицами, происходят в межзвездной среде неимоверно редко. Если после рекомбинации электрона с ионом образовавшийся нейтральный атом оказался возбужденным, то он всегда «успеет» спонтанно перейти в самое «глубокое» состояние, излучив один или несколько квантов — никакие процессы столкновения с другими частицами ему это сделать не помешают[ 4 ].

Находясь неопределенно долго на «основном» уровне, атом может поглощать излучения на определенных частотах. Наинизшая частота называется «резонансной», а соответствующая спектральная линия — «резонансной» линией. Обычно резонансные линии бывают самыми интенсивными. Спектроскопической особенностью кальция (так же, как и натрия) является то, что его резонансные линии находятся в видимой части спектра. Между тем подавляющее большинство резонансных линий других элементов находится в далекой ультрафиолетовой области. Классическими примерами являются самые обильные элементы космоса — водород и гелий. У водорода длина волны резонансной линии (это знаменитая линия «лайман-альфа») равна 1216 A, а у гелия еще короче — 586 A. Между тем все внеземное излучение с длиной волны более короткой, чем 2900 A, полностью поглощается земной атмосферой. До развития внеатмосферной, ракетной и спутниковой астрономии ультрафиолетовая часть спектра всех космических объектов была совершенно недоступна астрономам. Только сравнительно недавно были получены звездные спектры в дальней ультрафиолетовой области и была зарегистрирована межзвездная линия лайман-альфа, так же как и резонансные линии кислорода (длина волны 1300 A) и других межзвездных атомов. Во избежание недоразумений заметим, что спектральные линии водорода, гелия, кислорода и других элементов издавна наблюдаются в спектрах Солнца и звезд. Однако в этом случае наблюдались не резонансные линии, а линии, возникающие при переходах между возбужденными уровнями. Но в горячих, плотных, наполненных излучением звездных атмосферах «населенности» возбужденных уровней могут быть вполне достаточны для образования линии поглощения, между тем как в межзвездной среде физические условия совершенно другие.

Химический состав межзвездного газа в первом приближении оказался довольно близким к химическому составу атмосфер Солнца и звезд. Преобладающими элементами являются водород и гелий, между тем как остальные элементы мы можем рассматривать как «примеси». Любопытно, что в межзвездном газе кальций примерно в миллион раз менее обилен, чем водород.

Подлинная революция в исследовании межзвездной среды оптическими методами наступила в последние годы в связи с впечатляющими достижениями внеатмосферной астрономии. К настоящему времени (1983 год) наиболее полное исследование химического состава сравнительно близких к нам облаков межзвездного газа было выполнено на американском специализированном астрономическом спутнике, носящем название «Коперник» (см. «Введение»). Как уже говорилось выше, резонансные линии основных (по обилию) элементов находятся, как правило, в ультрафиолетовой части спектра. Наблюдая яркие, сравнительно близкие звезды, можно было в их ультрафиолетовых спектрах обнаружить межзвездные резонансные линии поглощения таких элементов как водород (линия «лайман-альфа» с длиной волны 1216 A), углерод, азот, кислород, магний, кремний, сера, аргон, марганец и др. Наблюдались как линии нейтральных межзвездных атомов, так и их ионов. При этом выявились совершенно реальные различия в химическом составе отдельных облаков и Солнца. Тем самым исследования межзвездной среды поднялись на более высокую ступень: если в первом приближении, основываясь только на весьма ограниченных наземных наблюдениях, можно было считать, что химический состав межзвездного газа более или менее сходен с химическим составом солнечной атмосферы, то теперь уже ясно видны вполне реальные различия состава даже между отдельными облаками. Например, обилие магния, марганца и хлора по отношению к водороду в облаках межзвездной среды в 4—10 раз меньше, чем в солнечной атмосфере. На рис. 2.1 представлены отклонения химического состава от «солнечного» для четырех различных облаков, проектирующихся на яркие звезды. Этот рисунок дает наглядное представление о различиях в химическом составе различных облаков и Солнца. Мы видим, в частности, что зачерненные прямоугольники располагаются, как правило, ниже горизонтальной прямой, что указывает на «недостачу» соответствующих элементов по сравнению с Солнцем.


Звезды: их рождение, жизнь и смерть
Рис. 2.1: Химический состав облаков межзвездного газа.

Наряду с атомами и ионами в межзвездном газе имеются (чаще всего в ничтожном количестве,

Звезды: их рождение, жизнь и смерть
10-7 от обилия атомов водорода) молекулы. Методами оптической астрономии были обнаружены в межзвездной среде простые двухатомные молекулы СН, СН+ (знак «+» означает ионизованную молекулу) и CN. Вместо привычных в лабораторной физике молекулярных спектров, состоящих из очень большого количества линий, сливающихся в полосы, спектры межзвездных молекул, как правило, состоят из одной линии, так как почти все они находятся на самом глубоком электронном, колебательном и вращательном уровне. Исключение составляют межзвездные молекулы CN, у которых почти сорок лет назад были обнаружены две линии. Это означает, что заметную населенность имеет и второй вращательный уровень, который у молекулы CN расположен значительно ближе к первому, чем у молекул СН и СН+. Казалось бы, стоит ли упоминать о такой мелочи? Но лет 15 назад было установлено, что эта «мелочь» имеет очень глубокую причину: второй вращательный уровень молекулы CN возбуждается так называемым «реликтовым» излучением, заполняющим всю Вселенную. Это излучение, как выяснилось, имеет планковский спектр с температурой около 3° абсолютной шкалы Кельвина и представляет собой как бы «остаток» («реликт») древнего состояния Вселенной, когда ее возраст был в десятки тысяч раз меньше, чем теперь, а размеры в 1400 раз меньше! Открытие реликтового излучения — событие огромной важности в астрономии, равное по своему значению открытию красного смещения в спектрах галактик. Удивительно, что косвенным образом это излучение было обнаружено и, увы, не понято за 25 лет до своего открытия! Впрочем, это не является единственным случаем в истории науки. В этой книге мы столкнемся и с другими примерами.

Исключительно важное значение имеет обнаружение в межзвездном газе молекул водорода Н2. Так как резонансная электронная полоса этой молекулы расположена в ультрафиолетовой части спектра около 1092 A, только внеатмосферные астрономические исследования могли решить эту задачу. И здесь пока наиболее ценные сведения были получены на том же спутнике «Коперник» о котором речь шла выше. Специально исследовались ультрафиолетовые спектры от сильно покрасневших звезд, находящихся, следовательно, за плотными газово-пылевыми облаками, особенно сильно поглощающими синюю часть спектра (см. ниже). Именно в таких облаках можно было ожидать измеримого количества молекулярного водорода. Спектрограммы показывают, что у таких звезд линии межзвездного молекулярного водорода очень сильны. Так как одновременно в спектрах тех же звезд измерялась резонансная линия атомного водорода лайман-альфа, оказалось возможным непосредственно измерить отношение обилий молекулярного и атомного водорода в облаках. Это отношение, как выяснилось, меняется в очень широких пределах, от нескольких десятых до значения, меньшего чем 10-7, определяемого чувствительностью спектрографа к очень слабым линиям.

До сих пор, говоря о межзвездной среде, мы имели в виду только межзвездный газ. Но в этой среде имеется и другая компонента. Речь идет о межзвездной пыли. Мы уже упоминали выше. что еще в прошлом столетии дебатировался вопрос о прозрачности межзвездного пространства. Только около 1930 г. с несомненностью было доказано, что межзвездное пространство действительно не совсем прозрачно. Поглощающая свет субстанция сосредоточена в довольно тонком слое около галактической плоскости. Сильнее всего поглощаются синие и фиолетовые лучи, между тем как поглощение в красных лучах сравнительно невелико. Поэтому межзвездное поглощение сопровождается одновременным покраснением цвета удаленных объектов, находящихся в полосе Млечного Пути. Сама величина поглощения меняется в разных направлениях довольно беспорядочным образом. Есть целые участки неба, где поглощение невелико, есть и такие области в Млечном Пути, где поглощение света достигает огромных размеров. Такие области носят образное название «угольных мешков» (рис. 2.2). Все это означает, что поглощающая свет субстанция распределена в межзвездном пространстве крайне неоднородно, образуя отдельные конденсации или облака.


Звезды: их рождение, жизнь и смерть
Рис. 2.2: Фотография «угольного мешка» в созвездии Ориона.

Что же это за субстанция? Сейчас уже представляется доказанным, что поглощение света обусловлено межзвездной пылью, т. е. твердыми микроскопическими частицами вещества, размерами меньше микрона. Эти пылинки имеют сложный химический состав (графит, силикаты, «загрязненные» льдинки и пр.). Установлено, что пылинки имеют довольно вытянутую форму и в какой-то степени «ориентируются», т. е. направления их вытянутости имеют тенденцию «выстраиваться» в данном облаке более или менее параллельно. По этой причине проходящий через тонкую среду звездный свет становится частично поляризованным, причем степень поляризации (которая коррелируется с покраснением цвета, обусловленным поглощением) достигает 1—2%. Причиной, вызывающей ориентацию пылинок, является наличие в межзвездном пространстве очень слабых магнитных полей. Для того чтобы объяснить наблюдаемую поляризацию света удаленных звезд, необходимо предположить, что величина этого поля порядка 10-5—10-6 эрстед. В дальнейшем мы еще не раз будем говорить о межзвездном магнитном поле. Здесь только заметим, что другие, более совершенные методы его измерения подтверждают приведенную выше оценку.

Исключительно важное значение имеет вопрос об ионизации межзвездного газа и связанный с этим вопрос о его температуре. Необходимо, однако, подчеркнуть, что понятие «температура» применительно к межзвездному газу отнюдь не является элементарным. Дело в том, что это понятие, строго говоря, применимо только к телам, находящимся в состоянии термодинамического равновесия. Последнее предполагает одновременное выполнение целого ряда условий. Например, спектральная плотность излучения должна описываться формулой Планка, полная плотность энергии — законом Стефана — Больцмана, согласно которому последняя пропорциональна четвертой степени температуры, распределение скоростей различных атомов, ионов, а также электронов — законом Максвелла, распределение атомов, молекул и ионов по различным квантовым состояниям — формулой Больцмана. Во все эти законы и формулы, как известно, входит важный параметр, имеющий смысл температуры. Например, в распределение скоростей Максвелла входит кинетическая температура, в формулу Больцмана — температура возбуждения и пр. Если тело (или система) находится в состоянии термодинамического равновесия, то все эти параметры — «температуры» должны быть равны друг другу и тогда они называются просто температурой тела.

Легко убедиться, что даже в привычных для нас естественных земных условиях термодинамическое равновесие, как правило, не реализуется. Например, когда мы говорим о температуре воздуха, всегда следует уточнение: «в тени». Очень наглядно можно убедиться в полном отсутствии термодинамического равновесия на следующем простом примере. Зададимся вопросом: какова температура нашей комнаты солнечным днем? Казалось бы, ответить просто: около 20 градусов шкалы Цельсия или 293 градуса шкалы Кельвина — кельвинов (К). Но с тем же основанием я могу утверждать, что температура комнаты... 5700 К. Почему? Да потому, что вся комната наполнена прямым и рассеянным солнечным светом, спектральный состав которого примерно такой же, как у солнечного излучения. Ну, а спектр Солнца очень близок к спектру абсолютно черного тела, нагретого до температуры 5700 К. В то же время следует иметь в виду, что плотность энергии солнечного излучения в комнате может быть в сотню тысяч раз меньше, чем на поверхности Солнца: ведь по мере удаления от Солнца поток его излучения изменяется обратно пропорционально квадрату расстояния. Какой же смысл имеет бытующее представление о том, что температура комнаты 20 градусов Цельсия? Неявно мы при этом говорим о кинетической температуре, т. е. параметре максвеллова распределения скоростей молекул воздуха, заключенных в нашей комнате. Между тем 5700 К есть цветовая температура излучения, заполняющая эту комнату. Таким образом, на этом простейшем примере видно, сколь велики отклонения от термодинамического равновесия даже в самых обычных условиях. Заметим, кстати, что сама жизнь как весьма сложный физико-химический процесс возможна только при отсутствии термодинамического равновесия. Строгое термодинамическое равновесие — это смерть. Можно ли говорить о температуре в межзвездном пространстве, где отклонения от термодинамического равновесия исключительно велики? Оказывается, что можно, если каждый раз оговаривать, о какой «температуре» идет речь. Чаще всего приходится говорить о кинетической температуре межзвездной среды, которая может меняться в довольно широких пределах (см. ниже). С другой стороны, межзвездное пространство наполнено излучением от огромного количества звезд. Поэтому цветовая температура этого излучения такая же, как у звезд, т. е. измеряется тысячами и десятками тысяч кельвинов. Если мы рассматриваем, например, область межзвездного пространства на расстоянии нескольких десятков световых лет от горячей звезды — гиганта спектрального класса О—В (см. § 1), то цветовая температура там будет 20—40 тысяч кельвинов. Наоборот, на таком же расстоянии от красного сверхгиганта цветовая температура может быть около 3 тысяч кельвинов. В то же время плотность излучения в межзвездном пространстве исключительно мала. Она во столько же раз меньше плотности излучения на поверхности ближайшей звезды, во сколько раз телесный угол, под которым из какой-нибудь точки межзвездного пространства виден диск звезды, меньше, чем 2

Звезды: их рождение, жизнь и смерть
[ 5 ]. Если подсчитать это отношение, то окажется, что оно около 10-15. В межзвездном пространстве средняя плотность лучистой энергии около 1 электронвольта на кубический сантиметр или 10-12 эрг/см3. Следовательно, так как энергия каждого из световых квантов около 3 электронвольт, на кубический сантиметр межзвездного пространства приходится меньше одного кванта. В то же время энергии этих квантов примерно такие же, как в звездных атмосферах, где плотность квантов неизмеримо больше. В этом смысле образно говорят, что поле излучения в межзвездном пространстве сильно «разжижено». Заметим, что и в нашей комнате, и вообще на Земле, излучение также «разжижено». Температура межзвездной среды, определяемая по плотности заполняющего ее излучения, исключительно низка — порядка нескольких кельвинов. Именно такую температуру должны иметь поверхности твердых пылинок, находящиеся в межзвездном пространстве в тепловом равновесии с окружающим их полем «разжиженного» излучения: ведь такие пылинки должны поглощать ровно столько же, сколько они излучают.

Крайнее несоответствие между высокой цветовой температурой излучения, заполняющего межзвездную среду, и его очень низкой плотностью являетcя едва ли не основным фактором, определяющим своеобразие физических условий в этой среде. Рассмотрим конкретный, очень важный для дальнейшего, пример. Речь пойдет о фотоионизации межзвездных атомов при поглощении ими ультрафиолетовых квантов «разжиженного» излучения. В процессе такой ионизации «освободившиеся» от атомов электроны приобретают кинетическую энергию, определяемую известным уравнением Эйнштейна:

Звезды: их рождение, жизнь и смерть
(2.1)

где

Звезды: их рождение, жизнь и смерть
 — частота кванта поглощенного излучения,
Звезды: их рождение, жизнь и смерть
 — потенциал ионизации, определяющий энергию связи электрона в атоме. Из этой формулы, опирающейся на основные представления квантовой теории, следует, что кинетическая энергия фотоэлектрона определяется только частотой поглощенного кванта. Она совершенно не зависит от плотности таких квантов в окружающем пространстве. Поэтому кинетические энергии фотоэлектронов в межзвездном пространстве будут такими же, как в атмосферах звезд, т. е. довольно высокими, порядка нескольких электронвольт. Сталкиваясь между собой, эти электроны сравнительно быстро установят максвеллово распределение скоростей, следовательно, можно будет говорить об их кинетической температуре. С другой стороны, по причине неупругих столкновений с атомами электроны будут непрерывно терять энергию. В результате «баланса» между «потерянной» таким образом и «приобретенной» (при фотоионизации) энергиями температура межзвездной среды около горячих звезд устанавливается на довольно высоком уровне около 10 000 К.

Низкая плотность излучения в межзвездном пространстве в сочетании с крайне низкой плотностью межзвездного газа имеет и другое очень важное следствие, о котором мы уже упоминали раньше. Так как по этой причине процессы поглощения излучения атомами будут происходить очень редко, возбужденные каким-либо образом атомы и молекулы будут без всяких препятствий переходить в основное состояние, излучая при этом соответствующие кванты. Это будет иметь место и тогда, когда возбужденные уровни «метастабильны», т. е. атомы могут находиться на них аномально долго. В условиях земных лабораторий благодаря столкновениям и процессам поглощения света, связанным с переходами атомов на «вышележащие» уровни, переход с метастабильного уровня на основной не сопровождался бы излучением квантов соответствующей частоты. В условиях же межзвездной среды находящийся на метастабильном уровне атом может достаточно долго «ждать» — ведь ему никакие столкновения или поглощения не мешают — ив конце концов перейти на основной уровень, излучив квант спектральной линии, называемой у спектроскопистов «запрещенной»[ 6 ].

Так как никакие процессы взаимодействия возбужденных атомов с веществом и излучением «не успевают» произойти, практически все атомы, ионы и молекулы могут совершать переходы только «вниз», в основное состояние, излучая соответствующие кванты. Переходы «вверх», т. е. в состояние с более высокой энергией, возможны только для атомов, находящихся в самом «глубоком», основном состоянии. Как правило, такие процессы связаны с поглощением ультрафиолетовых квантов, так как частоты резонансных линий и потенциалы ионизации атомов и ионов достаточно велики. Таким образом, в межзвездной среде должен происходить очень важный процесс «переработки» квантов: атомы поглощают ультрафиолетовые кванты, а потом, после рекомбинации на возбужденные уровни и ряда «каскадных» переходов «вниз», на основной уровень, излучают менее энергичные кванты, длины волн которых находятся в оптическом диапазоне. Такой процесс в лабораторной физике носит название «флуоресценции».

В межзвездном пространстве типичной является следующая ситуация. Облако межзвездного газа, находящееся в сравнительной близости от горячей (и поэтому сильно излучающей в ультрафиолетовой части спектра) звезды поглощает кванты, способные ионизовать водород. Длина волны таких квантов должна быть меньше 912 A. Из-за поглощения этих квантов подавляющая часть водородных атомов в облаке становится ионизованными. Электроны, рекомбинируя с протонами, будут излучать уже кванты в видимой и инфракрасной областях, например, в линиях бальмеровской серии. Те нее электроны, сталкиваясь с атомами и ионами кислорода, азота, серы и других элементов, будут возбуждать имеющиеся у них метастабильные уровни. Последние будут беспрепятственно «высвечиваться», излучая при этом запрещенные линии.

Области межзвездного газа, расположенные в сравнительной близости от горячих звезд-гигантов спектральных классов О и В, обязательно должны быть полностью ионизованными. Будет ли, однако, ионизован весь межзвездный газ? Расчеты, подкрепленные наблюдениями (см. ниже), показывают, что в большей части межзвездной среды водород будет не ионизован. Горячие звезды способны ионизовать водород вокруг себя только до определенного расстояния, зависящего как от мощности ультрафиолетового излучения звезды, так и от плотности межзвездной среды. Таким образом, «топология» ионизации межзвездной среды выглядит весьма своеобразно: вокруг горячих звезд имеются замкнутые полости (в идеальном случае постоянной плотности межзвездной среды — сферы), где водород ионизован, в то время как между полостями водород нейтрален. Области межзвездной среды, где водород ионизован, называются «зоны Н II», а области нейтрального водорода — «зоны Н I». Радиус какой-нибудь зоны Н II определяется из баланса ионизации внутри нее: количество поглощенных в этой зоне за единицу времени ультрафиолетовых квантов (которые излучаются горячей звездой) равно количеству рекомбинаций между протонами и электронами. Так как каждый поглощенный квант приводит к появлению пары ионов, в тс время как каждый акт рекомбинации уничтожает пару ионов, наше условие просто означает неизменность состояния ионизации со временем. Запишем это условие математически:

Звезды: их рождение, жизнь и смерть
(2.2)

где R — радиус зоны ионизации, которую мы предполагаем сферической,

Звезды: их рождение, жизнь и смерть
NeNi — число рекомбинаций в единице объема за секунду, Ne = Ni — концентрации электронов и ионов,
Звезды: их рождение, жизнь и смерть
 — коэффициент рекомбинации, L(T) — мощность ультрафиолетового излучения звезды, зависящая от температуры ее поверхности, h
Звезды: их рождение, жизнь и смерть
 — средняя энергия ультрафиолетовых квантов. Из формулы (2.2) следует, что

Звезды: их рождение, жизнь и смерть
(2.3)

Расчеты показывают, что при Ne

Звезды: их рождение, жизнь и смерть
1 см-3 (величина, недалекая от действительности; см. ниже) для звезд спектральных классов О и В величина R может достигнуть многих десятков парсек. Внутри этой огромной области находятся десятки тысяч звезд. Интересно, что переход между зонами H II и Н I очень резок: на протяжении каких-нибудь сотых долей парсека межзвездный водород из состояния почти 100%-ной ионизации переходит в нейтральное состояние.

Все поглощенное ультрафиолетовое излучение центральной горячей звезды зона H II «перерабатывает» в «видимые» и «инфракрасные» кванты бальмеровской и пашеновской серий водорода и в запрещенные линии, а также в ультрафиолетовые кванты линии «лайман-альфа». Поэтому для наблюдателя такая зона должна представлять собой неправильной формы протяженный объект, более или менее сильно излучающий в отдельных спектральных линиях. Но это есть не что иное, как газовые туманности, наиболее яркие из которых (например, в созвездии Ориона) уже очень давно известны астрономам. Излучение единицы объема такой туманности обусловлено различного рода столкновениями между электронами и ионами, приводящими к появлению атомов и ионов в возбужденных состояниях. Поэтому указанное излучение должно быть пропорционально квадрату плотности Ne2. Основной характеристикой, определяющей условия наблюдения туманностей, является их поверхностная яркость, которая пропорциональна произведению излучения единицы объема на протяженность излучающей области по лучу зрения R. Следовательно, поверхностная яркость туманности I пропорциональна величине Ne2R, называемой «мерой эмиссии».

На рис. 2.3—2.5 приведены несколько фотографий областей Н II— газовых туманностей. Эти фотографии получены через фильтр, пропускающий красную водородную линию H

Звезды: их рождение, жизнь и смерть
. Хорошо видно сложное распределение яркости у этих объектов. Следует, однако, иметь в виду, что «клочковатая» структура поглощающих свет пылевых облаков (проектирующихся на туманности либо находящихся в них) сильно искажает действительную картину распределения яркости.


Звезды: их рождение, жизнь и смерть
Рис. 2.3: Фотография туманности Ориона.


Звезды: их рождение, жизнь и смерть
Рис. 2.4: Фотография туманности W 3.

Зная из астрономических наблюдений поверхностную яркость туманности, всегда можно получить соответствующую ей меру эмиссии. Если при этом известна ее протяженность по лучу зрения R, то сразу же определяется величина Ne, т.е. плотность межзвездного газа. Следует, однако, подчеркнуть, что по причине весьма неоднородного распределения межзвездного газа таким образом определенная плотность имеет смысл некоторого среднего значения. Оказывается, что в облаках межзвездного газа средняя плотность — около 10 ионизованных атомов водорода на кубический сантиметр. Отдельные, очень плотные облака имеют концентрацию атомов порядка нескольких тысяч на кубический сантиметр и больше. Такие плотные облака наблюдаются как очень яркие туманности. Концентрация атомов в межзвездном пространстве между облаками по крайней мере в сотню раз меньше, чем в облаках. Концентрации атомов в облаках межзвездного газа, где водород не ионизован (зоны Н I), с большой надежностью находятся из анализа ультрафиолетовых линий поглощений этого газа в спектрах звезд, получаемых на орбитальных астрономических обсерваториях. В частности, по спектрограммам, полученным на спутнике «Коперник», можно сделать количественный химический анализ межзвездной среды. Для исследовавшихся таким образом облаков, проектирующихся на сравнительно близкие к нам звезды, концентрация водорода оказалась порядка нескольких сотен на кубический сантиметр.


Звезды: их рождение, жизнь и смерть
Рис. 2.5: Фотография туманностей «Северная Америка» и «Пеликан».

Тщательный анализ спектров, полученный на «Копернике» от сравнительно близких (находящихся от нас на расстоянии от 20 до 150 пс) звезд, лишенных какого бы то ни было покраснения, обусловленного космической пылью, позволил исследовать физические свойства весьма разреженной межзвездной среды, находящейся между облаками. В этом случае интенсивность межзвездных линий поглощения очень мала. В основном наблюдались резонансные линии однократно ионизованных атомов. Создается впечатление, что тяжелых элементов в межоблачной среде относительно меньше, чем в облаках. Концентрация водорода в межоблачной среде меняется в довольно широких пределах от 0,2 до 0,02 см-3.

Межзвездный газ в Галактике концентрируется в очень тонком слое около ее плоскости симметрии. Толщина этого слоя не превышает 200 пс, а средняя концентрация частиц в нем около 1 см-3. Такой средней концентрации атомов соответствует средняя плотность около 10-24 г/см3. Заметим, что средняя плотность межзвездной пыли приблизительно в сто раз меньше. Любопытно отметить, что плотность тяжелых элементов в межзвездном газе (т.е. всех элементов, исключая водород и гелий) около 10-26 г/см3. Так как межзвездные пылинки состоят преимущественно из тяжелых элементов, это означает, что примерно половина всех тяжелых элементов в межзвездной среде «связана» в твердых частицах, между тем как вторая половина находится в газообразном состоянии. Это удивительное обстоятельство, которое пока ещё не нашло объяснения, должно иметь большое значение для понимания происхождения межзвездной пыли.

Итак, концентрация атомов межзвездного газа по крайней мере в миллиард миллиардов раз меньше, чем в земной атмосфере. Тем более парадоксальным является утверждение, что межзвездный газ отнюдь не является вакуумом! В самом деле, что такое вакуум? Оказывается, далеко не всякий, даже очень разреженный газ можно считать вакуумом. Только тогда, когда длина свободного пробега частиц газа больше, чем размеры объема, в котором этот газ находится, можно говорить о вакууме. Например, в газоразрядной трубке концентрация атомов газа может быть 1012 см-3. Тогда длина свободного пробега l

Звезды: их рождение, жизнь и смерть
1/n
Звезды: их рождение, жизнь и смерть
, где
Звезды: их рождение, жизнь и смерть
Звезды: их рождение, жизнь и смерть
10-15 см2 — поперечное сечение атомов при столкновениях. Если длина трубки меньше метра, можно говорить о вакууме. В межзвездном пространстве при n
Звезды: их рождение, жизнь и смерть
1 см-3 l
Звезды: их рождение, жизнь и смерть
1015 см, т. е. 3
Звезды: их рождение, жизнь и смерть
10-4 пс, между тем как толщина газового диска в Галактике около 200 пс. При таких условиях ни о каком вакууме не может быть речи. Межзвездный газ — это непрерывная, сжимаемая среда, континуум. К нему полностью применимы законы газовой динамики. По этой непрерывной среде распространяются волны, например, ударные. В частности, об одном важном типе ударных волн в межзвездной среде, вызванном взрывом звезд, речь будет идти в § 16. Эта среда охвачена сложным, турбулентным движением, по ней обычно проходит мелкая «рябь», о которой разговор будет идти в § 21. Следует еще иметь в виду, что эта непрерывная среда обладает довольно высокой электропроводностью, так как она либо полностью (в зонах Н II), либо частично (в зонах Н I) ионизована. Из-за высокой проводимости межзвездной среды наличие в ней межзвездных магнитных полей приводит к очень интересным эффектам. Магнитные силовые линии как бы «приклеены» к межзвездному газу и следуют за причудливыми движениями его облаков. Часто межзвездное магнитное поле, если оно достаточно сильно, как бы «контролирует» движения облаков, запрещая им двигаться поперек силовых линий. Очень важная ветвь современной физики, имеющая большое прикладное значение — магнитная гидродинамика — родилась в астрономии, в частности, при исследовании природы межзвездного газа.

Если до войны астрономы ограничивались только изучением специфических процессов взаимодействия межзвездного газа и поля «разжиженного» излучения, то в послевоенный период все большее значение приобретает магнитно-гидродинамический аспект этой проблемы. Особенно большое значение этот аспект имеет для центральной проблемы, которая нас интересует — образования звезд из межзвездной среды путем конденсации последней. Этой проблеме будет посвящен следующий параграф.

До сих пор, говоря о межзвездном газе, мы имели в виду преимущественно зоны H II, излучающие спектральные линии в оптическом диапазоне длин волн и поэтому с особой тщательностью исследуемые методами оптической астрономии. До войны информация (весьма скудная!) о зонах Н I могла быть получена только путем изучения межзвездных линий поглощения. Этот метод получил существенное развитие в послевоенные годы в связи с успехами внеатмосферной астрономии. После войны в связи с развитием радиоастрономии началась новая эпоха в исследованиях межзвездного газа. Еще в 1944 г. голландский студент-астроном ван де Хулст (ныне он директор обсерватории Лейденского университета) выдвинул блестящую идею, суть которой сводится к следующему: если два атомных уровня находятся очень близко друг к другу (т. е. очень мало отличаются по своим энергиям), то переход атома с «верхнего» уровня на «нижний» будет сопровождаться излучением кванта, длина волны которого приходится на радиодиапазон. И как важнейший пример такого перехода, молодой голландский астроном указал на атом водорода, находящийся в самом «глубоком» квантовом состоянии. Уже давно известно, что этому состоянию соответствуют два очень близких уровня. Разность энергии между указанными двумя уровнями есть результат взаимодействия собственных магнитных моментов, образующих водородный атом протона и электрона. В свою очередь магнитные моменты связаны со спинами соответствующих элементарных частиц. Это давно уже известное в спектроскопии явление наблюдается как расщепление спектральных линий на несколько очень близких друг к другу компонент (так называемая «сверхтонкая структура»). По оценке ван де Хулста переход между «верхним» и «нижним» уровнями сверхтонкой структуры атома водорода должен сопровождаться излучением линии с длиной волны 21 см. Спустя четыре года, случайно узнав об идее ван де Хулста и весьма заинтересовавшись ею, автор этой книги произвел детальный теоретический анализ этой идеи. Прежде всего надо было оценить, как долго будет находиться атом водорода на «верхнем» уровне сверхтонкой структуры, пока он самопроизвольно перейдет на нижний уровень, излучив квант в линии 21 см. Ведь от этого зависит интенсивность этой линии, т. е. сама возможность ее наблюдения, что прежде всего интересовало астрономов. Оказалось, что это время

Звезды: их рождение, жизнь и смерть
непомерно длинно, целых 11 миллионов лет! Напомню, что обычная продолжительность жизни в возбужденном состоянии у атомов, излучающих «оптические» линии, около стомиллионной доли секунды!

Находящийся на верхнем уровне сверхтонкой структуры атом водорода с гораздо большей вероятностью перейдет на нижний уровень без излучения кванта 21 см. Это будет иметь место при обычных столкновениях между атомами водорода. Для атома водорода, находящегося в облаке межзвездного газа, промежуток времени между двумя такими столкновениями будет «всего лишь» несколько сотен лет — срок относительно ничтожный. С другой стороны, такие же столкновения будут приводить к возбуждению верхнего уровня сверхтонкой структуры. В результате установится некоторое равновесное распределение атомов по уровням сверхтонкой структуры, при котором на верхнем уровне атомов будет в три раза больше, чем на нижнем. Имея в виду это обстоятельство, можно написать выражение для излучения единицы объема в квантах линии 21 см:

Звезды: их рождение, жизнь и смерть
(2.4)

где A21 = 1/

Звезды: их рождение, жизнь и смерть
 — вероятность перехода, сопровождающегося излучением кванта 21 см, h
Звезды: их рождение, жизнь и смерть
 — энергия этого кванта, nH — концентрация атомов водорода. Интенсивность этого излучения найдется по обычной формуле:

Звезды: их рождение, жизнь и смерть
(2.5)

где, как и раньше, R означает протяженность излучающей области по лучу зрения. Формула (2.5) справедлива только тогда, когда излучение не поглощается самими излучающими атомами. В нашем случае, как оказывается, это не так. Однако даже с учетом самопоглощения интенсивность линии 21 см настолько велика, что чувствительность послевоенной радиоастрономической аппаратуры была вполне достаточна, чтобы эту линию обнаружить.


Звезды: их рождение, жизнь и смерть
Рис. 2.6: Профиль радиолинии 21 см.

Линия 21 см должна иметь совершенно определенный профиль (т. е. не быть бесконечно узкой). Дело в том, что излучающие эту линию атомы межзвездного нейтрального водорода участвуют в нескольких движениях, что по причине эффекта Доплера приводит к расширению линии. Атомы межзвездного водорода, во-первых, имеют тепловые скорости, соответствующие их кинетической температуре, во-вторых, отдельные облака межзвездного газа движутся как целое со скоростью около 10 км/с. Наконец межзвездный газ, так же как и звезды, участвует в галактическом вращении. Скорость галактического вращения весьма велика — в окрестностях Солнца она около 200 км/с, причем само вращение носит довольно сложный, отнюдь не «твердотельный» характер. На профиль радиолинии 21 см должно влиять дифференциальное галактическое вращение, точнее, обусловленная этим вращением разность лучевых скоростей какой-нибудь области межзвездной среды и Солнца. Дифференциальное галактическое вращение зависит от галактической долготы.

После того как она была теоретически предсказана и рассчитана, линия 21 см была обнаружена в 1951 г. в США, Австралии и Голландии, На рис. 2.6 приведено несколько профилей радиолинии водорода 21 см. Типичная ширина линии (в шкале частот) порядка нескольких десятков килогерц. Из таких профилей можно было получить исключительно богатую информацию о зонах HI, Прежде всего оказалось, что кинетическая температура там около 100 К, причем местами она опускается до немногих десятков градусов[ 7 ]. Низкая температура зон Н I объясняется отсутствием там процессов фотоионизации водорода, В результате фотоионизации в газе появляется значительное количество довольно энергичных, фотоэлектронов, которые, сталкиваясь с атомами и ионами, передают им свою энергию, т. е. «греют» их (см. выше). Такой мощный «нагреватель» в зонах Н I отсутствует.

Не следует, однако, думать, что в зонах Н I совсем нет свободных электронов. Они есть, но их там в тысячи раз меньше, чем в зонах Н II, В зонах Н I электроны образуются, главным образом, по причине ионизации атомов космическими лучами сравнительно небольших энергий (порядка нескольких миллионов электрон-вольт), которых там довольно много[ 8 ], а также мягким рентгеновским излучением, пронизывающим всю Галактику (см. § 23). Кроме того, электроны в зонах Н I будут образовываться и путем обычной фотоионизации элементов, у которых потенциал ионизации меньше, чем у водорода, К числу таких элементов в первую очередь относится углерод.

Этот элемент играет особенно большую роль в тепловом балансе зон Н I, так как действует там как весьма эффективный «холодильник». Дело в том, что если бы энергия образующихся при ионизации электронов в конце концов не покидала бы облака межзвездной среды в виде излучения, даже ничтожно малая ионизация, действуя длительное время, разогрела бы холодный газ до высокой температуры, определяемой условием kT =

Звезды: их рождение, жизнь и смерть
(где
Звезды: их рождение, жизнь и смерть
 — средняя энергия фотоэлектронов). Образующиеся при ионизации электроны, сталкиваясь с атомами, непрерывно передавали бы им свою кинетическую энергию, а следовательно, нагревали бы. Но этого не происходит. Ведь наряду с «упругими» столкновениями между электронами и атомами, сопровождающимися передачей кинетической энергии от электронов к атомам, будут иметь место и «неупругие» столкновения, приводящие к возбуждению атомов и последующему излучению квантов. Благодаря таким столкновениям кинетическая энергия электронов трансформируется в излучение.

Не все атомы «равноценны» для неупругих столкновений. Очевидно, что если энергия возбуждения у какого-нибудь сорта атомов слишком велика, только ничтожная доля электронов будет обладать кинетической энергией, достаточной для возбуждения. Поэтому механизм «оттока» энергии путем возбуждения этих атомов будет неэффективен. Наиболее эффективными для охлаждения газа будут такие атомы (или молекулы), у которых энергия возбуждения близка к тепловой энергии электронов, хотя таких атомов может быть сравнительно немного. Именно такими свойствами обладают атомы углерода — как ионизованного, так и нейтрального. В зонах Н I, как уже говорилось выше, атомы углерода ионизованы. Их уровень возбуждения соответствует тепловой энергии частиц при температуре 92 К. В межзвездной среде в зонах Н I должно быть тепловое равновесие — сколько энергии газ приобретает по причине нагрева из-за ионизации, столько же он должен терять из-за излучения возбужденных столкновениями атомов углерода. В результате такого равновесия и устанавливается некоторая постоянная кинетическая температура порядка нескольких десятков градусов. Именно такая температура и получается из анализа профилей радиолинии 21 см в облаках. Таким образом, атомы углерода как бы «термостатируют» эти облака.

Заметим в этой связи, что в «горячих» зонах H II также имеет место тепловое равновесие. Однако в этом случае роль «термостата» выполняют ионизованные атомы кислорода и азота, у которых возбужденные уровни расположены значительно выше, чем у углерода. При возбуждении этих уровней как раз излучаются запрещенные линии, о которых речь шла раньше. В результате теплового равновесия в зонах H II кинетическая температура устанавливается на уровне около 10 000 К, что соответствует средней кинетической энергии имеющихся там частиц (ионов, электронов) около 1 электронвольта. Между тем средняя кинетическая энергия электронов, образовавшихся после ионизации водорода «ультрафиолетовыми» квантами, в несколько раз выше.


Звезды: их рождение, жизнь и смерть
Рис. 2.7: Зависимость давления в облаках межзвездного газа от плотности.

Вернемся, однако, к зонам Н I, где нагрев газа осуществляется главным образом благодаря его ионизации «мягкими» космическими лучами и рентгеновскими квантами. Если бы мы знали концентрацию космических лучей и рентгеновских квантов, то могли бы точно вычислить кинетическую температуру газа и степень ионизации в зависимости от его плотности. С другой стороны, температура и плотность облаков известны из радиоастрономических наблюдений, поэтому не представляет труда рассчитать концентрацию космических лучей и рентгеновских квантов. Если известны температура и плотность газа, то тем самым известно его давление. Вычисленная таким образом зависимость давления межзвездного газа от его плотности (точнее, от пропорциональной ей концентрации частиц газа) приведена на рис. 2.7. Эта кривая имеет довольно своеобразный вид, напоминающий известную из молекулярной физики кривую ван дер Ваальса. Мы сейчас увидим, что это сходство далеко не случайно.

Из этой кривой следует, что при малых концентрациях межзвездного газа (до 0,1 см-3) давление растет с ростом концентрации, причем кинетическая температура держится на характерном для зон Н II уровне 7000—10 000 К. При концентрациях, превышающих 0,1 см-3, температура газа резко падает до значения, характерного для зон Н I, что приводит к уменьшению давления с ростом концентрации. При дальнейшем увеличении концентрации температура газа, почти достигая своего минимального значения, уменьшается медленно. Поэтому рост плотности «перевешивает» уменьшение температуры и давление снова начнет расти. Из этой кривой видно, что существует такой интервал давлений (от 3

Звезды: их рождение, жизнь и смерть
10-13 до 10-14 бар), при котором одному определенному значению давления соответствуют три значения плотности газа (BC). Состояние газа, как известно, считается заданным, если для него известны давление и плотность (или температура). Мы можем, следовательно, сделать вывод, что одному определенному значению давления межзвездного газа соответствуют три его различных состояния. На том участке изображенной на рис. 2.7 кривой, где давление падает с ростом плотности, состояние газа является неустойчивым: любое случайное малое уплотнение какой-нибудь части газа будет сильно расти, так как при таком уплотнении внутреннее давление этой части газа уменьшается, а оставшееся «нескомпенсированным» внешнее давление от окружающего газа (которое не изменилось) начнет ее сжимать. Сжатие будет происходить до тех пор, пока точка, описывающая состояние сжимаемого газа, не переместится вдоль изображенной на рис. 2.7 кривой в области, где давление начнет расти с ростом плотности. Таким образом, межзвездный газ находится в состоянии тепловой неустойчивости: первоначально однородный, он неизбежно должен разделиться на две «фазы» — сравнительно плотные облака и окружающую их весьма разреженную среду. Тепловая неустойчивость межзвездного газа является, таким образом, одной из важнейших причин его «клочковатой», облачной структуры. Такая структура хорошо наблюдается на волне 21 см. Размеры, плотность и скорость облаков нейтрального водорода сходны с облаками ионизованного водорода в зонах H II. Следовательно, природа облачной структуры как в областях межзвездной среды, где водород нейтрален, так и областях ионизованного водорода должна быть одинаковой. Обрисованная выше картина тепловой неустойчивости межзвездного газа, развитая трудами известного советского астронома С. Б. Пикельнера, дает этому вполне удовлетворительное объяснение.

Важнейшим результатом исследований на волне 21 см является вывод о том, что сравнительно плотные облака межзвездного нейтрального водорода, в частности, «газово-пылевые комплексы» (о них см. следующий параграф), группируются вдоль ветвей спиральной структуры Галактики. Аналогичное явление имеет место и для оптически наблюдаемых зон Н II, но в этом случае, из-за поглощения света в космической пыли, спиральная структура Галактики не может быть прослежена на больших расстояниях от Солнца. Тот факт, что сравнительно плотные зоны Н II группируются в спиральные рукава, вместе с тем означает, что массивные горячие звезды спектральных классов О и В также группируются в спиральных рукавах. Это, конечно, не случайно и, как мы увидим в следующем параграфе, имеет прямое отношение к проблеме происхождения звезд.

Что же такое спиральные рукава? Каково их происхождение? Мы не можем пройти мимо вопроса о происхождении спиральной структуры нашей и других звездных систем, так как эмпирически ясно, что процесс звездообразования происходит как раз там. Долгое время на вопрос о происхождении спиральной структуры галактик давались различные и притом неправильные ответы. Обычно наличие спиральной структуры связывалось с растягиванием облаков межзвездного газа «дифференциальным» вращением Галактики. Известно, что наша звездная система вращается вокруг оси, перпендикулярной к ее плоскости, не как твердое тело, а значительно сложнее. Центральные области Галактики вращаются значительно быстрее, чем периферия. Поэтому вытекающие из центра Галактики облака межзвездного газа, как можно полагать, должны закручиваться и распределяться вдоль некоторой спирали. Отвлекаясь от вопроса о выбрасывании облаков межзвездного газа из центральных областей Галактики, который весьма далек от ясности, укажем только на одну непреодолимую трудность, связанную с этой к концепцией. Дело в том, что за время эволюции Галактики (около 10 миллиардов лет) спиральные рукава должны были бы закрутиться вокруг центра Галактики много десятков раз, так как период галактического вращения в окрестностях Солнца около 200 миллионов лет. Между тем спиральные рукава закручиваются вокруг центра всего лишь несколько раз (см. рис. 2.9). Следовательно, налицо поразительная «устойчивость» рукавов по отношению к дифференциальному вращению Галактики.


Звезды: их рождение, жизнь и смерть
Рис. 2.8: Схема движения звезд через спиральный рукав.

Решение этой старой проблемы было получено сравнительно недавно, немногим больше 15 лет назад, американским астрономом китайского происхождения Лином, развившим идеи шведского астронома Линдблада. Основная идея Лина — Линдблада состояла в том, что всякий спиральный рукав представляет собой не некоторое «материальное» образование, а волну. Разница между новой и старой трактовками весьма существенна. По старой концепции одни и те же облака как бы «привязаны» к конкретному рукаву, в то время как по новой концепции облака межзвездной среды только «временные» жители рукава. Межзвездный газ втекает в рукава, довольно долго задерживается там, после чего выходит за пределы рукава, а на его место придут другие облака межзвездного газа. Сказанное относится также и к звездам. Именно по этой причине форма рукава (спираль!) оказывается такой стабильной, несмотря на дифференциальное галактическое вращение. Ведь во внутренних частях рукава, по причине более быстрого галактического вращения, образующие его элементы (облака, звезды) быстрее «обновляются». Сам рукав при этом следует представлять вращающимся вокруг галактического центра как целое с постоянной угловой скоростью.

На рис. 2.8 показана схема движения звезд через спиральный рукав во внутренней части Галактики. Так как звезды там движутся с большей угловой скоростью, чем рукав, они будут «догонять» его с внутренней стороны. Войдя в него, они благодаря притяжению уже имеющихся там звезд «сбиваются» со своих круговых орбит вокруг галактического центра и движутся через рукав заметно медленнее. Точнее говоря, у звезд уменьшается составляющая скорости, перпендикулярная к оси рукава, поэтому они движутся под сравнительно малым углом к ней и, следовательно, проводят в рукаве сравнительно большое время. По этой причине звездная плотность в рукаве растет, что приводит к увеличению силы гравитационного притяжения на вновь втекающие в рукав звезды. После того как звезды выходят из облаков, они возобновляют свое более быстрое движение вокруг центра, пока опять не догонят рукав.

Аналогичная картина наблюдается и для втекающих в рукав облаков газа. Он также уплотняется. Заметим, что в рукавах имеются как сравнительно плотные облака, так и довольно разреженный межоблачный газ, причем давление в обоих «фазах» одинаково на кривой, изображенной на рис. 2.7, где состояние газа в облаках и межоблачной среде изображается точками B и C. После того как межзвездный газ выйдет из рукавов, его плотность значительно уменьшится, но две фазы — облака и межоблачная среда — сохранятся. Соответствующие состояния изображаются на рис. 2.7 точками A и B. Таким образом, между рукавами также имеются как облака, так и межоблачная среда. Но в то время, как средняя концентрация газа в облаках, находящихся в рукаве,

Звезды: их рождение, жизнь и смерть
3—5 см-3, между рукавами она
Звезды: их рождение, жизнь и смерть
0,2—0,3 см-3; между облаками соответствующие величины раз в десять меньше, поэтому их можно наблюдать только методами внеатмосферной «ультрафиолетовой» астрономии (см. выше).

Новый газ, входящий в рукав, довольно резко тормозится уже присутствующим там газом. При такой ситуации могут возникнуть ударные волны. При этом плотность газа скачкообразно увеличивается. На внутренней кромке ударной волны газ нагревается, но немного подальше его температура уже будет «нормальной», соответствующей рис. 2.7. Сжатие газа в ударной волне является, конечно, дополнительным фактором, увеличивающим его плотность. А это, как мы увидим в следующем параграфе, способствует ускорению процесса звездообразования.

Наглядной иллюстрацией правильности нового взгляда на природу спиральных рукавов галактик дает фотография галактики М51, приведенная на рис. 2.9. На этой фотографии хорошо видны темные узкие полосы, идущие вдоль внутренних краев рукавов. Эти полосы обусловлены космической пылью, которая из-за ударной волны уплотняется вместе с газом, входящим в эту часть рукава.

Методом радионаблюдений на волне 21 см во всех деталях исследовалось вращение Галактики, на основании чего была построена ее динамическая модель. Неоценимым преимуществом радиоастрономических наблюдений является то, что они свободны от влияния поглощения космической пылью. Это дает возможность наблюдать облака межзвездного газа в самых отдаленных областях Галактики. Особый интерес представляют исследования ядра нашей звездной системы и окружающей его области, совершенно недоступные для оптической астрономии из-за практически полного поглощения света в этом направлении. Мы упомянули только малую часть фундаментальной важности результатов, полученных за последнюю четверть века благодаря исследованиям на волне 21 см. Без преувеличения можно сказать, что современная астрономия просто немыслима без разнообразных применении этого исключительно эффективного метода.

Большой удачей явилось и то обстоятельство, что радиолинию 21 см излучает самый распространенный элемент во Вселенной.


Звезды: их рождение, жизнь и смерть
Рис. 2.9: Фотография галактики М 51.

Сверхтонкая структура у самого глубокого уровня — явление не такое уж распространенное у атомов. Например, этого нет у гелия, кислорода, углерода. Но еще в 1948 г. автор этой книги обратил внимание на то, что в радиоспектре Галактики следует ожидать аналогичной природы линию тяжелого изотопа водорода — дейтерия с длиной волны около 92 см. Только спустя 24 года эта слабая линия была обнаружена. Содержание дейтерия в межзвездной среде в десятки тысяч раз меньше, чем «нормального» водорода. Имеются некоторые основания полагать, что межзвездный дейтерий является «реликтом»: не исключено, что он образовался в первые 15 минут существования Вселенной, когда она представляла собой весьма горячую и плотную смесь протонов, электронов, нейтронов, нейтрино и квантов света[ 9 ]. Если это так, то современная средняя плотность Вселенной должна быть около 10-31 г/см3 и Вселенная не может быть замкнутой. Вот какие важные выводы можно сделать из обнаруженной очень слабой радиолинии межзвездного дейтерия!

Как и всякая плазма, зоны H II являются источниками теплового радиоизлучения с непрерывным спектром. На низких частотах ионы Н II непрозрачны для своего теплового излучения, а их радиоспектр описывается законом Рэлея—Джинса, согласно которому интенсивность пропорциональна квадрату частоты и первой степени температуры. На высоких частотах эти зоны прозрачны и их интенсивность, так же как и в оптических лучах, пропорциональна мере эмиссии. Однако в то время как наблюдаемая интенсивность в оптическом диапазоне сильно искажена межзвездным поглощением света, на частотах радиодиапазона влияние этого поглощения совершенно ничтожно. Только хорошие радиоизображения зон H II позволяют восстановить их истинную структуру.

Кроме непрерывного спектра, зоны Н II излучают еще радиолинии. Природа этих линий весьма своеобразна. Они возникают при переходах между соседними весьма высоко возбужденными уровнями атомов, водорода, а также других элементов. Речь идет об уровнях, для которых главное квантовое число n

Звезды: их рождение, жизнь и смерть
100—200 и даже больше. Такие уровни «заселяются» после рекомбинаций электронов с протонами[ 10 ]. Заметим, что в лабораторных плазмах, а также в звездных атмосферах столь высокое возбуждение атомов никогда не достигается — этому мешает взаимодействие возбужденного атома с окружающими заряженными частицами. Рекомбинационные радиолинии лучше всего наблюдать на сантиметровом и миллиметровом диапазоне.

Представляется очевидным, что линии несут в себе значительно больше информации, чем непрерывный спектр, так как исследование профилей открывает возможность изучить движение излучающих облаков. В настоящее время метод изучения зон Н II по рекомбинационным радиолиниям, причем не только водорода, но и гелия, углерода, а также других элементов, является едва ли не самым эффективным.

Глава 3 Газово-пылевые комплексы межзвездной среды — колыбель звезд

Характернейшей особенностью межзвездной среды является большое разнообразие имеющихся в ней физических условий. Там имеются, во-первых, зоны Н I и зоны Н II, кинетическая температура которых различается на два порядка. Имеются сравнительно плотные облака с концентрацией частиц газа, превышающей несколько тысяч на кубический сантиметр, и весьма разреженная среда между облаками, где концентрация не превышает 0,1 частицы на 1 см3. Имеются, наконец, огромные области, где распространяются сильные ударные волны от взрывов звезд (см. § 16), нагревающие газ до температуры 106 К. В этом параграфе мы сосредоточим наше внимание на сравнительно плотных, холодных газово-пылевых комплексах, физические процессы в которых отличаются большим своеобразием.

Наряду с отдельными облаками как ионизованного, так и неионизованного газа в Галактике наблюдаются, значительно большие по своим размерам, массе и плотности агрегаты холодного межзвездного вещества, получившие название «газово-пылевых комплексов»[ 11 ]. На небе астрономам уже давно известно довольно много таких комплексов. Один из ближайших к нам и, пожалуй, лучше всего исследованный комплекс находится в созвездии Ориона (см. рис. 2.3). Он включает в себя знаменитую туманность Ориона, плотные, поглощающие свет газово-пылевые облака и ряд других примечательных объектов. Для нас самым существенным является тс, что в таких газово-пылевых комплексах происходит важнейший процесс конденсации звезд из диффузной межзвездной среды. Об этом будет идти речь ниже, здесь же мы остановимся на интересном вопросе о происхождении таких комплексов. Конечно, этим вопросом можно было бы и не интересоваться, принимая газово-пылевые комплексы как реальный наблюдательный факт. Но такой чисто эмпирический путь исследования при всей его несомненной полезности не помогает глубоко понять суть явления и заложенную в самой его природе неизбежность. Во введении мы уже подчеркивали, что современная астрофизика насквозь исторична. Нельзя считать до конца понятым происхождение звезд из диффузной межзвездной среды, если неизвестно происхождение массивных, плотных газово-пылевых комплексов. Их происхождение нельзя понять как следствие тепловой неустойчивости межзвездной среды, о которой речь шла выше. Такая неустойчивость может привести лишь к образованию отдельных облаков, вкрапленных в значительно более разреженную среду. Ключом к пониманию происхождения массивных газово-пылевых комплексов являются некоторые свойства межзвездного магнитного поля.

Речь идет прежде всего об «упругости» магнитных силовых линий этого поля. Направление этих линий в основном параллельно плоскости галактического экватора. Так как облака межзвездной среды, образовавшиеся в результате ее тепловой неустойчивости, более или менее сильно ионизованы и поэтому представляют собой проводящую среду, они не могут двигаться поперек силовых линий — это сразу же искривило бы силовые линии и вызвало силу, направленную против движения. Следовательно, облака сравнительно быстро были бы остановлены. Поэтому они могут двигаться только по силовым линиям магнитного поля, как бы «скользя» вдоль них. Теперь представим себе, что по какой-то причине, может быть даже случайно, в системе (горизонтально» простирающихся силовых линий образовалась небольшая «впадина», «ложбина». Тогда под действием силы тяжести облака будут «соскальзывать» в такую ложбину. От этого масса газа во впадине увеличится и под влиянием его тяжести «ложбина» будет прогибаться еще сильнее. Ее «склоны» станут круче, и скорость втекания облаков межзвездного газа увеличится. В результате такого своеобразного характера неустойчивости межзвездной намагниченной плазмы (так называемая «неустойчивость Рэлея — Тэйлора») в системе межзвездных силовых линий образуются глубокие «ямы», наполненные довольно плотным газом (рис. 3.1). Это и есть газово-пылевой комплекс.


Звезды: их рождение, жизнь и смерть
Рис. 3.1: Схема, поясняющая неустойчивость Рэлея — Тэйлора.

Силовые линии в «яме» вовсе не прогибаются «до дна», т. е. до самой галактической плоскости. На каком-то расстоянии от нее они уже оказываются настолько сжатыми, что их упругость уравновешивает массу межзвездного газа, находящегося в «яме». По краям последней магнитные силовые линии довольно высоко и круто поднимаются над галактической плоскостью, образуя гигантские арки.

Следует подчеркнуть, что кинетическая температура газово-пылевых комплексов значительно ниже средней для областей Н I. Это объясняется сравнительно большой плотностью газа и связанной с ним космической пыли. Плотный газ уменьшает ионизацию, так как поглощает ионизующее мягкое рентгеновское излучение. Пыль поглощает ионизующую углерод ультрафиолетовую радиацию от звезд. Это, во-первых, приводит к уменьшению ионизации, а следовательно, и нагрева газа, а во-вторых,— и это, пожалуй, самое главное,— делает углерод нейтральным, что резко меняет тепловой баланс межзвездного газа. Дело в том, что у атомов нейтрального углерода возбужденные уровни энергии расположены еще ближе к основному уровню, чем у ионизованного углерода. Поэтому равновесная температура при новом тепловом балансе, наступающем после прекращения ионизации углерода, будет значительно ниже — всего лишь 5—10 К. Недавно выполненные наблюдения полностью подтверждают этот вывод теории (см. ниже).

Значение газово-пылевых комплексов в современной астрофизике очень велико. Дело в том, что уже давно астрономы, в значительной степени интуитивно, связывали образования конденсации в межзвездной среде с важнейшим процессом образования звезд из «диффузной» сравнительно разреженной газово-пылевой среды. Какие же основания существуют для предположения о связи между газово-пылевыми комплексами и процессом звездообразования? Прежде всего следует подчеркнуть, что уже свыше четырех десятилетий астрономам ясно, что звезды в Галактике должны непрерывно (т. е. буквально «на наших глазах») образовываться из какой-то качественно другой субстанции. Дело в том, что к 1939 г. было установлено, что источником звездной энергии является происходящий в недрах звезд термоядерный синтез (подробно об этом см. § 8). Грубо говоря, подавляющее большинство звезд излучают потому, что в их недрах четыре протона соединяются через ряд промежуточных этапов в одну альфа-частицу. Так как масса одного протона (в атомных единицах) равна 1,008, а масса ядра гелия (альфа-частицы) равна 4,0039, то избыток массы, равный 0,007 атомной единицы на протон, должен выделиться как энергия. Тем самым определяется запас в звезде ядерной энергии, которая постепенно тратится на излучение. В самом благоприятном случае чисто водородной звезды этот запас первоначально был

Звезды: их рождение, жизнь и смерть
(3.1)

где M — масса звезды, M

Звезды: их рождение, жизнь и смерть
= 2
Звезды: их рождение, жизнь и смерть
1033 г — масса Солнца. С другой стороны, болометрическая светимость звезд с массой 20M
Звезды: их рождение, жизнь и смерть
достигает 1038 эрг/с (см. § 1). Следовательно, запаса ядерной энергии такой звезды хватит не больше, чем на 100 миллионов лет. В реальных условиях звездной эволюции время жизни звезды оказывается на порядок меньше этой явно завышенной оценки. Но десяток миллионов лет — это ничтожный срок для эволюции нашей звездной Галактики, возраст которой никак не меньше чем 10 миллиардов лет. Возраст массивных звезд уже соизмерим с возрастом человечества на Земле! Значит, звезды (по крайней мере, массивные с высокой светимостью) никак не могут быть в Галактике «изначально», т. е. с эпохи ее образования. Следовательно, процесс образования звезд идет перманентно. В следующих частях книги будет обсуждаться важнейший вопрос о «смерти» звезд, о конце их эволюционного пути. Оказывается, что ежегодно в Галактике «умирает» по меньшей мере 3—4 звезды. Значит, для того, чтобы «звездное племя» не «выродилось», необходимо, чтобы столько же звезд в среднем образовывалось в нашей Галактике каждый год. Для того чтобы в течение длительного времени (исчисляемого миллиардами лет) Галактика сохраняла бы неизменными свои основные особенности (например, распределение звезд по массам, или, что практически то же самое, по спектральным классам), необходимо чтобы в. ней автоматически поддерживалось динамическое равновесие между рождающимися и «гибнущими» звездами. В этом отношении Галактика похожа на первобытный лес, состоящий из деревьев всевозможных видов и возрастов, причем возраст деревьев гораздо меньше возраста леса. Имеется, правда, одно важное различие между Галактикой и лесом. В Галактике время жизни звезд с массой меньше солнечной превышает ее возраст, который составляет примерно 15 миллиардов лет. Поэтому следует ожидать постепенного увеличения числа звезд со сравнительно небольшой массой, так как они пока еще «не успели» умереть, а рождаться продолжают. Но для более массивных звезд упомянутое выше динамическое равновесие неизбежно должно выполняться.

Откуда же образуются в нашей Галактике молодые и «сверхмолодые» звезды? С давних пор, по установившейся традиции, восходящей к гипотезе Канта и Лапласа о происхождении Солнечной системы, астрономы предполагали, что звезды образуются из рассеянной диффузной газово-пылевой среды. Было только одно строгое теоретическое основание для такого убеждения — гравитационная неустойчивость первоначально однородной диффузной среды. Дело в том, что в такой среде неизбежны малые возмущения плотности, т. е. отклонения от строгой однородности. Под влиянием силы всемирного тяготения малые возмущения будут нарастать и первоначально однородная среда разобьется на несколько конденсаций. Под действием силы гравитации эти конденсации, если их масса превышает определенный предел, будут продолжать сжиматься и, как можно полагать, в конце концов превратятся в звезды.

Рассмотрим этот вопрос более подробно на одном частном, но важном примере, и сделаем количественную оценку. Положим, что у нас имеется некоторое облако радиуса R, плотность которого

Звезды: их рождение, жизнь и смерть
и радиус R постоянны. Условием того, что облако под действием собственной гравитации начнет сжиматься, является отрицательный знак полной энергии облака. Последняя состоит из отрицательной гравитационной энергии Wg взаимодействия всех частиц, образующих облако, и положительной тепловой энергии этих частиц WT . Отрицательный знак полной энергии означает, что силы гравитации, стремящиеся сжать облако, превосходят силы газового давления, стремящиеся рассеять это облако во всем окружающем пространстве. Далее имеем:

Звезды: их рождение, жизнь и смерть
(3.2)

где A = 8,3

Звезды: их рождение, жизнь и смерть
107 эрг/моль
Звезды: их рождение, жизнь и смерть
кельвин,
Звезды: их рождение, жизнь и смерть
 — молекулярный вес,
Звезды: их рождение, жизнь и смерть
 — средняя плотность облака. В то же время гравитационная энергия

Звезды: их рождение, жизнь и смерть
(3.3)

Мы видим, что WT при постоянной плотности облака

Звезды: их рождение, жизнь и смерть
и температуре T растет с ростом R как R3, в то время как Wg
Звезды: их рождение, жизнь и смерть
R5, т.е. с ростом R растет гораздо быстрее. Следовательно, при данных
Звезды: их рождение, жизнь и смерть
и T существует такое R1, что при R > R1 облако под действием собственной гравитации неизбежно будет сжиматься. Когда задана масса M облака, R1 определится формулой

Звезды: их рождение, жизнь и смерть
(3.4)

В этом случае (т. е., если заданы масса и температура облака), если размер облака R < R1, оно будет сжиматься.

Легко убедиться, что «обычные» облака межзвездного газа с M

Звезды: их рождение, жизнь и смерть
M
Звезды: их рождение, жизнь и смерть
и R
Звезды: их рождение, жизнь и смерть
1 пс не будут сжиматься собственной гравитацией, а газово-пылевые комплексы M
Звезды: их рождение, жизнь и смерть
103—104 M
Звезды: их рождение, жизнь и смерть
, T
Звезды: их рождение, жизнь и смерть
50° и радиусом порядка десятков парсек будут. При условиях, которые реализуются для подавляющего большинства звезд, такое сжатие автоматически вызовет повышение температуры, и следовательно, давления. Увеличившееся давлением уравновесит силу гравитации, и облако перестанет сжиматься. Об этом подробно будет идти речь в § 6. Но в условиях сжимающихся облаков межзвездного газа температура в процессе сжатия не будет повышаться, по крайней мере на начальной, самой важной стадии сжатия. Это объясняется наличием у таких облаков весьма эффективно работающего «холодильника». Ниже мы увидим, что у этих плотных облаков водород, так же как и большинство других элементов, находится в молекулярном состоянии. Возбуждение столкновениями вращательных уровней молекул водорода с последующим излучением инфракрасной линии с длиной волны 28 мкм будет поддерживать температуру газа на почти постоянном уровне. Дело в том, что сжимающееся облако (до поры, до времени) прозрачно для этого инфракрасного излучения, которое тем самым покинет облако. Поэтому гравитационная энергия, освобождающаяся при сжатии облака, не будет тратиться на нагрев его вещества, а трансформировавшись в инфракрасное излучение, уйдет в мировое пространство. Будет даже некоторое понижение температуры облака, так как по мере его уплотнения греющие облако рентгеновские кванты (заполняющие галактику) будут поглощены в его наружных слоях. Кроме того, увеличивается число молекул, охлаждающих газ.

Вернемся теперь к условию гравитационного сжатия облака, списываемому формулой (3.4). Рассмотрим случай, когда масса облака равна массе Солнца, а его температура 10 К. Тогда из формулы (3.4) следует, что такое облако будет сжиматься, если его радиус меньше 0,02 парсек. Следовательно, плотность такого облака будет 2

Звезды: их рождение, жизнь и смерть
10-18 г/см3, а концентрация газа в нем
Звезды: их рождение, жизнь и смерть
106 см-3 — величина довольно значительная. Если же масса облака будет 10 солнечных масс, то, как можно убедиться, средняя концентрация частиц газа, при которой облако начинает сжиматься, будет значительно меньше,
Звезды: их рождение, жизнь и смерть
104 см-3. Как мы увидим ниже, облака с такой концентрацией газа действительно наблюдаются, Таким образом., для гравитационного сжатия облаков большой массы критерий, описываемый формулой (3.4), оказывается значительно «мягче». Поэтому естественно предположить, что конденсация облаков межзвездного газа в звезды происходит в несколько этапов. Сначала сжимается протяженный газово-пылевой комплекс с большой массой, например, в тысячи раз превышающей массу Солнца. Когда этот комплекс достаточно сожмется и его средняя плотность значительно увеличится, отдельные его части начнут сжиматься независимо, и комплекс распадается на ряд более мелких и менее массивных конденсаций. Этот естественный процесс качественно объясняет, почему звезды рождаются скоплениями (ассоциациями), а не «индивидуально», хотя при некоторых условиях возможно появление и одиночных звезд.

При таком механизме образования звезд из плотных облаков межзвездной среды сразу же возникает одна серьезная трудность. Дело в том, что отдельные «куски» облаков межзвездного газа движутся друг по отношению к другу со скоростью около 1 км/с. Это непосредственно следует из анализа профилей радиолинии 21 см. По этой причине облака должны обладать некоторым моментом количества движения. Если учесть огромные размеры облаков, то этот вращательный момент оказывается очень большим. Согласно законам механики, если бы облако было изолированным, то при его сжатии под влиянием собственной гравитации вращательный момент должен был сохраниться. Но это означает, что по мере сжатия облака оно должно было бы вращаться вокруг своей оси все быстрее и быстрее. Скорость осевого вращения достигла бы скорости света еще до того, как облако превратилось бы в звезду! Все эти выводы, однако, были получены в предположении, что сжимающееся облако изолировано. На самом деле это, конечно, не так. Оно окружено другими облаками и связано с ними магнитными силовыми линиями. Вот по этим-то силовым линиям и проходит «утечка» по крайней мере 90% вращательного момента облака. Пока вещество облака обладает достаточно высокой электропроводностью (для чего оно должно быть хотя бы немного ионизовано), магнитные силовые линии как бы «приклеены» к нему. Из-за этого вращательный момент, как по гибким струнам, «перекачивается» от сжимающегося облака к окружающей его межзвездной среде. Этот процесс «перекачки» вращательного момента прекратится только тогда, когда из-за возросшей плотности ионизация вещества облака сильно упадет и его электропроводность значительно уменьшится. Тогда магнитная связь облака с окружающей средой прекратится. Образовавшиеся таким образом звезды сохраняют довольно большой вращательный момент, который и наблюдается у сравнительно массивных звезд, начиная от спектрального класса О. Что же касается менее массивных звезд (вроде нашего Солнца), то они, в принципе, могут «освободиться» от избыточного вращательного момента довольно своеобразным путем, образуя вокруг себя планетные системы[ 12 ]. Однако более вероятным механизмом потери такими звездами вращательного момента является истечение вещества из их атмосфер («звездный ветер») при наличии магнитных полей!

Характерное время сжатия облака до размеров протозвезды можно оценить по простой формуле механики, описывающей свободное падение тела под влиянием некоторого ускорения. Заметим, что по мере сжатия облака величина ускорения, действующего на его частицы, будет увеличиваться. Мы, однако, будем для простоты рассуждения считать его постоянным, что не отразится на нашей оценке. При таком упрощающем предположении путь R, пройденный поверхностными слоями звезды за время t, будет равен

Звезды: их рождение, жизнь и смерть
(3.5)

где ускорение g =

Звезды: их рождение, жизнь и смерть
. Отсюда следует, что

Звезды: их рождение, жизнь и смерть
(3.6)

где мы ввели среднюю плотность облака

Звезды: их рождение, жизнь и смерть
=
Звезды: их рождение, жизнь и смерть
.

Из формулы (3.6) следует, что время существенного сжатия облака зависит только от его средней первоначальной плотности. Формулу (3.6) можно написать иначе, подставив в нее значение M из условия гравитационной неустойчивости (3.4):

Звезды: их рождение, жизнь и смерть
(3.7)

Полагая молекулярный вес

Звезды: их рождение, жизнь и смерть
= 2, а T
Звезды: их рождение, жизнь и смерть
20°, найдем, что облако с массой, равной солнечной, сожмется за миллион лет.

В процессе только что описанной первой стадии конденсации газово-пылевого облака в звезду, которая называется «стадией свободного падения», освобождается определенное количество гравитационной энергии

Звезды: их рождение, жизнь и смерть
GM2/R1 (R1 — радиус в конце этой стадии, когда облако становится уже непрозрачным для собственного инфракрасного излучения). Половина освободившейся при этом энергии должна покинуть облако в виде инфракрасного излучения, а половина пойти на нагрев вещества (см. § 7). Для того, чтобы оценить величину этой энергии, нужно хотя бы приблизительно знать, чему равняется R1. Эту оценку можно сделать следующим образом. Когда стадия свободного падения окончится, существенная часть освободившейся гравитационной энергии пойдет на нагревание газа в облаке и, как следствие этого,— на диссоциацию молекул водорода (из которых преимущественно и состоит облако). Чтобы диссоциировать одну молекулу водорода, необходимо затратить 4,3 эВ энергии или 7
Звезды: их рождение, жизнь и смерть
10-12 эрга. Следовательно, для диссоциации одного грамма водорода, содержащего
Звезды: их рождение, жизнь и смерть
3
Звезды: их рождение, жизнь и смерть
1023 молекул, надо затратить E = 2,1
Звезды: их рождение, жизнь и смерть
1012 эрг, а для диссоциации всех молекул водорода в облаке — в M раз больше, где M — масса облака, выраженная в граммах.

Приравнивая энергию, потраченную на диссоциацию молекулярного водорода, половине освободившейся при сжатии облака гравитационной энергии, найдем, что

Звезды: их рождение, жизнь и смерть
(3.8)

где R

Звезды: их рождение, жизнь и смерть
и M
Звезды: их рождение, жизнь и смерть
 — радиус и масса Солнца. Светимость в инфракрасных лучах сжимающегося облака можно оценить, разделив половину освободившейся гравитационной энергии на время сжатия. Комбинируя формулы (3.6), (3.7) и (3.8), будем иметь

Звезды: их рождение, жизнь и смерть
(3.9)

где T —температура вещества облака к моменту, когда процесс диссоциации водорода закончился, L

Звезды: их рождение, жизнь и смерть
= 4
Звезды: их рождение, жизнь и смерть
1033 эрг/с — светимость Солнца. Величина T должна быть порядка нескольких тысяч градусов, откуда L
Звезды: их рождение, жизнь и смерть
100L
Звезды: их рождение, жизнь и смерть
. Это очень большая величина. Следует, однако, заметить, что мы получили среднее значение светимости за весь период сжатия. В действительности, однако, основная часть освободившейся гравитационной энергии будет излучена на самых последних этапах стадии свободного падения, когда радиус облака уже будет близок к R1. В начальной стадии процесса сжатия (которая, тем не менее, занимает большую часть времени) облако почти не излучает. Теория, таким образом, предсказывает наличие вспышки инфракрасного излучения облака. Длительность этой вспышки, как показывают оценки, должны быть порядка нескольких лет, причем инфракрасная светимость облака должна в тысячи раз превосходить болометрическую светимость Солнца.

Как только сжимающееся облако станет непрозрачным для своего инфракрасного излучения, светимость его резко упадет. Оно будет продолжать сжиматься, но уже не по закону свободного падения, а гораздо медленнее. Температура его внутренних областей, после того как процесс диссоциации молекулярного водорода закончится, будет непрерывно повышаться, так как половина освобождающейся при сжатии гравитационной энергии будет идти на нагрев облака (см. § 7). Впрочем, такой объект «облаком» уже называть нельзя. Это уже самая настоящая протозвезда.

Таким образом, из простых законов физики следует ожидать, что может иметь место естественный и закономерный процесс эволюции газово-пылевых комплексов межзвездной среды сначала в протозвезды, а потом в звезды. Однако возможность — это еще не есть действительность. Первейшей задачей наблюдательной астрономии является, во-первых, изучить реальные облака межзвездной среды и проанализировать, способны ли они сжиматься под действием собственной гравитации. Для этого надо знать их размеры, плотность и температуры. Во-вторых, очень важно получить дополнительные аргументы в пользу «генетической близости» облаков и звезд (например, тонкие детали их химического и даже изотопного состава, генетическая связь звезд и облаков и пр.). В-третьих, очень важно получить из наблюдений неопровержимые свидетельства существования самых ранних этапов развития протозвезд (например, вспышки инфракрасного излучения в конце стадии свободного падения). Кроме того, здесь могут наблюдаться (и, по-видимому, наблюдаются) совершение неожиданные явления (см. § 4). Наконец, следует детально изучать протозвезды. Но для этого прежде всего нужно уметь отличать их от анормальных» звезд. Круг вопросов, связанных с наблюдениями эволюции протозвезд в звезды, будет обсуждаться в § 5.

Эмпирическим подтверждением процесса образования звезд из облаков межзвездной среды является то давно известное обстоятельство, что массивные горячие звезды высокой светимости спектральных классов О и В распределены в Галактике не однородно, а группируются в отдельные обширные скопления; такие группировки звезд позднее получили название «ассоциаций». Но такие звезды, как подчеркивалось выше, должны быть молодыми объектами. Таким образом, сама практика астрономических наблюдений подсказывала, что звезды рождаются не поодиночке, а как бы «гнездами», что качественно согласуется с представлениями теории гравитационной неустойчивости. Молодые ассоциации звезд (состоящие не только из одних горячих массивных гигантов, но и из других примечательных, заведомо молодых объектов, о которых речь будет идти в § 4) тесно связаны с большими газово-пылевыми комплексами межзвездной среды. Естественно считать, что такая связь должна быть генетической, т.е. эти звезды образуются путем конденсации облаков газово-пылевой среды.

Однако, как уже подчеркивалось выше, одно дело — придерживаться изложенной выше космогонической концепции, а другое — дать конкретные (т.е. базирующиеся на наблюдения) астрономические доказательства тому, что молодые звезды конденсируются из диффузной среды. В последние годы были обнаружены новые, весьма важные факты, решительно поддерживающие классическую космогоническую концепцию образования звезд из межзвездной среды, хотя окончательного решения проблемы еще нет. Об этом речь будет идти в § 5. Все дело в том, что эта проблема оказалась слишком сложной. Следует, однако, заметить, что вопросы, связанные с различными аспектами проблемы «смерти» звезд, продвинуты вперед гораздо дальше, чем круг вопросов, связанных с рождением звезд. По-видимому, это объясняется тем, что смерть звезд сопровождается такими впечатляющими явлениями, как вспышки сверхновых (см. часть II), и образованием планетарных туманностей (см. § 13). Эти феномены очень ярко выражены, их нельзя ни с чем другим спутать и можно теоретически осмыслить. Иное дело — рождение звезд. Этот процесс, как правило, незаметен, потому что скрыт от нас пеленой поглощающей свет космической пыли. Только радиоастрономия, как можно сейчас с большой уверенностью считать, внесла радикальное изменение в проблему экспериментального изучения рождения звезд. Во-первых, межзвездная пыль не поглощает радиоволны. Во-вторых, радиоастрономия открыла совершенно неожиданные явления в газово-пылевых комплексах межзвездной среды, которые, как можно полагать, имеют прямое отношение к процессу звездообразования. Об этом речь будет идти в § 4. Весьма важным для нашей проблемы оказалось развитие инфракрасной астрономии, также, в значительной степени, свободной от влияния поглощения космической пылью. Мы можем, следовательно, сказать, что только применение новой техники, обеспечивающей проведение астрономических наблюдений в ранее недоступных спектральных областях, позволяет надеяться, что проблема образования звезд из области чисто умозрительных спекуляций станет точной наукой.

Что же нового мы узнали а сравнительно плотных газово-пылевых комплексах межзвездной среды за последние 15 лет? Прежде всего надо остановиться на замечательных достижениях молекулярной радиоспектроскопии этих облаков. В предыдущем параграфе уже упоминалось кратко с том, что в межзвездном газе наряду с атомами имеются в ничтожно малом количестве двухатомные молекулы СН, СН+ и CN. Эти молекулы были обнаружены методами оптической астрономии. Недавно методами внеатмосферной астрономии были обнаружены межзвездные молекулы Н2. Однако еще в 1949 г. автор этой книги указал на возможность спектроскопических наблюдений межзвездных молекул в радиодиапазоне. Более конкретные вычисления были опубликованы нами в 1953 г. У некоторых молекул вращательные уровни оказываются раздвоенными из-за так называемого «ламбда-удвоения», вызванного взаимодействием движения электронов в молекуле с вращательными движением ее ядер. Раздвоение вращательных уровней молекул, обусловленное этим эффектом, очень маленькое, так что переход с верхнего на нижний подуровень этой тонкой структуры дает спектральные линии, находящиеся в радиодиапазоне. На самом деле картина оказывается более сложной, так как каждый из подуровней ламбда-удвоения расщепляется на еще более «тесно» расположенные уровни из-за взаимодействия с собственным моментом ядер. Это не что иное, как сверхтонкая структура. Наиболее детальные расчеты мне удалось провести в 1953 г. для молекулы гидрокисла ОН, у которой соответствующие молекулярные константы были к тому времени достаточно хорошо известны. Без учета сверхтонкой структуры длина волны ламбда-удвоения для этой молекулы оказывается 18 сантиметров. С учетом сверхтонкой структуры (что было сделано спустя некоторое время известным американским физиком, одним из изобретателей лазеров и мазеров, проф. Таунсом) следовало ожидать четырех линий, схема образований которых приведена на рис. 3.2. Частоты этих линий суть: 1612, 1665, 1667 и 1720 МГц. В том же 1953 г. автор этой книги сделал аналогичные расчеты для некоторых других молекул, например, СН, однако точность вычисленных длин волн была значительно ниже, чем для молекулы ОН. Существенно подчеркнуть, что ожидаемая интенсивность этих новых молекулярных линий должна была быть хотя и не такой большой, как у знаменитой линии 21 см, но все же достаточной для того, чтобы быть наблюдаемой[ 13 ]. На первый взгляд это кажется парадоксальным: ведь ожидаемое обилие молекулы ОН (которая оптическими методами в межзвездной среде не обнаружена) должно было быть во много миллионов раз меньше, чем атомов водорода. Дело, однако, в том, что, в отличие от водородной линии 21 см, молекулярные линии, возникающие при переходе между компонентами ламбда-удвоения, являются разрешенными, поэтому вероятности переходов для них почти в миллион раз больше, что в значительной степени должно компенсировать малое обилие.


Звезды: их рождение, жизнь и смерть
Рис. 3.2: Схема, поясняющая образование четырех радиолиний молекулы ОН.

Только в 1963 г., т. е. спустя 10 лет после наших расчетов, американцы в диапазоне 18 см обнаружили четыре линии молекулы межзвездного гидроксила, частоты которых в точности соответствовали вычисленным. Это открытие ознаменовало собой начало новой главы как в радиоастрономии, так и в изучении межзвездной среды. За 10 последующих лет в дециметровом, сантиметровом и миллиметровом диапазонах было открыто довольно много радиолиний молекулярного происхождения. Почти все они возникают при переходах между вращательными уровнями различных молекул. В наши дни (начало 1983 г.) методами радиоастрономии в межзвездной среде обнаружено около 60 новых молекул в дополнение к трем известным ранее из оптических наблюдений (СН, СН+, CN) и молекулы водорода Н2, линии которой в ультрафиолетовой части спектра обнаружены методами внеатмосферной астрономии. Важной особенностью радиоастрономии межзвездной среды является возможность раздельно наблюдать линии, принадлежащие различным изотопам данной молекулы, так как в радиоспектре эти линии довольно широко разнесены. Тем самым открывается возможность изотопного анализа межзвездной среды. 60 обнаруженных методами радиоастрономии молекул наблюдаются в. сотне изотопных комбинаций. Наряду с линиями молекулы 16О1Н наблюдаются также значительно более слабые линии 18О1Н. В случае межзвездной молекулы окиси углерода наблюдаются изотопные комбинации: 12C16O, 13C16O, 12C18O (см. ниже).

В то время как некоторые молекулы (например, OH) наблюдаются во многих облаках межзвездного газа, большинство молекул, особенно многоатомных, наблюдаются в огромном газово-пылевом комплексе, расположенном в направлении на центр Галактики и называемом Стрелец В, а также в меньшей степени в туманности Ориона. Некоторые молекулы (например, СО, у которой длина волны радиолинии 2,64 мм) наблюдаются как в зонах Н I, так и в зонах H II, другие — только в плотных, холодных газово-пылевых облаках. Обращает на себя внимание большое количество многоатомных молекул — довольно сложных химических структур. Например, в упомянутом комплексе Стрелец В обнаружены радиолинии молекул Н2НСО, СН3НСО, CH3CN и др. Важным было открытие таких облаков газово-пылевой межзвездной среды, где линии поглощения молекул ОН довольно интенсивны, в то время как линия нейтрального водорода 21 см очень слаба. Это может означать только одно: в таких облаках водород находится в молекулярном состоянии, в то время как в «обычных» облаках Н I находится преимущественно в атомарном состоянии. Теоретические расчеты показывают, что для того, чтобы водород стал молекулярным, концентрация газа в облаке должна быть большой (больше 100 см-3), а кинетическая температура сравнительно малой. Процесс соединения атомов водорода в молекулы осуществляется на поверхностях пылинок, находящихся в облаке. Вместе с тем пылинки экранируют образовавшиеся молекулы водорода от диссоциации ультрафиолетовым излучением от горячих звезд. К сожалению, у молекулы Н2 нет радиолиний, поэтому детали этого процесса пока от нас скрыты, тем более, что в таких облаках и ультрафиолетовые линии Н2, изучаемые методами внеатмосферной астрономии, полностью поглощаются космической пылью.

Важное значение исследований молекулярных радиолиний состоит в том, что они позволяют выполнить количественный анализ физических условий в облаках межзвездной среды с такой полнотой, которая еще недавно казалась непостижимой. Это в первую очередь относится к плотным, холодным облакам Н I, представляющим для нас особенно большой интерес в связи с проблемой звездообразования. Находящиеся в этих облаках молекулы являются как бы своеобразными «зондами», с помощью которых астрономы «прощупывают» физическое состояние окружающей эти молекулы среды. Результаты анализа показывают прежде всего, что полные массы холодных облаков в газово-пылевых комплексах порядка нескольких десятков тысяч солнечных масс. Масса гигантского газово-пылевого комплекса Стрелец В достигает 3

Звезды: их рождение, жизнь и смерть
106 солнечных масс, а размеры — до 50 пс. Концентрация молекулярного водорода в таких облаках достигает нескольких тысяч на кубический сантиметр. В наиболее плотных облаках (например, в туманности Ориона) концентрация молекулярного водорода достигает 107 см-3. Заметим, что столь большое значение концентрации ставит такие облака как бы посредине между обычными облаками межзвездной среды и протяженными атмосферами красных гигантских звезд. Пока астрономы еще не могут оценить полное количество таких плотных молекулярных облаков в Галактике. Но уже сейчас можно сделать важный вывод, что существенная часть межзвездного газа в Галактике может находиться в форме сравнительно плотных молекулярных облаков.


Звезды: их рождение, жизнь и смерть
Рис. 3.3: Гигантский радиотелескоп VLA.

Кинетическая температура газа в таких облаках низка, причем меняется в довольно широких пределах. Самые холодные из молекулярных облаков имеют температуру около 5 К. Максимальная кинетическая температура облаков едва доходит до 50 К. Температура комплекса Стрелец В около 20 К, причем она практически постоянна во всем его гигантском объеме. Низкая температура, в сочетании с довольно высокой плотностью при больших массах, делает такие агрегаты вещества крайне неустойчивыми по отношению к силе гравитации (см. выше). Они с необходимостью под действием этой силы должны сжиматься, и все говорит о том, что такие конденсации будут довольно быстро эволюционировать в звезды. Процесс «фрагментации» этих облаков на маленькие, плотные конденсации — «протозвезды» — можно будет наблюдать в близком будущем непосредственно. Для этого необходимы детальные радиоастрономические наблюдения таких молекулярных облаков с весьма высокой угловой разрешающей способностью. Последняя должна быть лучше, чем одна секунда дуги. Помимо столь высокой разрешающей способности радиотелескоп должен быть весьма чувствителен, так как потоки радиоизлучения от таких конденсаций малы. Лучше всего для решения этой фундаментальной задачи подходит гигантский радиотелескоп VLA (рис. 3.3).

Уже сейчас можно говорить о количественном химическом анализе молекулярных межзвездных облаков «темных» и «черных». При средней концентрации молекул H2

Звезды: их рождение, жизнь и смерть
104 см3 концентрация ОН близка к 10-2. Примерно такая же концентрация аммиака NH3. Очень велика концентрация окиси углерода СО, до 1 см-3. Если мы учтем, что космическое обилие углерода по отношению к водороду близко к 10-4, то мы непосредственно получаем важный результат, что практически весь углерод связан более обильным кислородом. Последний, скорее всего, присутствует в виде молекул O2. Впрочем, этот интересный вопрос пока еще не решен. Обращает на себя внимание сравнительно большая концентрация сложных молекул. Например, концентрация молекул СН3ОН около 10-3 см-3, что всего лишь на порядок меньше концентрации молекулы ОН. Скорее всего сложные межзвездные молекулы последовательно образуются путем «ионно-молекулярных» реакций типа: С+ + Н2
Звезды: их рождение, жизнь и смерть
СН+ + Н; СН+ + Н2
Звезды: их рождение, жизнь и смерть
CH2+ + Н; СН2+ + Н2
Звезды: их рождение, жизнь и смерть
CH3+ + Н и т. д. Соответствующие нейтральные молекулы образуются при рекомбинациях: CH+ + e
Звезды: их рождение, жизнь и смерть
СН и т. д. Значительный интерес представляет также изотопный состав межзвездного газа в молекулярных облаках. Надежнее всего определяется изотопный состав углерода из-за большого обилия молекулы СО. Из анализа радиолиний разных изотопов этой молекулы следует, что отношение концентраций 12C16O и 13С16О близко к 90, т. е. почти такое же, как отношение изотопов 12С и 13С на Земле. То же самое следует сказать и про отношение концентраций изотопов 16О и 18О, которое в молекулярных межзвездных облаках почти такое же, как на Земле. Изотопный состав азота, полученный из анализа радиолинии HC14N и HC15N, оказывается в молекулярных облаках практически таким же, как на Земле. Так как изотопный состав вещества формируется в процессе термоядерных реакций, происходящих в недрах звезд (см. § 8), а также при взрывах сверхновых, можно сделать вывод, что «термоядерная история» межзвездного вещества была такой же, как и вещества, из которого образовались Земля и планеты. В частности, можно сделать вывод, что как «земное» вещество, так и вещество молекулярных облаков в своей прошлой истории не принимали участие в углеродно-азотном цикле, вырабатывающем энергию в недрах достаточно массивных звезд (см. § 8). Близость изотопного состава вещества Земли и межзвездных молекулярных облаков является важным аргументом в пользу происхождения нашей Солнечной системы, а также других звезд из межзвездной среды.

Любопытно, однако, отметить, что отношение концентрации дейтерия и водорода, полученное из анализа молекул радиолиний HCN и DCN, оказалось в 40 раз больше, чем на Земле. Существенно также, что это отношение в 80 раз больше полученного из прямого анализа интенсивности межзвездной радиолинии дейтерия 92 см (см. § 2). По-видимому, причина такого расхождения кроется в чисто химических процессах образования этих молекул и никакого отношения к «ядерной» истории межзвездной среды не имеет.

Таким образом, применение методов астро-радио-спектроскопии к исследованию облаков межзвездной среды дало богатейшие результаты. Прежде всего эти исследования выявили существование нового класса облаков межзвездной среды — молекулярных облаков, «аккумулировавших» в себя значительную часть межзвездного вещества[ 14 ]. Детальное изучение радиолиний большого количества молекул и их изотопов впервые открыло возможность понять природу физико-химических процессов, которые там происходят. Без преувеличения можно сказать, что тем самым вопрос о конденсации межзвездного вещества в звезды впервые был поставлен на прочную научную основу. Без радиоастрономии мы в этой важнейшей проблеме до сих пор топтались бы на месте. Однако эффективность радиоастрономических методов этим не ограничилась. Исследователей поджидал здесь один сюрприз.

Глава 4 Космические мазеры

Довольно скоро после открытия первых радиолиний межзвездного гидроксила, при выполнении рутинной программы наблюдений различных облаков межзвездного газа на волне 18 см (линия ОН!) совершенно неожиданно было обнаружено новое, исключительное впечатляющее явление. Обычно линии межзвездного гидроксила наблюдались в поглощении в спектре ярких радиоисточников. Как правило, эти линии были очень слабы, «глубина поглощения» редко превышала несколько процентов. Велико же было изумление радиоастрономов, когда в направлении на некоторые, ничем до сих пор не примечательные туманности, линии ОН были обнаружены в излучении, причем их яркость оказалась исключительно большой. Исследователи буквально не поверили своим глазам и, растерявшись, решили, что излучает эти линии не «банальная» молекула ОН, а некая неизвестная субстанция, для которой даже подобрано было подходящее название — «мистериум». Однако буквально через считанные недели «мистериум» разделил судьбу своих «оптических братьев» — «небулия» и «корония». Только для «развенчания» последних потребовались десятилетия, а «мистериум» не протянул и пары недель... Неплохая иллюстрация ускоряющихся темпов развития науки за последнее столетие!

Прежде всего, всякие сомнения в ответственности молекулы ОН за наблюдаемый удивительный феномен отпадают по той простой причине, что наблюдаются все четыре линии гидроксила как раз на тех частотах, где им и полагается быть. Однако относительные интенсивности их находятся в причудливом отношении, совсем не таком, каким полагается ему быть на основании простой теории, подтверждаемой наблюдениями слабых линий поглощения. Эта теория предсказывает для отношения интенсивностей линий ОН с частотами 1667, 1665, 1612 и 1720 МГц значения 9 : 5 : 1 : 1. Между тем уже первые наблюдения над вновь открытыми странными источниками линий излучения ОН показали, что самой интенсивной, как правило, является линия 1665, в то время как «линии-сателлиты» 1612 и 1720 МГц либо совсем отсутствуют, либо весьма слабы. Вскоре были обнаружены другие источники такого же типа, где самыми яркими как раз являются линии-сателлиты: в одних случаях 1612 МГц, в других — 1720 МГц. Итак, первая особенность линий «мистериума» — это их огромная интенсивность, в то время как второй особенностью является полное «искажение» относительных интенсивностей различных линий. Сразу же была обнаружена еще одна интересная особенность этих линий — их спектральный профиль состоит из довольно большого количества чрезвычайно узких максимумов, разбросанных на спектральном участке шириною в десятки килогерц (рис. 4.1). Профиль всякой спектральной линии (в том числе и радиолинии) определяется эффектом Доплера, возникающим вследствие движения излучающих частиц (атомов, молекул) в направлении луча зрения. Из анализа спектрального профиля необычных линий излучения ОН прежде всего следует, что излучающая область состоит из нескольких источников, движущихся друг относительно друга со скоростями в несколько километров в секунду, или несколько десятков километров в секунду. Что всего примечательнее, так это необыкновенная узость максимумов, меньше чем 1 кГц в шкале частот! С такими узкими линиями астрономы еще не имели дело. Если считать, что спектральная ширина каждого максимума определяется тепловыми движениями излучающих молекул ОН, то из крайней узости этих спектральных деталей следует, что кинетическая температура газа в излучающей области должна быть чрезвычайно низкой, всего лишь несколько кельвинов. Но этому противоречит огромная яркость линии, которой можно привести в соответствие только очень высокую температуру (разумеется, если считать это излучение тепловым). Стало ясно, что никакого «мистериума» в природе нет, а излучают обычные молекулы ОН, но только находящиеся в необычных условиях.

 


Звезды: их рождение, жизнь и смерть
Рис. 4.1: Профили радиолиний мазерного излучения от молекулы ОН от источника, находящегося в туманности W 3.
 

Дальнейшие наблюдения выявили новые интересные свойства этого необычного излучения. Оказалось, например, что оно сильнейшим образом поляризовано, причем, как правило, наблюдается круговая поляризация. В пределах одного и того же источника отдельные узкие максимумы его профиля почти на 100% поляризованы, причем у одних максимумов наблюдается «левая» круговая поляризация, а у других — «правая».

Уже из первых наблюдений следовало, что угловые размеры источников излучения линий ОН необычайно малы. Особенно это ясно стало после того, как эти источники стали исследоваться при помощи радиоинтерферометров. Наблюдения показали, что угловые размеры источников излучения порядка секунды дуги, между тем как угловые размеры зон Н II, в которых они обычно наблюдаются, часто исчисляются десятками угловых минут. Однако, как оказалось, даже секунды дуги не характеризуют «истинные» угловые размеры источников.

Самую ценную информацию дали наблюдения источника «мистериума» с помощью «межконтинентальных» радиоинтерферометров, о которых речь шла во введении к этой книге. Так как разрешающая способность таких интерферометров фантастически велика, порядка одной тысячной секунды дуги, то выполненные с их помощью наблюдения позволили выявить пространственную структуру источников аномального излучения линий ОН. Эта структура оказалась весьма нетривиальной.

 


Звезды: их рождение, жизнь и смерть
Рис. 4.2: Структура мазерного источника в туманности W 3 (числа означают лучевые скорости конденсаций, символы «Л» и «П» означают левую и правую круговую поляризацию излучения соответствующих конденсаций).
 

Рассмотрим для определенности один из хорошо исследованных источников, находящийся в «диффузной» туманности W 3 (рис. 4.2). Сравнительно грубые интерференционные наблюдения позволили сделать вывод, что угловые размеры этого источника около 1,5 секунды дуги. Однако наблюдения на «межконтинентальном» интерферометре показали, что в этом случае на площадке размером в 1

Звезды: их рождение, жизнь и смерть
Звезды: их рождение, жизнь и смерть
,5 «разбросано» около десятка исключительно компактных источников, каждый из которых излучает одну очень узкую линию, причем частоты линий от различных источников несколько различны и соответствуют частотам «максимумов» спектрального профиля, приведенного на рис. 4.1. Угловые размеры каждого из таких источников исключительно малы, порядка нескольких тысячных секунды дуги! Зная расстояние до туманности W 3 (около 2000 парсек), по измеренным угловым размерам можно найти линейные размеры излучающих яркие линии «облаков». Они не превышают 1014 см, что всего в десять раз больше, чем расстояние от Земли до Солнца. Заметим, что существуют красные гигантские звезды, размеры которых близки к 1014 см. Протяженность всей области, в которой находятся эти облака, не превышает сотой доли парсека. Эти облака движутся, что следует из небольших различий в частотах линий ОН, излучаемых каждым из таких облаков. Указанные различия обусловлены эффектом Доплера, откуда следует, что относительные скорости облаков порядка нескольких километров в секунду. Аналогичной структурой обладают и другие источники аномального излучения линий ОН.

По мере накопления наблюдательного материала выяснилось, что источники загадочного излучения отнюдь не образуют однородную группу объектов. Оказалось, что существуют по крайней мере три типа таких источников. Первый тип характеризуется огромной интенсивностью компонент линий гидроксила с частотами 1665 и 1667 МГц. Источники этого типа ассоциируются с зонами Н II и имеют структуру, которая была описана выше. Источники второго типа характеризуются только усилением компоненты 1612 МГц. Эти источники надежно отождествляются с красными и инфракрасными гигантскими звездами. Наконец, у источников третьего типа усиливается линия 1720 МГц. Обычно они проектируются на радиотуманности — остатки вспышек сверхновых звезд (см. § 16). Хотя последние два типа источников, конечно, весьма интересны, особый интерес представляют источники первого типа, так как скорее всего именно они имеют отношение к процессу звездообразования.

Сочетание очень большого потока радиоизлучения от облаков с их исключительно малыми угловыми размерами означает, что поверхностная яркость источников фантастически велика. Мы можем эту яркость выразить в температурных единицах. Если бы абсолютно черное тело на частотах линий имело бы такую же поверхностную яркость, его температура была бы больше, чем 1014 К. Тот факт, что спектральная ширина линий соответствует температуре всего лишь в несколько десятков кельвинов, означает, что найденная выше «яркостная» температура никакого отношения к реальной, кинетической температуре излучающего вещества не имеет.

В 1969 г. группа сотрудников Калифорнийского университета во главе с упоминавшимся выше профессором Таунсом открыла новый тип исключительно ярких «сверхкомпактных» источников, излучающих радиолинию водяных паров на волне 1,35 см. Эта линия возникает при переходах между шестым и пятым вращательными уровнями основного электронно-колебательного состояния трехатомной молекулы Н2О. Как правило, эти источники наблюдаются там же, где и компактные источники ОН первого типа. Яркостная температура источников Н2О даже больше, чем у источников ОН, и достигает рекордного значения 1015 К! По-видимому, она выше, так как методами межконтинентальной радиоинтерферометрии для большинства этих источников определена лишь верхняя граница угловых размеров, которая в ряде случаев равна 0,0003 секунды дуги.

Существенной особенностью компактных источников «аномального» излучения в линиях Н2О является их переменность. За какие-нибудь несколько недель или даже дней меняются интенсивности отдельных «пиков» профиля, их ширины, поляризация и даже лучевые скорости «пиков». В отдельных случаях эти вариации проходят за гораздо более короткое время, например, за 5 минут. Уже из одного этого факта при некоторых простых предположениях следует вывод, что линейные размеры источников должны быть малы. Вряд ли они превосходят расстояние, которое свет проходит за время вариаций. Например, если последнее равно пяти минутам, верхняя граница размеров источников должна быть

Звезды: их рождение, жизнь и смерть
1013 см, что почти равно расстоянию от Земли до Солнца. Заметим в этой связи, что у ряда источников ОН также наблюдается переменность излучения, но она происходит значительно медленнее, чем у источников Н2О. Хотя координаты компактных источников Н2О в пределах секунды дуги совпадают с координатами компактных источников ОН, профили радиолиний 1,35 см и 18 см, как правило, не показывают детального совпадения отдельных «пиков». Так как тонкая структура источников Н2О имеет такой же вид, что и у источников ОН (т. е. очень маленькие конденсации, каждая из которых излучает отдельный спектральный пик, разбросанные по области размером в несколько секунд дуги), можно сделать вывод, что в одной и той же области порядка нескольких сотых парсека движутся как «облака», излучающие только линии Н2О, так и облака, излучающие только ОН. В отличие от линии ОН, линии Н2О неполяризованы.

Что же это за механизм излучения, который сочетает в себе, казалось бы, несочетаемые характеристики: необычно высокую яркостную температуру с низкой кинетической? Астрономам не пришлось такой механизм придумывать, К тому времени, когда были открыты линии «мистериума», физики уже свыше 10 лет пользовались квантовыми генераторами «когерентного» излучения — мазерами (в радиодиапазоне) и лазерами (в оптическом и ближнем инфракрасном диапазонах). Совершенно естественно, что довольно скоро после открытия удивительных ярких линий ОН было понято, что источники этих линий суть не что иное, как естественные космические мазеры. Основной особенностью всякого мазера является отсутствие в нем теплового равновесия между излучающими атомами (молекулами) и окружающей средой. Напомним, как работает обычный мазер. Для этого следует вспомнить основы теории излучения, заложенные Эйнштейном еще в 1915 г. Мы ограничим наше рассмотрение только излучением в отдельных спектральных линиях (хотя это вовсе не обязательно). Такое излучение возникает при переходах между «верхним» и «нижним» уровнями всякой атомной системы. Величайшая заслуга Эйнштейна состоит в том, что он показал, что существуют два типа таких переходов. Первый тип — это так называемые «спонтанные» или «самопроизвольные» переходы, когда атом без всякой внешней причины, так сказать, «сам по себе», переходит из более возбужденного состояния в менее возбужденное, излучая при этом квант. Это явление просто означает, что возбужденные состояния атомных систем нестабильны. Стабильным состоянием (т. е. таким состоянием, в котором атомная система может пребывать сколь угодно долго) может быть только «основное», «самое глубокое» состояние. Об этом подробно уже шла речь в § 2.

Однако находящийся на возбужденном («верхнем») уровне атом может совершить переход «вниз» не только спонтанно, но и под влиянием взаимодействующих с ним квантов поля излучения, в котором атомная система находится. Эти кванты должны иметь ту же энергию, что и кванты, излучаемые атомной системой при соответствующем переходе. Такой тип переходов называется «вынужденным» или «индуцированным». Существенно, что «индуцированный» квант распространяется в том же направлении, что и «индуцирующий». Обозначим концентрацию частиц на верхнем уровне через n2, а на нижнем n1. Тогда число сопровождающихся излучением квантов переходов в единице объема за единицу времени запишется так:

Звезды: их рождение, жизнь и смерть
(4.1)

где A21 — вероятность спонтанных переходов, u21 — плотность излучения на частоте рассматриваемой спектральной линии, B21 =

Звезды: их рождение, жизнь и смерть
A21, где h — постоянная Планка, c — скорость света,
Звезды: их рождение, жизнь и смерть
12 — частота линии.

Величины A21 и B21 называются «эйнштейновскими коэффициентами».

С другой стороны, атомы (молекулы), находящиеся на «нижнем» уровне будут поглощать кванты той же частоты и переходить на верхний уровень. Число таких переходов в единице объема за единицу времени будет равно

Звезды: их рождение, жизнь и смерть
(4.2)

где B12 = B21 (с точностью до некоторого множителя, который мы для упрощения выкладок будем считать равным единице). Процесс (4.2) описывает поглощение излучения при его прохождении через вещество. Если бы не было процессов излучения, описываемых формулой (4.1), то интенсивность излучения I

Звезды: их рождение, жизнь и смерть
после прохождения им слоя газа толщиною l уменьшилась бы по закону

Звезды: их рождение, жизнь и смерть
(4.3)

где I

Звезды: их рождение, жизнь и смерть
0 — интенсивность до прохождения слоя газа, а величина
Звезды: их рождение, жизнь и смерть
Звезды: их рождение, жизнь и смерть
, пропорциональная эйнштейновскому коэффициенту B12, называется коэффициентом поглощения. Учет индуцированных переходов, очевидно, уменьшает коэффициент поглощения, ибо переходы приводят к появлению новых квантов, распространяющихся в том же направлении, что и падающие на вещество. В результате этого коэффициент поглощения изменяется:

Звезды: их рождение, жизнь и смерть
(4.4)

При тепловом равновесии отношение n2/n1 описывается известной формулой Больцмана

Звезды: их рождение, жизнь и смерть
(4.5)

Как видим, при любой температуре это отношение всегда меньше единицы. В этом случае учет индуцированных переходов приводит лишь к уменьшению коэффициента поглощения. Этот эффект особенно силен на низких частотах радиодиапазона. Например, из-за индуцированных переходов коэффициент поглощения межзвездного водорода для линии 21 см уменьшается в сотни раз!

Однако при отсутствии теплового равновесия между излучением и средой может возникнуть такая ситуация, при которой n2 > n1. В этом случае коэффициент поглощения становится отрицательным (см. формулу (4.4)). Тогда наступает удивительное явление: излучение, проходя через среду, вместо того, чтобы уменьшать свою интенсивность (как это всегда наблюдается в житейской практике), становится более интенсивным. Это можно понять как «лавинообразное» увеличение числа фотонов по мере их прохождения через такую среду: число индуцированных квантов стремительно нарастает и этот процесс «перекрывает» неизбежные процессы поглощения. Среда, обладающая такими необычными свойствами, называется «активированной». Формально, на основании формулы Больцмана, мы можем такой среде приписать отрицательную температуру.

«Сама по себе», т. е. по причине только «равновесных», тепловых процессов, отрицательная температура в среде никогда не возникнет. Для того чтобы это произошло, т. е. чтобы среда «активировалась», необходимо, чтобы действовали какие-то неравновесные процессы, приводящие к аномально высокому возбуждению «верхнего» уровня атомной системы. Такие процессы носят образное название «накачки». Накачка, например, может осуществиться путем облучения вещества мощным потоком монохроматического излучения, переводящим атомную систему из «нижнего» уровня на некоторый третий уровень, более высокий, чем второй. Частота такого излучения, конечно, больше, чем

Звезды: их рождение, жизнь и смерть
12. При переходах атомной системы с третьего уровня «вниз» может реализоваться избыточная «населенность» второго уровня. Такая накачка искусственно переводит атомную систему с «первого» уровня на «второй», тем самым создавая в ней «отрицательную» температуру. Излишне говорить, что как только накачка прекратит свое действие, все «станет на свое место», температура будет положительной и никакого усиления излучения на частоте
Звезды: их рождение, жизнь и смерть
12 не будет. Описанный прием «активации» среды очень часто применяется в практике работы с лабораторными мазерами и лазерами, однако он не является единственно возможным. Например, все большее значение приобретает так называемая «химическая» накачка. Суть ее состоит в том, что при разного рода химических процессах между атомами и молекулами могут образовываться частицы «рабочего вещества» (т. е. молекул или атомов, которые осуществляют мазерное усиление спектральной линии) преимущественно во втором (т. е. возбужденном) состоянии.

Мазерное излучение в высокой степени когерентно, так как между индуцирующими и индуцируемыми квантами существуют правильные фазовые отношения. Оно может обеспечить почти стопроцентную поляризацию, если «активированная» среда усиливает только излучение определенного вида поляризации. Мазерное излучение может обладать весьма острой направленностью, недостижимой ни в каких прожекторных устройствах. Это достигается тем, что можно усиливать только излучение, идущее в строго определенном направлении. С другой стороны, в принципе, можно изготовить почти «изотропные» мазеры.

Если бы на газ, являющийся «рабочим веществом» мазера, действовала только «накачка», в нем установилась бы некоторая «отрицательная температура», или, говоря проще, концентрация молекул на «верхнем» уровне была бы на величину

Звезды: их рождение, жизнь и смерть
n = n2 - n1 больше, чем на нижнем. Но в реальном газе действуют процессы, стремящиеся уменьшить эту «избыточную» населенность возбужденного уровня. К числу таких процессов прежде всего относятся столкновения между молекулами, стремящиеся установить больцмановское распределение между обоими уровнями, описываемое формулой (4.2). А при таком распределении «населенность» «второго» уровня всегда будет меньше, чем первого. Другим процессом, уменьшающим «избыточную» населенность более высокого уровня, является индуцированное излучение и поглощение. Если плотность излучения достаточно велика, то, как следует из формул (4.1) и (4.2), баланс между этими процессами приведет к равенству населенностей обоих уровней. Итак, в реальном газе как бы «противоборствуют» друг с другом две тенденции: накачка стремится установить некоторую определенную избыточную населенность высшего уровня, в то время как столкновения и индуцированные процессы стремятся ее выровнять. От соотношения между этими двумя тенденциями зависят условия работы реальных мазеров.

Рассмотрим эти условия с количественной стороны. Пусть некоторый процесс накачки при отсутствии «конкурирующих» процессов столкновений и индуцированного излучения и поглощения создает «избыточную» населенность «верхнего уровня»

Звезды: их рождение, жизнь и смерть
n0. С учетом «конкурирующих» процессов избыточная населенность будет равна

Звезды: их рождение, жизнь и смерть
(4.6)

где Wс, Wи и Wн — рассчитанные на одну молекулу вероятности столкновений, индуцированных процессов и накачки. Например, Wн дает для одной молекулы число актов возбуждения накачкой «второго» уровня за одну секунду. Wн =

Звезды: их рождение, жизнь и смерть
B12I, где
Звезды: их рождение, жизнь и смерть
 — телесный угол мазерного пучка.

Рассмотрим сначала случай, когда Wн

Звезды: их рождение, жизнь и смерть
Wс + Wи т. е. поле излучения квантов с частотой
Звезды: их рождение, жизнь и смерть
12 имеет сравнительно малую плотность. В этом случае, как показывают расчеты, интенсивность, выходящая из «активированного» слоя газа, будет равна

Звезды: их рождение, жизнь и смерть
(4.7)

где, как и прежде, I означает протяженность слоя газа, в котором происходит мазерное усиление,

Звезды: их рождение, жизнь и смерть
Звезды: их рождение, жизнь и смерть
=
Звезды: их рождение, жизнь и смерть
 — энергия излучения единицы объема в единичном телесном угле в единичном интервале частот за единицу времени, обусловленная спонтанными переходами,
Звезды: их рождение, жизнь и смерть
Звезды: их рождение, жизнь и смерть
D — ширина усиливаемой линии, выраженная в единицах частоты (с-1 или Гц), I
Звезды: их рождение, жизнь и смерть
0 — интенсивность излучения до его прохождения через «активированный» газ,
Звезды: их рождение, жизнь и смерть
Звезды: их рождение, жизнь и смерть
=
Звезды: их рождение, жизнь и смерть
Звезды: их рождение, жизнь и смерть
Звезды: их рождение, жизнь и смерть
e-
Звезды: их рождение, жизнь и смерть
2  — коэффициент «отрицательного поглощения». Из формулы (4.7) следует, что работающий при таких условиях мазер (он называется «ненасыщенным») экспоненциально, т. е. очень «круто», усиливает излучение «подложки», падающее на его заднюю стенку, и «собственное» спонтанное излучение в линии
Звезды: их рождение, жизнь и смерть
12, возникающее в толще газа. Так как коэффициент поглощения
Звезды: их рождение, жизнь и смерть
Звезды: их рождение, жизнь и смерть
очень резко зависит от частоты (в пределах ширины линии), то. в силу экспоненциального характера усиления наиболее сильно будет усиливаться самая центральная часть линии, в результате чего ширина линии становится меньше раз в 5—6.

Если толщина газового слоя l достаточно велика, то интенсивность излучения становится настолько значительной, что индуцированные процессы начинают менять избыточную населенность второго уровня, что приводит к изменениям характера работы мазера и, прежде всего, его усиления. При Wн

Звезды: их рождение, жизнь и смерть
Wи и Wи
Звезды: их рождение, жизнь и смерть
Wс, мы будем иметь уже насыщенный мазер. В этом случае, как показывают простые расчеты,

Звезды: их рождение, жизнь и смерть
(4.8)

Из этой формулы следует, что интенсивность излучения на выходе насыщенного мазера складывается из излучения «подложки» (которое не усиливается), индуцированного излучения и спонтанного излучения. Во всех представляющих практический интерес случаях второй член в формуле (4.8) значительно превосходит остальные. Он имеет весьма простой смысл: интенсивность мазерного излучения определяется только мощностью механизма накачки. Количество выходящих из мазера квантов усиливаемой радиации не превосходит количества актов накачки во всем объеме мазера. Если накачка осуществляется путем поглощения «рабочими» молекулами более высокочастотных квантов, то можно утверждать, что для насыщенного мазера количество «мазерных» квантов меньше квантов накачки (все эти величины относятся к единице времени).

Вариации интенсивности ненасыщенного мазера легко объясняются вариациями интенсивности «подложки», которой пропорциональна усиливаемая интенсивность (см. формулу (4.7)). В случае насыщенного мазера вариации интенсивности зависят только от его внутренних свойств, например, мощности, накачки, длины и пр. Интенсивность насыщенного мазера растет с ростом l по линейному закону, т. е. гораздо медленнее, чем у ненасыщенного. В насыщенном мазере спектральная ширина линий не уменьшается. Заметим, однако, что в начале усиления, т. е. при сравнительно малом l, каждый мазер является ненасыщенным. Поэтому на выходе насыщенного мазера ширина спектральной линии все-таки значительно уменьшается.

Как уже говорилось выше, мазеры могут быть как остронаправленными, так и более или менее изотропными. В последнем случае наблюдаемые угловые размеры источника излучения оказываются значительно меньше угловых размеров объема, где происходит усиление. Особенно велик этот эффект для насыщенных мазеров, где в видимом центре шарообразного газового объема будет наблюдаться горячее пятно, диаметр которого в десятки раз меньше диаметра облака. Образно можно представить себе излучение такого сферического мазера в виде своеобразного «ежика» (рис. 4.3, а) в отличие от «обыкновенного» излучателя, схематически представленного на рис. 4.3, б). Если усиливающая излучение область имеет цилиндрическую форму, то излучение будет выходить преимущественно из торцов цилиндра, т. е. оно будет достаточно направленным.

 


Звезды: их рождение, жизнь и смерть
Рис. 4.3: Схема, иллюстрирующая излучение изотропного мазера («ежик»).
 

Все свойства компактных, чрезвычайно ярких радиоисточников, излучающих в линиях ОН и Н2О, говорят о том, что радиоастрономы обнаружили естественные космические мазеры. Как уже говорилось выше, поток радиоизлучения от этих источников необычно велик. Например, на волне 1,35 см (линия Н2О) поток от источника, известного под названием W 49, достигает 10 000 единиц спектральной плотности потока[ 15 ]. Это — огромная величина. Никакие другие источники космического радиоизлучения, находящиеся за пределами Солнечной системы, не посылают к нам на этом диапазоне таких потоков. Даже Луна, расположенная в самой непосредственной близости к Земле, посылает нам в этом диапазоне поток, который, рассчитанный на единицу частоты, всего лишь примерно в 30 раз больше. Заметим в этой связи, что источник W 49 весьма от нас удален. Расстояние до него около 14 000 пс, т. е. он находится в совершенно другой части Галактики. Это расстояние в тысячу миллиардов раз больше, чем расстояние от Земли до Луны, а ведь потоки излучения обратно пропорциональны квадрату расстояния до источника. Мощность излучения W 49 в линии водяных паров порядка 1031 эрг/с, т. е. всего лишь в несколько сотен раз меньше болометрической светимости Солнца. Для радиодиапазона, тем более в одной узкой спектральной линии, это непомерно большая величина.

Сделаем теперь оценку физических характеристик источников мазерного излучения I типа. Из измеренных угловых размеров излучающих областей (10-2—10-3 секунды дуги) в сочетании с известными расстояниями до зон Н II, в которых эти источники находятся, следует, что линейные размеры космических мазеров l

Звезды: их рождение, жизнь и смерть
1014 см — всего лишь на порядок больше радиуса орбиты Земли. Для того чтобы яркостная температура была 1013—1015 К, нужно, чтобы излучение увеличило свою интенсивность в 1012—1014 раз. Напомним, что в радиочастотном диапазоне интенсивность пропорциональна яркостной температуре (формула Рэлея—Джинса!). Для нашей грубой оценки будем считать мазер ненасыщенным. Тогда из формулы (4.7) следует, что

Звезды: их рождение, жизнь и смерть

откуда

Звезды: их рождение, жизнь и смерть
Звезды: их рождение, жизнь и смерть
l
Звезды: их рождение, жизнь и смерть
30. В выражение для коэффициента отрицательного поглощения
Звезды: их рождение, жизнь и смерть
Звезды: их рождение, жизнь и смерть
12
Звезды: их рождение, жизнь и смерть
Звезды: их рождение, жизнь и смерть
Звезды: их рождение, жизнь и смерть
входит эйнштейновский коэффициент A21, который в нашем случае равен
Звезды: их рождение, жизнь и смерть
10-11 с-1. Величина
Звезды: их рождение, жизнь и смерть
Звезды: их рождение, жизнь и смерть
D
Звезды: их рождение, жизнь и смерть
103 с-1, откуда
Звезды: их рождение, жизнь и смерть
n
Звезды: их рождение, жизнь и смерть
1 см-3. Примем, что
Звезды: их рождение, жизнь и смерть
n/n
Звезды: их рождение, жизнь и смерть
0,1. Тогда концентрация молекул гидроксила n
Звезды: их рождение, жизнь и смерть
10 см-3, что в сотни миллионов раз больше, чем в «нормальных» облаках межзвездного газа (см. § 2). Для насыщенного мазера (что более вероятно) величина n получается значительно больше. Полная концентрация всех атомов и молекул в области мазерного излучения должна быть по меньшей мере 106—107 см-3. Отсюда следует, что эти области никак уже нельзя рассматривать как плотные облака межзвездной среды. Скорее это похоже на разреженные атмосферы звезд-гигантов, да и линейные размеры у них одного порядка. С учетом того, что мазерный эффект уменьшает ширины линий в несколько раз, кинетическая температура среды, в которой усиливается излучение, вряд ли превосходит 2—3 тысячи кельвинов. Скорее она даже меньше. Таким образом, по своим физическим свойствам области мазерного излучения напоминают протяженные атмосферы холодных гигантских звезд.

Потоки мазерного излучения от наиболее ярких источников настолько велики, что они могли бы быть, в принципе, обнаружены даже при той чувствительности радиотелескопов, которая была в 1950—1955 гг. Для этого надо было знать «только» частоту этого излучения и упорно искать источники. Но сами мазеры были изобретены на Земле лишь в 1954 г... Об этом стоит подумать, когда говорят о роли астрономии для практики и о взаимосвязи «чистых» и «прикладных» наук... Сейчас, когда мазеры и лазеры стали могучим орудием переживаемой нами в настоящее время научно-технической революции, мы уже не удивляемся, что в естественной космической среде, при отсутствии теплового равновесия между излучением и веществом, могут реализовываться условия, приводящие к мазерным эффектам. Проблема состоит в том, чтобы понять, каким образом эти условия возникают и прежде всего — какой механизм «накачки» действует в космических мазерах?

Естественнее всего считать, что механизм накачки космических мазеров, работающих на линиях ОН и Н2О, является «радиационным». Особенно это относится к молекулам гидроксила, имеющим богатейший инфракрасный и ультрафиолетовый спектры. Можно полагать, что при отсутствии термодинамического равновесия в сравнительной близости от «сторонних» источников инфракрасного или ультрафиолетового излучения поглощение этого излучения в различных линиях и последующие «каскадные» переходы на нижележащие уровни в конечном счете могут привести к аномально высокой населенности возбужденных уровней этих молекул. Первая гипотеза о природе накачки исходила из представления, что накачка «верхнего» уровня лямбда-удвоения основного вращательного уровня молекулы ОН происходит при поглощении ультрафиолетовых квантов, соответствующих резонансному электронному переходу у этой молекулы. В этом случае длина волны излучения накачки 3080 Е.

Основанием для этой гипотезы было то, что первоначально открытые источники аномального излучения, относящиеся к первому типу, находились в областях H II, внутри которых, как известно, находятся горячие О—В-звезды (см. § 2). Можно было полагать, что излучение этих звезд в ближней ультрафиолетовой области достаточно мощно, чтобы обеспечить необходимую накачку. Увы, эти ожидания не оправдались!

Дело в том, что есть все основания полагать, что мазеры от ярких космических источников ОН (так же, как и Н2О) насыщенны. Это следует из спектрального профиля отдельных «пиков», который во всех исследовавшихся случаях является гауссовым (т. е. уменьшение интенсивности по мере удаления от центра пика следует закону I ~ e-(

Звезды: их рождение, жизнь и смерть
Звезды: их рождение, жизнь и смерть
Звезды: их рождение, жизнь и смерть
)2, где
Звезды: их рождение, жизнь и смерть
Звезды: их рождение, жизнь и смерть
 — расстояние от центра «пика»). Гауссов профиль является необходимым атрибутом линий насыщенного мазера. Если же мазер ненасыщенный, то интенсивность будет спадать с ростом
Звезды: их рождение, жизнь и смерть
Звезды: их рождение, жизнь и смерть
по другому закону. Коль скоро наш мазер насыщенный, можно утверждать, что число квантов накачки должно быть никак не меньше, чем число мазерных радиоквантов, излучаемых источником. Следует, однако, помнить, что каждый ультрафиолетовый квант накачки имеет энергию в
Звезды: их рождение, жизнь и смерть
Звезды: их рождение, жизнь и смерть
6
Звезды: их рождение, жизнь и смерть
105 раз большую, чем радиоквант. С другой стороны, только очень узкая полоска непрерывного спектра горячих звезд идет на накачку. Отсюда, например, следует, что в мощнейшем источнике мазерного излучения W 49 для обеспечения нужной накачки должно находиться около 1000 звезд спектрального класса О. Между тем для поддержания оптического излучения этого источника требуется не больше 10 таких горячих звезд!

Наш расчет получен в предположении, что излучение космических мазеров обладает малой направленностью, т. е. телесный угол

Звезды: их рождение, жизнь и смерть
близок к единице. Конечно, делая
Звезды: их рождение, жизнь и смерть
достаточно малым, например,
Звезды: их рождение, жизнь и смерть
1/100, мы можем описанную выше энергетическую трудность снять. Но тогда мы неизбежно столкнемся с другой трудностью: если
Звезды: их рождение, жизнь и смерть
Звезды: их рождение, жизнь и смерть
1, то должно быть по крайней мере в сотни раз большее количество источников мазерного излучения, чьи «лучи» направлены мимо нас. Это потребует непомерно большого количества горячих звезд в Галактике, чего заведомо не наблюдается. Другим недостатком такого механизма накачки является сильное поглощение ультрафиолетового излучения космической пылью, в большом количестве находящейся в источниках космического мазерного излучения. Итак, механизм накачки ультрафиолетовым излучением находящихся поблизости от источников ОН горячих звезд оказался несостоятельным.

Вскоре после открытия источников мазерного излучения на линиях ОН автор этой книги в 1966 г. высказал гипотезу, что накачка может осуществляться инфракрасными квантами вращательно-колебательного спектра ОН. Источником такого инфракрасного излучения накачки могут быть звездообразные объекты, имеющие высокую светимость в длинноволновой спектральной области, т. е. сочетающие сравнительно низкую температуру поверхности и огромные линейные размеры. Вполне естественно было предположить, что такими инфракрасными объектами могут быть протозвезды. Действительно, уже на стадии свободного падения протозвезды должны быть мощными источниками инфракрасного излучения. На последующей стадии гравитационного сжатия (так называемая «стадия Хаяши» — см. § 5) протозвезды также должны быть источниками мощного инфракрасного излучения, так как их поверхностные температуры в течение довольно длительного времени поддерживаются на постоянном уровне, близком к 3500 К. Заметим, что в 1966 г. были известны только источники ОН, отождествляемые с зонами Н II, в которых имеются молодые звезды, входящие в ассоциации, и где, как можно полагать, процесс звездообразования продолжается «на наших глазах» либо недавно кончился. Итак, нами была высказана гипотеза, что мазерные источники ОН связаны с рождением звезд, а механизмом накачки является инфракрасное излучение протозвезд.

Эта гипотеза сразу же привлекла к себе внимание и в последующие годы интенсивно разрабатывалась рядом авторов. Одновременно шел быстрый процесс накопления наблюдательного материала, приведший к выяснению структуры источников, их отождествлению с другими объектами и классификации на три группы. Говоря о накачке инфракрасными квантами, следует иметь в виду два совершенно различных процесса. Во-первых, накачка может осуществляться квантами близкой инфракрасной области с длиной волны 2,8 мкм. Такие кванты возбуждают высшие колебательные уровни молекул ОН, переходы с которых «вниз» могут создать «избыточную» населенность исходного для излучения линии 18 см уровня. Во-вторых, накачка может осуществляться «далекими» инфракрасными квантами с длинами волн

Звезды: их рождение, жизнь и смерть
120 и
Звезды: их рождение, жизнь и смерть
80 мкм, возбуждающими вращательные уровни ОН. Развитие теории потребовало значительного усложнения картины накачки. В частности, при расчете накачки «далекими» инфракрасными «вращательными» квантами потребовалось рассмотрение процессов многократного рассеяния таких квантов в среде, где находятся молекулы ОН. Тщательные вычисления показали, что одни лишь «вращательные» кванты могут обеспечить мазерный эффект только для компонент лямбда-удвоения с частотами 1612 и 1720 МГц. Таким образом, они не могут обеспечить избыточную населенность для исходных уровней основных компонент линии 18 см — 1665 и 1667 МГц, которые как раз характерны для источников первого типа. Однако и результат для линии 1612 МГц представляет большой интерес. Учет одновременного присутствия большого количества квантов в «близкой» инфракрасной области при достаточно высокой кинетической температуре среды ( 2000 К) дополнительно даст сравнительно небольшую избыточную населенность и для «верхних» уровней линий 1665 и 1667 МГц. Следовательно, при таких условиях можно ожидать очень яркую линию 1612 МГц и значительно более слабые линии 1665 и 1667 МГц, между тем как линия 1720 МГц должна быть в поглощении. Но как раз это и наблюдается для источников излучения ОН II типа, отождествляемых с инфракрасными звездами!

Лучше всего исследован источник этого типа, отождествляемый с незадолго до этого открытой инфракрасной звездой NML Лебедя. Эта звезда находится сравнительно близко от Солнца. Подобные объекты представляют собой красные гигантские звезды «позднего» спектрального класса М с очень большим избытком инфракрасного излучения в диапазоне 2—5 мкм. Указанный инфракрасный избыток объясняется плотной пылевой оболочкой, окружающей эти звезды. Такая оболочка поглощает излучение своей «центральной» звезды, нагревается до температуры 600—800 К и переизлучает его в инфракрасную область. Наряду с мазерным излучением в линии 1612 МГц эти звезды излучают также мазерное излучение в линии паров воды 1,35 см. У звезд такого типа наблюдается несколько компонент линии 1612 МГц, немного отличающихся по частоте. Обычно эти компоненты образуют в каждой звезде две группы, причем спектральное расстояние между этими группами соответствует разнице «доплеровских» скоростей в несколько десятков километров. Эти группы называются «красная» (с большей лучевой скоростью) и «синяя». Скорее всего, наличие этих двух групп линий связано с вращением звезды. Очень возможно, что объекты типа NML Лебедя представляют собой не звезды, а протозвезды, хотя это пока еще не доказано. Вообще, проблема далеко не так проста. Дело осложняется еще и тем, что некоторые красные сверхгиганты с неправильно сильно меняющимся блеском типа знаменитой звезды «Мира Кита» также обнаруживают мазерные линии излучения 1612 МГц (ОН) (довольно умеренной интенсивности) и линию водяного пара 1,35 см. В инфракрасном спектре поглощения у этих звезд обнаружены линии водяного пара. Но звезды типа Миры Кита заведомо не являются молодыми, что следует хотя бы из их пространственного распределения.

Этот пример показывает, что излучение мазерных линий может и не быть связанным с процессами звездообразования. Поэтому очень актуальной задачей современной астрономии является выяснение возраста объектов типа NML Лебедя.

Источники мазерного излучения ОН третьего типа, в которых усиливается линия 1720 МГц, скорее всего генетически связаны с расширяющимися туманностями — остатками вспышек сверхновых звезд (см. часть III). Следует, впрочем, заметить, что мазерные источники «III типа» пока еще очень плохо исследованы. По-видимому, за фронтом ударной волны, вызываемой в межзвездной среде взрывом сверхновой (см. § 16), образуется плотный, довольно холодный газ с большим содержанием молекул.

Но вернемся к источникам ОН и Н2О первого типа, находящимся в зонах Н II. Ведь именно эти источники скорее всего связаны с процессом звездообразования. Следует заметить, что в непосредственной близости от таких источников наблюдаются как «точечные» (т. е. «звездообразные»), так и протяженные инфракрасные источники. Следовательно, возможность накачки инфракрасными квантами пока исключить нельзя. Тем не менее в последнее время для таких мазерных источников все большее предпочтение исследователи оказывают химическим механизмам накачки.

Выше были получены (правда, весьма грубо) самые общие физические характеристики мазерных источников. Напомним, что эти источники должны представлять собой довольно плотные газовые облака, кинетическая температура которых может быть 1—2 тысячи градусов, а размеры близки к размерам красных сверхгигантов. Протяженность областей мазерного усиления для самых ярких источников в линии Н2О, следующая из наблюдаемых 5-минутных вариаций потока, вряд ли превышает «астрономическую единицу» — расстояние от Земли до Солнца, равное 1,5

Звезды: их рождение, жизнь и смерть
1013 см. Тогда из теории насыщенного мазера (см. формулу (4.8), где Wн
Звезды: их рождение, жизнь и смерть
1 с-1) следует, что концентрация «рабочих молекул» воды должна быть
Звезды: их рождение, жизнь и смерть
106 см-3, а полная концентрация всех молекул (преимущественно Н2) должна быть
Звезды: их рождение, жизнь и смерть
1010 см-3. При такой высокой плотности весьма велика вероятность столкновения между частицами. Например, обычная «газо-кинетическая» частота столкновений Wс
Звезды: их рождение, жизнь и смерть
nH2
Звезды: их рождение, жизнь и смерть
Звезды: их рождение, жизнь и смерть
Звезды: их рождение, жизнь и смерть
V
Звезды: их рождение, жизнь и смерть
1 с-1, где
Звезды: их рождение, жизнь и смерть
Звезды: их рождение, жизнь и смерть
10-15 см2 — поперечное сечение молекулы, V
Звезды: их рождение, жизнь и смерть
105 см/с — ее скорость (при оценке величины n мы приняли Wн
Звезды: их рождение, жизнь и смерть
Wс). Среди столкновений будут и такие, которые сопровождаются образованием возбужденных молекул ОН. В результате такого «химического возбуждения» может возникнуть избыточная населенность исходных для излучения радиолиний ОН и Н2О уровней.

Следует заметить, что эта проблема кинетики химических реакций довольно сложна и окончательного решения вопроса о возможности химической накачки космических мазеров пока еще нет. Разными авторами рассчитывались различные реакции, которые, по идее, могли бы обеспечить химическую накачку космических мазеров. Укажем, например, на такие реакции:

Звезды: их рождение, жизнь и смерть
(4.9)

Значок «звездочка» означает возбужденное состояние молекулы. Некоторые из предложенных реакций являются экзотермическими (например, реакция образования воды ОН + Н2

Звезды: их рождение, жизнь и смерть
Н2О + Н + 0,69 эВ). Сравнительно высокая кинетическая температура газа поэтому является благоприятным фактором. Очень перспективно образование возбужденных молекул ОН и Н2О на фронте ударной волны. Такие волны следует ожидать в протозвездах на самых поздних фазах стадии свободного падения, а также в «старых» остатках сверхновых (см. ниже). Возбужденные молекулы ОН могут образовываться также при столкновении молекул воды со сравнительно энергичными атомами или ионами водорода:

Звезды: их рождение, жизнь и смерть
(4.10)

Для этого механизма накачки большой трудностью является вопрос: откуда берутся такие энергичные атомы или ионы атомарного водорода? Возможно, что и в этом случае ударные волны могут «спасти положение». Наконец, не следует забывать о наличии большого количества пылинок в области генерации мазерного излучения. Пылинки могут быть катализаторами химических реакций, приводящих к образованию возбужденных молекул ОН и Н2О. Кроме того, сравнительно быстрые протоны, которые могут образовываться на фронтах ударных волн, будут просто «выбивать» возбужденные молекулы ОН из поверхностного слоя «ледяных» пылинок, вернее,— кристалликов льда.

Мы видим, что проблема накачки космических мазеров первого типа может быть и, по-видимому, является труднейшей проблемой современной «астрохимии». Можно, однако, надеяться, что она будет решена в близком будущем.

В заключение этого параграфа мы резюмируем аргументы в пользу связи источников мазерного излучения радиолиний ОН и Н2О с областями, где происходит процесс звездообразования.

1. Многие, хотя и не все, мазерные источники связаны с яркими зонами H II. Эти области межзвездной среды возбуждаются к свечению очень горячими массивными звездами спектральных классов О и В, которые, как будет показано ниже, являются молодыми объектами. Вместе с тем нужно подчеркнуть, что далеко не во всех зонах H II наблюдаются мазерные источники. В этой связи следует заметить, что возраст различных зон H II меняется в довольно широких пределах — от нескольких десятков тысяч до нескольких миллионов лет. Похоже на то, что мазерные источники ОН и Н2О группируются преимущественно в молодых зонах Н II. Хорошим примером «молодой» зоны Н II является известная туманность Ориона.

2. Вскоре после открытия космических мазеров в зонах Н II, где они наблюдаются, были обнаружены до тех пор неизвестные радиоисточники нового типа. Их спектр оказался по своему характеру тепловым, а угловые размеры очень малыми — порядка нескольких секунд дуги. Стало ясно, что излучают малые, довольно плотные облака плазмы, нагретые до температуры около 10 000 К. То, что эти источники по своей природе являются тепловыми, наглядно доказывается наличием в их спектре рекомбинационных радиолиний водорода (см. § 2). Описанные источники получили название «компактных H II областей». Линейные размеры этих образований порядка 0,1 парсека, а концентрация электронов в них

Звезды: их рождение, жизнь и смерть
104—105 см-3, т. е. в сотни раз больше среднего значения для ярких H II областей. Компактные H II области ионизованы и излучают только потому, что внутри них должна находиться горячая О—В звезда. Но такие звезды там не наблюдаются, так же как не наблюдаются и сами компактные H II области в оптических лучах. Вывод отсюда только один: там имеется огромная толща поглощающей свет пыли. С другой стороны, плотность окружающей среды, как правило, ниже, чем внутри компактной H II зоны, где температура в сотню раз выше. Следовательно, внешнее давление никак не может остановить расширение компактной зоны Н II и последующее ее рассеяние за время порядка нескольких десятков тысяч лет. Значит, компактные Н II зоны и находящиеся внутри них горячие массивные звезды представляют собой «ультрамолодые» объекты: они образовались «на памяти» кроманьонского человека! Откуда же взялся там газ, масса которого порядка нескольких солнечных масс или даже больше? Все говорит о том, что этот газ — «остаток» диффузной среды, из которой образовалась звезда. Там очень много пыли, делающей такой объект совершенно непрозрачным для оптических лучей. Поэтому находящиеся внутри компактных H II областей звезды получили образное название «звезды-коконы». Исключительный интерес представляет то обстоятельство, что очень многие мазерные источники ОН и Н2О, принадлежащие к первому типу, в пределах ошибок наблюдений (которые очень малы, порядка секунды дуги) совпадают с компактными Н II областями. Тесная ассоциация мазерных источников первого типа с компактными H II областями, несомненно, доказывает их молодость и прямую связь с процессом звездообразования (см. § 5).

3. Многие мазерные источники первого типа отождествляются с «точечными» инфракрасными источниками. В данном случае слово «точечные» означает, что их угловые размеры меньше 2

Звезды: их рождение, жизнь и смерть
Звезды: их рождение, жизнь и смерть
. Такие инфракрасные объекты наблюдаются, в частности, в туманностях Ориона, W 3 и W 49, где находятся самые яркие мазерные источники. Тщательные исследования типичного «точечного» инфракрасного источника в туманности Ориона (он там находится рядом с источником длинноволнового инфракрасного излучения с угловым диаметром около 30
Звезды: их рождение, жизнь и смерть
, о котором речь шла выше) показали, что его никак нельзя рассматривать как «нормальную» звезду высокой светимости, погруженную в плотное пылевое облако. Вычисленный по его излучению диаметр точечного источника в Орионе равен 50 астрономическим единицам, в то время как в W 3 он около 600. Температура излучающего плотного газово-пылевого облака, которым является такой источник, равна соответственно 550 и 350 кельвинов. Полная светимость таких объектов в тысячи раз превышает светимость Солнца. Таким образом, вся совокупность наблюдений говорит о том, что эти объекты являются не чем иным, как протозвездными оболочками. Более подробно об этом будет говориться в § 5.

Итак, мы можем теперь с полным основанием сказать, что образовавшиеся из диффузной межзвездной среды протозвезды как бы «громко кричат», используя для этого новейшую технику квантовой радиофизики... Что касается «первых шагов» новорожденных звезд, то об этом будет разговор в следующем параграфе.

Глава 5 Эволюция протозвезд и протозвездных оболочек

В § 3 мы довольно подробно рассматривали вопрос о конденсации в протозвезды плотных холодных молекулярных облаков, на которые из-за гравитационной неустойчивости распадается газово-пылевой комплекс межзвездной среды. Здесь важно еще раз подчеркнуть, что этот процесс является закономерным, т. е. неизбежным. В самом деле, тепловая неустойчивость межзвездной среды, о которой шла речь в § 2, неизбежно ведет к ее фрагментации, т. е. к разделению на отдельные, сравнительно плотные облака и межоблачную среду. Однако собственная сила тяжести не может сжать облака — для этого они недостаточно плотны и велики. Но тут «вступает в игру» либо ударная волна, сжимающая межзвездную среду в спиральном рукаве (см. § 2), либо межзвездное магнитное поле и характерная для него неустойчивость Рэлея — Тэйлора. В системе силовых линий этого поля неизбежно образуются довольно глубокие «ямы», куда «стекаются» облака межзвездной среды (см. § 3). Это приводит к образованию огромных газово-пылевых комплексов. В таких комплексах образуется слой холодного газа, так как ионизующее межзвездный углерод ультрафиолетовое излучение звезд сильно поглощается находящейся в плотном комплексе космической пылью, а нейтральные атомы углерода сильно охлаждают межзвездный газ и «термостатируют» его при очень низкой температуре — порядка 5—10 кельвинов. Так как в холодном слое давление газа равно внешнему давлению окружающего более нагретого газа, то плотность в этом слое значительно выше и достигает нескольких тысяч атомов Н и молекул Н2 на кубический сантиметр. Под влиянием собственной гравитации холодный слой, после того как он достигнет толщины около одного парсека, начнет «фрагментировать» на отдельные, еще более плотные сгустки, которые под воздействием собственной гравитации будут продолжать сжиматься. Таким вполне естественным образом в межзвездной среде возникают ассоциации протозвезд. Каждая такая протозвезда эволюционирует со скоростью, зависящей от ее массы.

В § 3 мы уже рассматривали самую раннюю фазу эволюции протозвезды — фазу «свободного падения». Эта фаза кончается после того, как благодаря возросшей плотности протозвезда (которая до этого сжималась при более или менее постоянной температуре) станет непрозрачной к собственному инфракрасному излучению. После этого температура ее центральных областей начнет быстро расти. Таким образом, возникает большая разность температур между наружными и внутренними слоями. По этой причине освобождающаяся при сжатии гравитационная энергия должна каким-то образом «транспортироваться» наружу.

Дальнейшая эволюция протозвезды была теоретически рассчитана японским астрофизиком Хаяши, который первым обратил внимание на то, что транспорт энергии в сжимающейся протозвезде должен осуществляться путем конвекции (а не лучеиспусканием, как полагали астрономы до 1961 г., когда были опубликованы исследования Хаяши). Как будет рассказано в § 7, конвекция развивается тогда, когда другие возможности переноса вырабатываемой в недрах звезд энергии ограничены. В самых наружных, «фотосферных» слоях протозвезды механическая энергия бурных конвективных движений, которыми охвачен весь ее объем, должна трансформироваться в энергию излучения, уходящую в мировое пространство. В миниатюрном масштабе такая картина наблюдается в наружных слоях солнечной атмосферы — так называемой «хромосфере», сравнительно высокая температура которой поддерживается механической энергией волн от конвективных потоков, идущих из подфотосферных слоев Солнца. Но у нашего светила конвекцией охвачены только наружные слои. Гораздо более близкими к условиям в протозвезде являются условия в красных гигантах, большая часть объема которых до самой поверхности охвачена бурной конвекцией (см. рис. 11.3).

Температура, при которой энергия конвективных потоков переходит в энергию излучения, определяется многочисленными причинами, например, химическим составом и пр. Чисто эмпирически можно принять, что в поверхностных слоях протозвезды баланс между притоком механической энергии конвекции и излучением устанавливает температуру, близкую к температуре фотосфер красных гигантов, т. е.

Звезды: их рождение, жизнь и смерть
3500 К. Более точные расчеты дают для температуры наружных слоев протозвезд несколько меньшее значение,
Звезды: их рождение, жизнь и смерть
2500 К. Любопытно, что эти же расчеты приводят к зависимости температуры поверхности протозвезды от ее массы M и светимости L в виде

Звезды: их рождение, жизнь и смерть
(5.1)

т. е. эта температура практически совсем не зависит от светимости протозвезды и очень слабо — от ее массы. Итак, температура на поверхности охваченной конвекцией протозвезды на протяжении всей «стадии Хаяши» ее эволюции остается почти постоянной. Так как при этом ее радиус все время уменьшается (ибо она под влиянием собственной гравитации продолжает сжиматься), светимость протозвезды на этой стадии будет непрерывно уменьшаться. Максимальная светимость будет иметь место в течение сравнительно короткого времени, когда во всем объеме протозвезды установится конвекция. Для грубой оценки величины этой максимальной светимости («вспышки») примем для радиуса протозвезды при установлении в ней конвекции формулу (3.8), полученную в § 3. Это означает, в частности, что мы заранее предполагаем, что конвекция в протозвезде наступает сравнительно быстро, т. е. за время установления конвекции протозвезда «не успеет» заметно сжаться. Тогда светимость протозвезды во время «вспышки» будет описываться простой формулой:

Звезды: их рождение, жизнь и смерть
(5.2)

Длительность вспышки можно оценить, разделив величину освободившейся при сжатии протозвезды гравитационной энергии GM/R1 на L. Она оказывается порядка нескольких лет, т, е. действительно небольшой.

В § 3 было показано, что в конце «стадии свободного падения» у сжимающейся протозвезды также должна быть яркая сравнительно кратковременная вспышка инфракрасного излучения, когда светимость в тысячи раз превосходит болометрическую светимость Солнца. Вторая вспышка, о которой только что шла речь, должна произойти довольно скоро после первой. Обе вспышки будут сильно отличаться по спектральному составу своего излучения. Во время первой вспышки излучение должно быть сосредоточено в длинноволновой (

Звезды: их рождение, жизнь и смерть
20—30 мкм) инфракрасной части спектра, в то время как основная часть излучения во время второй вспышки падает на ближнюю инфракрасную часть спектра (
Звезды: их рождение, жизнь и смерть
1—2 мкм). При современном состоянии теории и достигнутом сейчас уровне наблюдательной астрономии нельзя также исключить возможность того, что обе вспышки у протозвезд не разделены во времени, а практически сливаются.

После вспышки, сопутствующей окончанию установления конвекции во всем объеме протозвезды, последняя, как уже говорилось, продолжает сжиматься, причем температура ее поверхности поддерживается на почти постоянном уровне (см. выше). Поэтому светимость протозвезды будет убывать обратно пропорционально квадрату ее радиуса. В то же время температура ее недр непрерывно повышается. И вот наступает момент, когда температура там поднимается до нескольких миллионов градусов и «включаются» первые термоядерные реакции на легких элементах (литий, бериллий, бор) с низким «кулоновским барьером» (см. § 8). Протозвезда при этом будет продолжать сжиматься, так как «продукция» термоядерной энергии все еще недостаточна для того, чтобы разогреть ее недра до такой температуры, при которой давление газа уравновесит силу гравитации. Только после того как продолжающийся рост температуры в недрах протозвезды сделает возможным протон-протонную или углеродно-азотную реакцию (см. § 8), давление газа наконец ее «застабилизирует». Протозвезда станет звездой и, в зависимости от своей массы, займет совершенно определенное место на диаграмме Герцшпрунга — Рессела. Теория строения образующихся таким образом равновесных звезд будет рассматриваться во второй части этой книги.

Мы рассмотрели сейчас процесс эволюции протозвезд в звезды. Само собою разумеется, что наше рассмотрение не является строгим. Оно, по необходимости, носит «полукачественный» характер. Строгое решение проблемы образования звезд из межзвездной среды сейчас вряд ли вообще возможно. Можно только строить отдельные куски теории, постоянно контролируя ее наблюдениями.

 


Звезды: их рождение, жизнь и смерть
Рис. 5.1: Теоретическая зависимость радиуса протозвезды от времени.
 

На рис. 5.1 схематически представлена зависимость радиуса протозвезды, первоначальная масса которой была равна массе Солнца, от времени. Для масштаба горизонтальные прерывистые линии соответствуют радиусам орбит планет Солнечной системы. Мы видим, что в начале «стадии свободного падения» сжимающейся под воздействием собственной гравитации протозвезды, еще недавно бывшей плотным, холодным «молекулярным» облаком, ее радиус близок к радиусу орбиты Плутона. При этом средняя концентрация частиц (преимущественно молекул водорода) была

Звезды: их рождение, жизнь и смерть
1012 см-3. Стадия свободного падения (начатая от такой плотности) имеет длительность немногим больше 10 лет (см. формулу (3.7)). За это короткое время протозвезда сжимается до размеров орбиты Меркурия, т. е. примерно в сто раз. Конечно, этому этапу предшествовал существенно более длительный этап сжатия облака с первоначальной плотностью 105—106 см-3 до размеров орбиты Плутона. Далее, сжатие протозвезды резко замедляется, так как она становится непрозрачной к собственному излучению. Наступает «стадия Хаяши» в жизни охваченной конвекцией протозвезды. В самом начале этой стадии должна быть «вспышка» (см. выше). Через несколько десятков миллионов лет сжатие протозвезды почти прекращается и она «садится» на главную последовательность.

 


Звезды: их рождение, жизнь и смерть
Рис. 5.2: Эволюционный трек протозвезды на диаграмме Герцшпрунга—Рессела.
 

На рис. 5.2 изображен эволюционный «трек» протозвезды на диаграмме Герцшпрунга — Рессела. Стадия свободного падения протозвезды, когда она холодна и прозрачна, изображена (схематически, конечно) штриховой кривой в правой части рисунка. Максимум этой кривой соответствует наступлению непрозрачности и связан с первой вспышкой длинноволнового инфракрасного излучения. После наступления непрозрачности болометрическая светимость протозвезды быстро уменьшается, после чего следует очень быстрый ее рост, связанный с «закипанием» протозвезды из-за выхода наружу конвективных потоков и превращения их энергии в энергию излучения. Наступает вторая вспышка, на этот раз в ближней инфракрасной области. Заметим, что на этой кривой светимость протозвезды в максимуме вспышки в несколько раз меньше, чем по нашей грубой формуле (5.2), что, конечно, нас не должно смущать. Этому кратковременному этапу эволюции протозвезды соответствует широкая штрихованная полоса. Последняя (сплошная) часть эволюционного трека показывает непрерывное уменьшение светимости сжимающейся протозвезды, температура поверхности которой поддерживается на почти постоянном уровне («стадия Хаяши»). Наконец, трек протозвезды доходит до главной последовательности, что означает, что она превратилась в «нормальную» звезду. Следует подчеркнуть еще раз, что длительность отдельных «кусков» эволюционного трека совершенно различна.

Западногерманские астрофизики теоретически рассмотрели задачу о конденсации сферического газово-пылевого облака большой массы в звезду. Численные расчеты были проведены для значений масс 150, 50 и 20 M

Звезды: их рождение, жизнь и смерть
. Как показывают эти расчеты, в конечном итоге эволюции на главную последовательность приходят звезды с массами 36, 17 и 12 M
Звезды: их рождение, жизнь и смерть
соответственно, т. е. существенная часть первоначальной массы облака не конденсируется, а образует «протозвездные оболочки». Именно такие оболочки, эволюция которых рассчитывается, могут быть объектами исследования методами наблюдательной астрономии. Следовательно, открывается новый подход к основной проблеме звездной космогонии. Первоначальный радиус сжимавшихся облаков был принят
Звезды: их рождение, жизнь и смерть
1018 см, причем облака считались невращающимися и лишенными магнитного поля, что, конечно, является значительным упрощением задачи. Тем не менее, результаты расчетов, как показывают наблюдения, довольно верно описывают различные стадии эволюции сжимающегося облака. Резюмируем эти результаты:

1. Спустя несколько сотен тысяч лет после начала сжатия облака и вскоре после того, как внутри сжимающегося облака образуется звездообразное, довольно горячее ядро, вокруг последнего возникает плотный, непрозрачный для оптических лучей газово-пылевой «кокон», внутренний радиус которого

Звезды: их рождение, жизнь и смерть
(3—5)
Звезды: их рождение, жизнь и смерть
1013 см, а внешний
Звезды: их рождение, жизнь и смерть
1015 см. Температура наружных слоев «кокона»
Звезды: их рождение, жизнь и смерть
500 К, и он, в принципе, мог бы наблюдаться как инфракрасный источник. Однако холодное вещество сжимающегося облака, находящееся снаружи от «кокона», непрозрачно к инфракрасным лучам. Наблюдатель никакого «кокона» внутри облака не увидит.

2. Мощное (

Звезды: их рождение, жизнь и смерть
1000L
Звезды: их рождение, жизнь и смерть
) инфракрасное излучение от «кокона» будет оказывать давление на газово-пылевую среду оболочки. По этой причине сжатие оболочки довольно быстро (через несколько десятков тысяч лет) остановит сжатие наружных слоев облака, которые после этого начнут расширяться. Таким образом, возникает наружная газово-пылевая оболочка или внешний «кокон», радиус которого
Звезды: их рождение, жизнь и смерть
107 см. В дальнейшем как внутренний, так и внешний «коконы» расширяются. Начиная с некоторого момента, толщина внешнего «кокона» настолько уменьшается, что через него видно инфракрасное излучение более компактного и горячего внутреннего «кокона». Поэтому внешний наблюдатель «увидит» в инфракрасных лучах компактный «горячий» источник (T
Звезды: их рождение, жизнь и смерть
500 К — 1000 К), окруженный более протяженным и холодным (T
Звезды: их рождение, жизнь и смерть
200 К) источником. Именно такая ситуация и наблюдается в некоторых случаях (например, в Орионе, см. выше).

3. До сих пор ионизованный газ находился только в малой области внутри внутреннего «кокона». Связанный с этим газом поток теплового радиоизлучения очень мал и не может быть наблюдаем. Однако по мере расширения толщина внутреннего кокона становится настолько малой, что через него начнет проходить ионизующее ультрафиолетовое излучение протозвезды. Таким образом, всего лишь за несколько тысяч лет внутри внешнего «кокона» образуется очень компактная H II область, окруженная холодным неионизованным газом. На этой фазе наблюдатель будет видеть весьма компактную Н II область, окруженную более протяженным инфракрасным источником. Такая комбинация источников также довольно часто наблюдается.

4. Образовавшаяся таким образом компактная Н II область быстро расширяется и довольно скоро достигнет внутренней границы внешнего «кокона». Наблюдатель увидит Н II область и инфракрасный источник с одинаковыми размерами.

 


Звезды: их рождение, жизнь и смерть
Рис. 5.3: Различные фазы сжатия протопланетного облака.

 

5. После того как весь наружный «кокон» станет ионизованным, образуется компактная H II область нового типа, масса которой остается постоянной, а яркость радиоизлучения быстро уменьшается (см. более подробно об этом в § 13). Ионизационный фронт будет распространяться через окружающую протозвездное облако разреженную среду, образуя при этом обычную протяженную Н II область. Среднее время жизни таких H II областей (т. е. среднее время жизни обычных облаков Н II) по оценке проф. Мецгера (Бонн, ФРГ), много сделавшего в области радиоастрономических исследований процесса звездообразования, составляет примерно 5

Звезды: их рождение, жизнь и смерть
105 лет.

Набросанный сейчас «сценарий» образования звезд (см. рис. 5.3) позволяет сделать следующие, важные для наблюдательной астрономии выводы:

a. На самой ранней фазе «свободного падения» (для звезд класса О

Звезды: их рождение, жизнь и смерть
105 лет) сжимающееся протозвездное облако не наблюдаемо.

b. В течение следующих

Звезды: их рождение, жизнь и смерть
104 лет протозвезда может наблюдаться как инфракрасный источник. Никакой компактной области Н II при этом не наблюдается.

c. После того как протозвезда превратилась в звезду, т. е. «села» на главную последовательность, образуется расширяющаяся компактная H II область, окруженная внешним, сравнительно холодным «коконом». Эта фаза также длится около 104 лет.

d. Последняя фаза — следы компактной Н II области (уже «выевшей» внешний «кокон»), окруженной протяженной областью сравнительно малой яркости, длится до миллиона лет.

Хотя положенная в основу расчетов модель, как уже подчеркивалось выше, весьма схематична, основные черты эволюции протозвездных облаков и звезды она, по-видимому, отражает верно, что доказывается ее хорошим согласием с большим количеством наблюдений, выполненных в последнее время, в частности, под руководством Мецгера в Бонне. Следует также не забывать, что расчеты, результаты которых рассматривались выше, относятся к весьма массивным протозвездным облакам. Можно, однако, предполагать, что для менее массивных звезд доля массы протозвездного облака, не конденсировавшегося в звезду, будет мала. Поэтому внешний «кокон» может и не образоваться и инфракрасное излучение сравнительно горячего внутреннего «кокона» не будет «экранировано».

В какой степени астрономические наблюдения подтверждают набросанный выше сценарий эволюции протозвездного облака? Прежде всего, требует наблюдательного подтверждения основная картина образования групп звезд в темных молекулярных облаках межзвездной среды. Генетическая связь зон Н II (окружающих молодые горячие массивные звезды) и темных молекулярных облаков известна уже давно: достаточно взглянуть на фотографии диффузных туманностей с включенными в них темными пятнами и другими протяженными деталями (см., например, рис. 2.2—2.3). Новейшие наблюдения существенно дополняют эту картину. Так, например, почти от всех зон H II обнаружено излучение в молекулярной линии СО

Звезды: их рождение, жизнь и смерть
= 2,64 мм.

Это означает, что там имеется холодный молекулярный газ, являющийся «реликтом» первичного газово-пылевого облака, из которого образовались массивные горячие звезды и «порожденные» ими зоны Н II. В случае, если протозвезды закрыты плотным непрозрачным «коконом», последний переизлучает в инфракрасные кванты все поглощенное протозвездное излучение. Следовательно, измерив мощность инфракрасного источника, можно определить светимость находящейся внутри него невидимой из-за поглощения протозвезды. В ряде случаев мощность компактных инфракрасных источников достигает десятков и сотен тысяч солнечных светимостей, что указывает на наличие массивной протозвезды, которая превратится в звезду спектрального класса О. Следует подчеркнуть, что ассоциации компактных областей H II (представляющих, как было показано выше, более позднюю фазу развития протозвездных оболочек) и инфракрасных источников наблюдаются довольно часто.

Новейшие радиоастрономические исследования в этой области. широко используют наблюдения молекулярной радиолинии СО. В областях HII часто наблюдаются компактные области, в которых интенсивность этой линии повышена. Там находятся, следовательно, плотные конденсации холодного молекулярного газа, окруженные разреженной, горячей средой. Такие конденсации с массой порядка нескольких сотен M

Звезды: их рождение, жизнь и смерть
, как правило, ассоциируются со скоплениями молодых звезд.

Так как время гравитационного сжатия массивных протозвезд сравнительно невелико, следует ожидать, что около них имеются остатки газово-пылевого облака, из которого они образовались. Речь идет о «протозвездных оболочках», рассмотренных теоретически выше. В случае, когда звезды классов А и В имеют в своих спектрах наряду с линиями поглощения также линии излучения (класс таких звезд обозначается Ae и Be), можно подозревать, что они являются звездами типа Т Тельца (см. ниже), т. е. протозвездами. И вот, оказывается, что в большинстве случаев такие звезды окружены компактными молекулярными облаками, в которых усилена радиолиния СО

Звезды: их рождение, жизнь и смерть
= 2,64 мм. Из наблюдений следует также, что эти «околозвездные» облака значительно плотнее и горячее обычных молекулярных облаков, встречающихся в межзвездной среде. Наличие околозвездных плотных облаков следует также из наблюдений рекомбинационной радиолинии углерода. Дело в том, что радиус зоны H II звезды класса В, находящейся внутри плотного облака, мал, между тем как излученных этой звездой квантов в области длин волн 912 A <
Звезды: их рождение, жизнь и смерть
< 1101 A. (граница ионизации углерода) оказывается достаточно, чтобы образовать довольно протяженную зону ионизации углерода, обилие атомов которого в тысячи раз меньше, чем водорода.

 


Звезды: их рождение, жизнь и смерть
Рис. 5.4: Кривые поглощения света темным облаком в созвездии Змееносца.
 

 


Звезды: их рождение, жизнь и смерть
Рис. 5.5: Область темной туманности в созвездии Змееносца в большем масштабе.
 

В ряде случаев современная астрономия имеет прямые доказательства того, что внутри плотных, холодных непрозрачных для видимых лучей облаков межзвездного газа содержится скопление очень молодых звезд или протозвезд. Хорошим примером является известное газово-пылевое облако в созвездии Змееносца, находящееся на расстоянии 160 пс от Солнца. В этом темном облаке в инфракрасных лучах (длина волны 2,2 мкм) в области с линейными размерами

Звезды: их рождение, жизнь и смерть
1,5 пс наблюдается около 70 невидимых (из-за поглощения в оптических лучах) звезд. Анализ наблюдений показывает, что распределение этих звезд по светимости (так называемая «функция светимости») такое же, как у молодых звездных скоплений. Эти звезды несомненно являются наиболее яркими членами скопления, «погруженного» в плотное облако. Оказывается, что поглощение света от каждой звезды в облаке значительно больше, чем среднее поглощение в облаке. Это означает, что вокруг каждой звезды имеется довольно плотная оболочка, производящая дополнительное поглощение. Интересно еще отметить, что зависимость этого дополнительного поглощения от длины волны отличается от аналогичной зависимости для общего поглощения в облаке. Отсюда следует, что свойства пылинок в протозвездном облаке (например, их размеры и химический состав) отличаются от «средних». На рис. 5.4 приведены кривые поглощения света в облаке Змееносца. Точки дают положения наблюдаемых только в инфракрасных лучах звезд. Подавляющее большинство этих звезд находится внутри сравнительно небольшого квадрата (рис. 5.5). Сплошные линии соответствуют распределению яркости углеродной рекомбинационной радиолинии С 157
Звезды: их рождение, жизнь и смерть
, штрих-пунктирная окружность дает положение источника длинноволнового (
Звезды: их рождение, жизнь и смерть
= 25 мкм) инфракрасного излучения, находящегося в области, где плотность молекулярного газа максимальна (
Звезды: их рождение, жизнь и смерть
106 см3). В этой же области обнаружено некоторое количество очень маленьких радиоисточников, скорее всего являющихся компактными областями H II. Все описанные выше наблюдательные данные согласованно свидетельствуют о том, что внутри темной туманности в Змееносце находится протозвездное скопление, наиболее массивные члены которого станут звездами спектрального класса В. Это следует из сравнительно большой протяженности области ионизации углерода при отсутствии сколько-нибудь протяженной области Н II. В соответствии с рассмотренными выше результатами теоретических расчетов более массивные протозвезды окружены плотными оболочками — «коконами». Можно ожидать, что через сотню тысяч лет образующиеся в этом облаке массивные звезды «сядут» на главную последовательность, ионизуют значительную часть облака, тем самым «просветляя» его, и станут наблюдаемыми в оптическом диапазоне. Не следует, однако, забывать, что целый ряд моментов, касающихся эволюции звезд со сравнительно небольшой массой, пока еще далек от ясности.

Остановимся теперь на наблюдательных данных, касающихся гигантских газово-пылевых комплексов, где, как можно ожидать, процесс образования звезд из диффузной межзвездной среды идет особенно интенсивно. Интерпретация обширных рядов относящихся сюда радиоастрономических и инфракрасных наблюдений была выполнена главным образом западногерманскими астрономами под руководством проф. Мецгера. Оказывается, что процесс звездообразования происходит несколько различно в газово-пылевых комплексах, находящихся в спиральных рукавах (см. рис. 5.6) и между ними. Основное различие состоит в том, что в первом случае процесс звездообразования происходит практически одновременно, между тем как во втором он может растянуться на много миллионов лет. Это различие можно объяснить разными условиями в прохождении «волны сжатия», стимулирующей конденсацию облаков межзвездной среды в связи с гравитационной неустойчивостью (см. § 3). Если газово-пылевой комплекс находится в рукаве, сжатие газа в его различных частях происходит почти одновременно, между тем как в изолированных комплексах, находящихся между облаками, волне сжатия требуется много миллионов лет, чтобы пройти через весь комплекс.

Рассмотрим теперь несколько более подробно условия в ближайшем к нам «изолированном» газово-пылевом комплексе, находящемся в созвездии Ориона. Часть этого комплекса давно известна: это знаменитая туманность Ориона (см. рис. 2.3). В этом комплексе можно наблюдать молодые звезды на разных стадиях их эволюции («О—В ассоциация» Ориона), компактные H II области, а также протозвезды, находящиеся в плотном непрозрачном облаке холодного газа. На рис. 5.7 приведено распределение яркости в радиолинии 13СО. Это холодное облако видимым образом «разрывает» туманность Ориона (см. рис. 2.3) на две части. Плотность молекулярного газа в облаке очень велика (

Звезды: их рождение, жизнь и смерть
5
Звезды: их рождение, жизнь и смерть
104 см-3), а полная масса достигает 2000 M
Звезды: их рождение, жизнь и смерть
. Горячие О—В звезды, входящие в ассоциацию Ориона, тянутся на 12° к северо-западу от молекулярного облака, причем возраст звезд непрерывно растет к северо-западу, достигая 107 лет. Любопытно, что в области самой О—В ассоциации радиолиния СО не наблюдается. Это означает, что холодный молекулярный газ, из которого там образовались звезды, был ионизован и рассеян эволюционировавшими звездами. Недалеко от плотного молекулярного облака находится знаменитая «трапеция» Ориона, состоящая из недавно (
Звезды: их рождение, жизнь и смерть
105 лет) образовавшихся горячих звезд, в то время как внутри молекулярного облака звезды только начали образовываться.

 


Звезды: их рождение, жизнь и смерть
Рис. 5.6: Распределение газово-пылевых комплексов в Галактике.
 

К югу и к северу от молекулярного облака находятся яркие компактные области Н II. В области двух максимумов яркости линии СО, соответствующих самым плотным частям молекулярного облака (nH2

Звезды: их рождение, жизнь и смерть
2
Звезды: их рождение, жизнь и смерть
106 см-3 с массой
Звезды: их рождение, жизнь и смерть
200M
Звезды: их рождение, жизнь и смерть
), наблюдаются источники длинноволнового инфракрасного излучения. Один из таких источников — это знаменитый инфракрасный объект Клейнмана — Лоу. Внутри таких относительно протяженных (
Звезды: их рождение, жизнь и смерть
1
Звезды: их рождение, жизнь и смерть
) источников длинноволнового инфракрасного излучения обнаружены «точечные», судя по спектру значительно более «горячие», источники, связанные скорее всего с протозвездными оболочками. В частности, внутри компактной инфракрасной туманности Клейнмана — Лоу находится «только что севшая» на главную последовательность звезда, причем сейчас можно наблюдать ее внутренний и наружный «коконы». Например, у яркого «точечного» источника, находящеюся внутри туманности Клейнмана — Лоу, были обнаружены инфракрасные линии водорода (серия Бреккета), доказывающие, что там имеется очень маленькая (r = 5
Звезды: их рождение, жизнь и смерть
1014 см или
Звезды: их рождение, жизнь и смерть
30 астрономических единиц) Н II область с плотностью ne
Звезды: их рождение, жизнь и смерть
3
Звезды: их рождение, жизнь и смерть
105 см-3. Почти наверняка эта «сверхкомпактная» Н II область представляет собой обращенную к звезде часть внутреннего «кокона». Внутри других инфракрасных туманностей (скорее всего — внешних «коконов») находятся менее массивные протозвезды. Сейчас уже можно утверждать, что спустя сотню тысяч лет на месте нынешнего плотного молекулярного облака в Орионе будет наблюдаться еще одна деталь находящейся в этой области неба большой ассоциации. Таким образом обосновывается картина волны сжатия вещества в газово-пылевом комплексе размером в
Звезды: их рождение, жизнь и смерть
100 пс, распространяющейся со скоростью
Звезды: их рождение, жизнь и смерть
10 км/с и на своем фронте стимулирующей процесс звездообразования. Первопричиной возникновения такой волны может быть, например, сильная ударная волна, образовавшаяся в межзвездной среде во время вспышки сверхновой звезды (см. § 16).

 


Звезды: их рождение, жизнь и смерть
Рис. 5.7: Радиоизофоты линии СО в туманности Ориона.
 

 


Звезды: их рождение, жизнь и смерть
Рис. 5.8: Радиоизофоты центральной части комплекса W 3.
 

 


Звезды: их рождение, жизнь и смерть
Рис. 5.9: Радиоизофоты компактной области Н II в комплексе W 3.
 

Рассмотрим теперь особенности процесса звездообразования в гигантских газово-пылевых комплексах, находящихся в спиральных рукавах. В качестве примера рассмотрим комплекс W 3 (см. рис. 2.4). Здесь насчитывается несколько компактных Н II областей, каждая из которых ионизуется своей горячей массивной звездой или протозвездой. Полная мощность теплового радиоизлучения от этого гигантского комплекса в несколько десятков раз больше, чем от комплекса в Орионе. На рис. 5.8 приведены радиоизофоты центральной части комплекса W 3, полученные на волне 6 см с рекордным угловым разрешением 2

Звезды: их рождение, жизнь и смерть
Звезды: их рождение, жизнь и смерть
. Кресты обозначают положение инфракрасных звезд, кресты с точками — мазерных ОН и Н2О источников, а звездочки обозначают оптически наблюдаемые звезды. Изображенные на этом рисунке зоны H II окружены холодным неионизованным газом. На рис. 5.9 приведены изофоты компактной H II зоны, находящейся в W 3, полученные с очень высоким угловым разрешением (0
Звезды: их рождение, жизнь и смерть
Звезды: их рождение, жизнь и смерть
,65, т. е. лучше, чем оптические фотографии) на волне 2 см. Линейные размеры области, наполненной ионизованным газом с плотностью
Звезды: их рождение, жизнь и смерть
105 см-3, всего лишь около одной сотой парсека, а масса M = 4
Звезды: их рождение, жизнь и смерть
10-3M
Звезды: их рождение, жизнь и смерть
. Этот ионизованный газ погружен в темное газово-пылевое облако («кокон»), радиус которого в
Звезды: их рождение, жизнь и смерть
10 раз превосходит радиус находящейся внутри зоны Н II, что следует из наблюдений радиолинии СО в данной области. Крестиками на рис. 5.9 помечены находящиеся внутри компактной зоны Н II мазерные источники ОН. На рис. 5.10 приведены изофоты на волне 6 см, полученные для большей области с худшим разрешением (4
Звезды: их рождение, жизнь и смерть
Звезды: их рождение, жизнь и смерть
). Кроме изображенной на рис. 5.9 компактной Н II области «А» видны еще по крайней мере четыре менее яркие компактные области Н II, внутри которых находятся менее массивные протозвезды.

 


Звезды: их рождение, жизнь и смерть
Рис. 5.10: Радиоизофоты компактных областей Н II в комплексе W 3 на волне 6 см.
 

Приблизительно такая же картина наблюдается во всех исследовавшихся газово-пылевых комплексах. Во всех случаях мы наблюдаем характерные комбинации компактных Н II, СО и инфракрасных источников, полностью подтверждающих картину конденсации протозвезд из газово-пылевой среды, обрисованную выше. Остается еще сказать несколько слов о месте мазерных источников ОН и Н2О в набросанной картине звездообразования. Кое-что об этом говорилось уже в конце § 4, где было обращено внимание на тесную связь между ОН мазерами I класса и компактными зонами Н II. Хороший пример такой связи изображен на рис. 5.9. Недавно установлено, что с точностью 1

Звезды: их рождение, жизнь и смерть
Звезды: их рождение, жизнь и смерть
мазеры ОН совпадают с компактными зонами Н II. Анализ этой связи позволяет сделать вывод, что когда размеры расширяющихся компактных зон Н II достигают
Звезды: их рождение, жизнь и смерть
0,1 пс, около них уже нет мазерных источников ОН. Учитывая скорость расширения компактных зон Н II (
Звезды: их рождение, жизнь и смерть
10 км/с), можно отсюда сделать вывод, что возраст космических мазеров ОН не превышает 104 лет. Так как при достижении зоной Н II размеров
Звезды: их рождение, жизнь и смерть
0,1 пс плотность молекулярного газа в протозвездной оболочке будет
Звезды: их рождение, жизнь и смерть
105 см-3, естественно сделать вывод, что мазеры ОН работают при плотности
Звезды: их рождение, жизнь и смерть
106 см-3 и температуре
Звезды: их рождение, жизнь и смерть
100 К, причем они располагаются снаружи от ионизованного фронта. Интересно отметить, что в отличие от мазеров ОН мазеры Н2О не совпадают с компактными зонами H II. Похоже на то, что такие «водяные» мазеры ассоциируются с более ранним этапом эволюции протозвездного облака, когда компактная зона H II еще не образовалась. По-видимому, плотность газа в области генерации «водяных» мазеров
Звезды: их рождение, жизнь и смерть
109 см-3, а температура
Звезды: их рождение, жизнь и смерть
103 К, что соответствует внутренней части внутреннего «кокона». Возможно, мазер Н2О есть самый ранний указатель образования протозвезды из конденсирующегося протозвездного газово-пылевого облака.

Так обстоит дело с наблюдениями протозвездных оболочек на разных этапах их эволюции. Наряду с этим в настоящее время имеется наблюдательный материал для протозвезд, находящихся в стадии конвективного сжатия. Вот уже свыше 30 лет астрономам известен очень интересный класс звезд, заслуживший по имени их типичного представителя название «звёзды типа Т Тельца». Это, как правило, холодные звезды, быстро и беспорядочно меняющие свой блеск. Все говорит о том, что их атмосферы охвачены бурной конвекцией. Характерной особенностью звезд типа Т Тельца является наличие в их спектре линий поглощения лития, которого там должно быть в сотни раз больше, чем в солнечной атмосфере. Это может означать, что в недрах таких звезд еще не наступили первые ядерные реакции, ведущие к «выгоранию» легких элементов. Звезды типа Т Тельца всегда наблюдаются группами, получившими название «Т-ассоциаций». В таких ассоциациях наблюдается скопление плотных облаков газово-пылевой межзвездной среды, в которую звезды типа Т Тельца буквально погружены. Часто (но не всегда) Т-ассоциации совпадают с О-ассоциациями, т. е. группами заведомо молодых массивных горячих звезд. На диаграмме Герцшпрунга — Рессела звезды типа Т Тельца располагаются выше главной последовательности. Это вполне объяснимо, если считать их протозвездами на стадии конвективного сжатия: более массивные протозвезды, эволюционирующие в звезды О и В, достигают главной последовательности скорее, в то время как менее массивные протозвезды, наблюдаемые как объекты типа Т Тельца, эволюционируют значительно медленнее.

В спектрах звезд типа Т Тельца часто наблюдаются линии излучения водорода, ионизованного кальция и некоторых других элементов. Анализ условий образования этих линий позволяет сделать вывод, что в наружных слоях атмосфер этих звезд температура растет с высотой. Это похоже на ситуацию в верхних слоях солнечной атмосферы, где температура растет с высотой из-за нагрева механической энергией движения солнечного вещества.

Все это указывает на то, что звезды типа Т Тельца охвачены быстрыми конвективными движениями, т. е. их наружные слои действительно «кипят». По-видимому, существенная часть поверхности этих звезд покрыта пятнами с сильными магнитными полями и характерными для них конвективными движениями.

Другой интересной особенностью спектров звезд типа Т Тельца является наличие там компонент линий поглощения, смещенных в синюю сторону. Это указывает на непрерывный выброс вещества с их поверхности, достигающий

Звезды: их рождение, жизнь и смерть
10-7 солнечной массы в год. Отсюда следует, что пока такие звезды «сядут» на главную последовательность, они потеряют значительную часть своей первоначальной массы. Это опять-таки объясняется мощными турбулентными движениями, которыми охвачены такие звезды. Поток кинетической энергии облаков газа, выбрасываемых звездами типа Т Тельца, составляет значительную часть (10—20%) их потока излучения. Все эти факты дают серьезные основания считать звезды типа Т Тельца стадией Хаяши эволюции протозвезд.

Сказанное выше относится к эволюции протозвезд, масса которых меньше солнечной. Для более массивных протозвезд эволюция на заключительной стадии имеет свои особенности. Оказывается, что еще до того, как они «сядут» на главную последовательность, перенос энергии путем конвекции заменится «лучистым» переносом. Это объясняется более-быстрым ростом температуры в недрах таких звезд, что, в частности, приводит к уменьшению непрозрачности их вещества (см. часть II). Как следствие такой смены режима переноса энергии, эволюционный трек протозвезды довольно круто повернет налево, т. е. продолжая сжиматься, звезда будет сохранять почти неизменной свою светимость, следовательно, ее температура будет все время расти. На рис. 5.12 представлены теоретически рассчитанные эволюционные треки протозвезд разной массы, где этот эффект проявляется с большой наглядностью. Им, в частности, объясняется то обстоятельство, что среди звезд типа Т Тельца наблюдаются не только холодные объекты с температурой

Звезды: их рождение, жизнь и смерть
3500 К, но и значительно более горячие.

Представляет очевидный интерес рассмотрение самых ранних стадий эволюции Солнца.

Такие расчеты были выполнены в 1980 г. Исходным пунктом этих вычислений является выделение из первичного газово-пылевого комплекса «протозвездного» облака с массой, близкой к массе Солнца, которое под действием гравитационного притяжения составляющих его частиц сжималось к центру со скоростью свободного падения. В процессе такого сжатия резко возрастала плотность в центральной части облака. Когда облако стало непрозрачно к собственному инфракрасному излучению, температура центральной его части («ядра») стала расти — сжимающееся облако стало протозвездой. По мере роста температуры ядра в нем начались процессы диссоциации и ионизации. Однако температура ядра еще не была достаточной для того, чтобы там пошли ядерные реакции.

На наружную поверхность ядра протозвезды с большой скоростью (свободное падение!) падает газ ее сжимающейся оболочки. В процессе торможения этого газа при его столкновении с наружной поверхностью ядра возникает ударная волна и выделяется тепло. Следует заметить, что размеры ядра (

Звезды: их рождение, жизнь и смерть
1011 см, т. е. радиус Солнца) в миллион раз меньше первоначальных размеров сжимающегося облака. По мере выпадения газа из облака на ядро масса последнего непрерывно растет. Согласно теоретическим оценкам ежегодный прирост массы ядра составляет
Звезды: их рождение, жизнь и смерть
10-5M
Звезды: их рождение, жизнь и смерть
. С ростом массы ядра связан рост его температуры, которая через несколько тысяч лет достигает многих десятков тысяч градусов. Наконец, спустя 20 000 лет после образования ядра его температура превысит 106 К и в нем начнутся первые ядерные реакции превращения дейтерия в гелий. Энергия, выделяющаяся в процессе этой реакции, будет переноситься в наружные слои протозвезды путем конвекции.

 


Звезды: их рождение, жизнь и смерть
Рис. 5.11: Схематическое изображение структуры сжимающегося протозвездного облака.
 

На рис. 5.11 схематически приведена схема структуры сжимающегося протозвездного облака. Эта структура сохраняется в течение всего времени роста массы ядра облака. По мере выпадения газа на ядро размеры наружной протяженной оболочки уменьшаются, а ее температура держится более или менее постоянной. На расстоянии

Звезды: их рождение, жизнь и смерть
1014 см от ядра падающие к центру пылинки нагреваются потоком идущего изнутри излучения. Так образуется поверхность, излучающая инфракрасные кванты. Эту поверхность можно назвать «пылевой фотосферой», излучение которой и наблюдается у инфракрасных звезд. Температура пылинок в этой своеобразной «фотосфере» достигает нескольких сотен кельвинов.

В более глубоких слоях протозвезды пылинки из-за высокой температуры разрушаются. Это происходит на расстоянии

Звезды: их рождение, жизнь и смерть
1013 см от центра при температуре
Звезды: их рождение, жизнь и смерть
2000 К. «Фронт разрушения» пылинок определяет внутреннюю границу пылевой фотосферы. Глубже этого фронта вещество протозвезды становится прозрачным. На еще больших глубинах в связи с ростом плотности прозрачность вещества протозвезды кончается, и можно говорить о «газовой фотосфере», которая, правда, не наблюдается, будучи заэкранированной пылевой фотосферой.

Через

Звезды: их рождение, жизнь и смерть
105 лет процесс аккреции («оседания») оболочки на ядро, бывший все это время основным источником энергии излучения протозвезды, прекратится. Это произойдет либо из-за полного выпадения вещества оболочки на ядро, либо из-за фотонного и корпускулярного излучения последнего, которое вытолкнет наружу вещество оболочки. Как показывают расчеты, через
Звезды: их рождение, жизнь и смерть
10 лет вся оболочка «ссыпется» на ядро, светимость протозвезды будет примерно в 70 раз, а радиус почти в 5 раз больше, чем у современного Солнца. В эту эпоху температура фотосферы достигает 7300 К.

Прекращение выпадения газа оболочки на поверхность «протосолнца» повлечет за собой, во-первых, «просветление» всей картины образования нашего светила, так как окружающий его «кокон» рассеется. Во-вторых, светимость его уменьшится

Звезды: их рождение, жизнь и смерть
в 10 раз в соответствии с понижением температуры до 4200 К. В последующие несколько тысяч лет излучение протосолнца, поддерживаемое ядерной реакцией на дейтерии, будет иметь постоянную мощность. Когда дейтерий «выгорит», центральные части протосолнца начнут медленно сжиматься, а светимость уменьшаться. Наконец, в центральной части протосолнца температура достигнет
Звезды: их рождение, жизнь и смерть
15 миллионов кельвинов, а плотность станет достаточно большой для того, чтобы включились ядерные реакции превращения водорода в гелий (см. § 8). Окончательно протосолнце «стабилизируется» на соответствующей его массе точке главной последовательности через
Звезды: их рождение, жизнь и смерть
30 миллионов лет. В этом состоянии Солнце будет излучать с почти постоянной мощностью много миллиардов лет.

Аналогичные расчеты были выполнены некоторыми авторами, в частности, И. Ибеном, для построения эволюционных треков протозвезд разной массы. Результаты вычислений приведены на рис. 5.12. Расчеты проводились от момента прекращения выпадения газа оболочки на формирующуюся протозвезду до момента вступления на главную последовательность. Цифры на главной последовательности (отмеченной пунктиром) дают время эволюции (от начала конденсации до вступления на главную последовательность), выраженное в миллионах лет. Это время сильно зависит от массы протозвезды. Если, например, в случае M = 15M

Звезды: их рождение, жизнь и смерть
оно равно 62 000 лет, то при M = 0,5M
Звезды: их рождение, жизнь и смерть
возрастает до 155
Звезды: их рождение, жизнь и смерть
106 лет.

 


Звезды: их рождение, жизнь и смерть
Рис. 5.12: Эволюционные треки протозвезд разной массы; цифры справа означают массы протозвезд в M
Звезды: их рождение, жизнь и смерть
. (Расчеты И. Ибена.)
 

Как видно из рис. 5.12, массивные протозвезды на заключительной стадии своей эволюции, когда их светимость почти не меняется, обладают всеми характеристиками звезд-гигантов. Можно поэтому предполагать, что часть звезд-гигантов в молодых скоплениях звезд на самом деле являются протозвездами. Следует, однако, иметь в виду, что последнюю «горизонтальную» часть своего эволюционного трека протозвезды «проскакивают» очень быстро, всего лишь за несколько тысяч лет. Поэтому их должно быть довольно мало.

В заключение этого параграфа мы остановимся на интересном вопросе, касающемся возраста различных протозвезд в одной и той же ассоциации. Теория эволюции протозвезд, кратко изложенная выше, сейчас достигла такого уровня, что уже можно делать оценки их возраста по наблюдаемым характеристикам. И вот, оказывается, что возраст протозвезд сравнительно малой массы всегда заметно превышает возраст более массивных протозвезд, а также О—В звезд, находящихся в той же ассоциации. Как это объяснить? Ведь, казалось бы, в процессе гравитационной конденсации сначала должны были образоваться из газово-пылевой среды более массивные звезды. Дело в том, что в самом начале процесса «фрагментации» средняя плотность газово-пылевого комплекса была ниже, а из теории гравитационной неустойчивости следует, что меньшей средней плотности соответствуют большие массы «фрагментов», на которые распадается комплекс. В самом деле, формулу (3.4), приведенную в § 3, можно переписать в таком виде:

Звезды: их рождение, жизнь и смерть
(5.3)

Отсюда следует, что при данной температуре масса фрагментов, эволюционирующих в протозвезды, будет тем больше, чем меньше средняя плотность. В действительности необходимо учитывать еще непрерывный рост кинетической температуры в газово-пылевом комплексе. Этот рост определяется постепенным уменьшением количества углерода в комплексе из-за его «прилипания» к пылинкам. Это очень медленный процесс, длящийся по крайней мере 10 миллионов лет. В § 3 мы видели, что углерод является основным «терморегулятором» в холодных плотных газово-пылевых комплексах. Поэтому, если его содержание уменьшается, температура газа должна неизбежно повышаться. Так как согласно формуле (5.3) масса образующихся фрагментов, превращающихся потом в протозвезды, довольно сильно зависит от температуры и слабо от плотности, то с течением времени масса протозвезд будет расти. Если, например, первоначальная температура холодного газа в плотном газово-пылевом комплексе была

Звезды: их рождение, жизнь и смерть
6 кельвинов, то образовывались преимущественно звезды с массой меньшей, чем у Солнца. Для образования О—В звезд с массой, в десятки раз превышающей солнечную, температура газа должна подняться до 40—50 кельвинов, для чего содержание охлаждающего газ углерода должно уменьшиться примерно в 10 раз. Следует иметь в виду, что излучение вновь образующихся протозвезд также постепенно нагревает межзвездный газ. Таким образом, находит объяснение тот, казалось бы, парадоксальный факт, что в одном и том же комплексе массивные звезды образуются позже.

Когда существенная часть массы газа превратится в звезды, межзвездное магнитное поле, которое своим давлением поддерживало газово-пылевой комплекс, естественно, не будет оказывать воздействие на звезды и молодые протозвезды. Под влиянием гравитационного притяжения Галактики они начнут падать к галактической плоскости. Таким образом, молодые звездные ассоциации всегда должны приближаться к галактической плоскости. Этот теоретически предсказанный С. Б. Пикельнером эффект был подтвержден анализом результатов наблюдений, что наглядно демонстрирует происхождение звезд из межзвездной среды. Подчеркнем, что речь идет о молодых ассоциациях. Старые же ассоциации после пересечения галактической плоскости будут совершать около нее колебания с периодом 30—50 миллионов лет.

Таким образом, в последней трети XX столетия астрономия оказалась в состоянии проследить за всеми этапами важнейшего процесса образования звезд из межзвездной среды. В отличие от астрономов минувших десятилетий, разрабатывавших весьма слабо обоснованные космогонические гипотезы, современные астрономы при разработке трудных проблем эволюции космических объектов базируются на прочном фундаменте наблюдательных данных. Особую ценность представляют факты, добытые благодаря успехам «астрономии невидимого», т. е. радио- и инфракрасной астрономии. Мы далеки от того, чтобы пренебрежительно отзываться о выдающихся исследованиях классиков космогонии — Лапласа, Пуанкарэ и особенно Джинса, чья основополагающая теория гравитационной неустойчивости красной нитью проходит через всю современную космогонию. Автор просто хотел сказать, что каждая научная проблема решается в свое время и что время для решения классических проблем космогонии наступило только сейчас. Впереди, конечно, еще много работы. Об этом подробно речь шла выше. Но основополагающая идея о происхождении звезд из диффузной межзвездной среды получила подтверждение на большом фактическом материале и сейчас может рассматриваться как прочное завоевание науки.


Звезды: их рождение, жизнь и смерть | Звезды: их рождение, жизнь и смерть | II   Звезды излучают