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Preface
Rationale

Peer-to-peer networking has emerged as a viable business model and systems

architecture for Internet-scale applications. Although its technological roots trace
back through several decades of designing distributed information systems, con-

temporary applications demonstrate that it is an effective way to build applica-

tions that connect millions of users across the globe without reliance on

specially deployed servers. Instead, by combining the resources of each user’s

computer, these systems automatically self-organize and adapt to changing

peer populations while providing services for content sharing and personal

communications.

Public attention to peer-to-peer applications came first from highly popular
file-sharing systems, in which decentralization was used to support a business

model that needed to legitimize licensed content sharing. The subsequent suc-

cess of the Skype Internet telephony application showed the generality of the

peer-to-peer approach and its feasibility to provide acceptable service quality to

millions of users.

Subsequently there has been growing interest in improving on these systems

as well as considering new designs to attain better performance, security, and

flexibility. Today it is anticipated that peer-to-peer technologies will become gen-
eral-purpose, widely used vehicles for building a broad range of applications for

social networking, information delivery, and personal communications applica-

tions in the future.

There are many important questions about the evolution of peer-to-peer tech-

nologies. What new applications will drive this evolution? Will P2P be used as a

general-purpose technique for building any distributed application? How

do trends in wireless networking, consumer electronics, home networking,

high-definition content, digital rights management, and so forth intersect with
peer-to-peer? Is P2P a panacea for designing large-scale applications, or if not,

what are the characteristics of applications for which it is well suited? How

should other architectures coexist with and adapt to peer-to-peer design? Will

the P2P landscape be “Balkanized” by many incompatible peer-to-peer protocols

and systems?

The topics covered in this book provide a comprehensive survey of both the

practice of P2P and main research directions and are intended to frame the

answers for these questions.

Organization and Approach

The first two chapters introduce the main concepts of peer-to-peer systems. We

examine the operation of a basic P2P system, including behavior for self-organizing,
routing, and searching. We also describe a number of representative commercial

applications. The next four chapters describe the fundamental peer-to-peer

overlay architectures, including both unstructured and structured overlays.

xvii



xviii Preface
The last chapter in this group covers important implementation issues such as

protocol design, NAT traversal, and peer capability assessment.

Detailed discussion of P2P mechanisms to support key applications follow,

including chapters on search, content delivery, peercasting and overlay multicast-

ing, and overlay-based Internet telephony. Important uses of peer-to-peer overlays
that we describe here include different techniques for content search, delivery of

real-time streaming content, and session initiation using the overlay. We then dis-

cuss in separate chapters how requirements for overlay performance, peer mobil-

ity, security, and management intersect with the P2P overlay design.

Throughout the book, to motivate and illustrate the material, we include

examples of systems in use and describe important research prototypes. We also

refer to open-source implementations for readers who seek a hands-on illustration

of the ideas. In particular we use examples from OverlayWeaver, an open-source
toolkit developed by Kazuyuki Shudo that supports a number of important peer-

to-peer algorithms. Access to the open-source tools and updates to the book can

be obtained via the companion Website at http://elsevierdirect.com/companions/

9780123742148.

Audience

This book is intended for professionals, researchers, and computer science and

engineering students at the advanced undergraduate level and higher who are

familiar with networking and network protocol concepts and basic ideas about

algorithms. For the more advanced parts of the book, the reader should have

general familiarity with Internet protocols such as TCP and IP routing but should

not need to know the details of network routing protocols such as BGP or OSPF.

For some sections of the book such as discussions of mobility or multicasting,
familiarity with mobility in IP and IP multicasting will be helpful but not required.

The reader will also find it helpful to be familiar with notation for comparing

algorithm performance, such as O(n) or O(log n).
For instructors who want to use the book as a textbook in a class on peer-to-

peer networking, a set of exercises for each chapter, with an answer key for

selected exercises are available by registering at http://textbooks.elsevier.com
Peer-to-peer networking is generally seen as a new technology with a disrup-

tive business model and many possibilities for further innovation. These trends
make the subject matter in this book highly relevant to the technology commu-

nity. We hope the book is a valuable starting point for readers who are new to

the subject and an important reference to those who are active in the field.

Throughout the book we conclude each chapter with suggestions for further

reading for readers who would like to dig deeper into specific topics.
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CHAPTER
1
Introduction
Our discussion of peer-to-peer (P2P) concepts starts with an overview of the key

applications and their emergence as mainstream services for millions of users.

The chapter then examines the relationship of P2P with the Internet and its distinc-

tive features compared to other service architectures. A review of P2P economics,

business models, social impact, and related technology trends concludes the

chapter.
P2P EMERGES AS A MAINSTREAM APPLICATION
The Rise of P2P File-Sharing Applications

Nearly 10 years after the World Wide Web became available for use on the Inter-

net, decentralized peer-to-peer file-sharing applications supplanted the server-

based Napster application, which had popularized the concept of file sharing.

Napster’s centralized directories were its Achilles’ heel because, as it was argued
in court, Napster had the means, through its servers, to detect and prevent regis-

tration of copyrighted content in its service, but it failed to do so. Napster was

subsequently found liable for copyright infringement, dealing a lethal blow to

its business model.

As Napster was consumed in legal challenges, second-generation protocols

such as Gnutella, FastTrack, and BitTorrent adopted a peer-to-peer architecture

in which there is no central directory and all file searches and transfers are

distributed among the corresponding peers. Other systems such as FreeNet also
incorporated mechanisms for client anonymity, including routing requests indi-

rectly through other clients and encrypting messages between peers. Meanwhile,

the top labels in the music industry, which have had arguably the most serious

revenue loss due to the emergence of file sharing, have continued to pursue legal

challenges to these systems and their users.

Regardless of the outcome of these court cases, the social perception of the

acceptability and benefits of content distribution through P2P applications has

1



2 CHAPTER 1 Introduction
been irrevocably altered. In the music industry prior to P2P file sharing, audio CDs

were the dominant distribution mechanism. Web portals for online music were lim-

ited in terms of the size of their catalogs, and downloads were expensive. Although

P2P file sharing became widely equated with content piracy, it also showed that

consumers were ready to replace the CD distribution model with an online experi-
ence if it could provide a large portfolio of titles and artists and if it included fea-

tures such as a search, previews, transfer to CD and personal music players, and

individual track purchase. As portals such as iTunes emerged with these properties,

a tremendous growth in the online music business resulted.

In a typical P2P file-sharing application, a user has digital media files he or she

wants to share with others. These files are registered by the user using the local

application according to properties such as title, artist, date, and format. Later,

other users anywhere on the Internet can search for these media files by
providing a query in terms of some combination of the same attributes. As we dis-

cuss in detail in later chapters, the query is sent to other online peers in the net-

work. A peer that has local media files matching the query will return information

on how to retrieve the files. It may also forward the query to other peers. Users

may receive multiple successful responses to their query and can then select

the files they want to retrieve. The files are then downloaded from the remote

peer to the local machine. Examples of file-sharing client user interfaces are

shown in Figures 1.1 and 1.2.
FIGURE 1.1 LimeWire client.



FIGURE 1.2 eMule client search interface.
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Despite their popularity, P2P file-sharing systems have been plagued by several

problems for users. First, some of the providers of leading P2P applications earn
revenue from third parties by embedding spyware and malware into the applica-

tions. Users then find their computers infected with such software immediately

after installing the P2P application. Second, a large amount of polluted or cor-

rupted content has been published in file-sharing systems, and it is difficult for

a user to distinguish such content from the original digital content they seek. It

is generally felt that pollution attacks on file-sharing systems are intended to dis-

courage the distribution of copyrighted material. A user downloading a polluted

music file might find, for example, noise, gaps, and abbreviated content.
A third type of problem affecting the usability of P2P file-sharing applications

is the free-rider problem. A free rider is a peer that uses the file-sharing applica-

tion to access content from others but does not contribute content to the same

degree to the community of peers. Various techniques for addressing the free-

rider problem by offering incentives or monitoring use are discussed later in

the book. A related issue is that of peer churn. A peer’s content can only be

accessed by other peers if that peer is online. When a peer goes offline, it takes

time for other peers to be alerted to the change in status. Meanwhile, content
queries may go unanswered and time out.
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The leading P2P file-sharing systems have not adopted mechanisms to protect

licensed content or collect payment for transfers on behalf of copyright owners.

Several ventures seek to legitimize P2P file sharing for licensed content by incor-

porating techniques for digital rights management (DRM) and superdistribution

into P2P distribution architectures. In such systems, content is encrypted, and
though it can be freely distributed, a user must separately purchase an encrypted

license file to render the media. Through the use of digital signatures, such

license files are not easily transferred to other users. See this book’s Website for

links to current P2P file-sharing proposals for DRM-based approaches.

Other ventures such as QTrax, SpiralFrog, and TurnItUp are proposing an ad-

based model for free music distribution. The user can freely download the music

file, which in some models is protected with DRM, but must listen to or watch an

ad during download or playback. In these schemes, the advertiser instead of the
user is paying the content licensing costs. Questions remain about this model,

such as whether it will undercut existing music download business models and

whether the advertising revenue is sufficient to match the licensing revenue from

existing music download sites.
Voice over P2P (VoP2P)

Desktop VoIP (voice over IP) clients began to appear in the mid-1990s and
offered free desktop-to-desktop voice and video calls. These applications, though

economically attractive and technically innovative, didn’t attract a large following

due to factors such as lack of voice quality and limited availability of broadband

access in the consumer market. In addition, the initially small size of the network

community limited the potential of such applications to supplant conventional

telephony. This continues to be a practical issue facing new types of P2P applica-

tions—how to create a community of users that can reach the critical mass

needed to provide the value proposition that comes with scale.
Starting in 1996 with the launch of ICQ, a number of instant-message and pres-

ence (IMP) applications became widely popular. The leading IMP systems, such as

AIM, Microsoft Messenger, Yahoo! Messenger, and Jabber, all use client/server

architectures.6 Although several of these systems have subsequently included

telephony capabilities, their telephony features have not drawn a large user

community.

Skype is a VoP2P client launched in 2003 that has reached more than 10 mil-

lion concurrent users. The VoP2P technology of Skype is discussed in Chapter 11.
Compared to earlier VoIP clients, Skype offers both free desktop-to-desktop calls

and low-cost desktop-to-public switched telephone network (PSTN) calls, includ-

ing international calls. The call quality is high, generally attributed to the audio

codec Skype uses and today’s wide use of broadband access networks to reach

the Internet. In addition, Skype includes features from IMP applications, including

buddy lists, instant messaging, and presence. Unlike the file-sharing systems,

Skype promises a no spyware policy.



FIGURE 1.3 Skype client.
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The Skype user interface is shown in Figure 1.3. It includes a buddy list that
shows other buddies and their online status. The user can select buddies to initi-

ate free chat, voice, and group conference sessions. The user can also enter PSTN

numbers to call, and these calls are charged.
P2PTV

The success of P2P file sharing and VoP2P motivated use of P2P for streaming

video applications. P2PTV delivery often follows a channel organization in
which content is organized and accessed according to a directory of programs

and movies. Unlike file-sharing systems in which a media file is first downloaded

to the user’s computer and then played locally, video-streaming applications

must provide a real-time stream transfer rate to each peer that equals the video

playback rate. Thus if a media stream is encoded at 1.5 Mbps and there is a sin-

gle peer acting as the source for the stream, the path from the source peer to

the playback peer must provide a data transfer rate of 1.5 Mbps on average.

Some variation in the playback rate along the path can be accommodated by
prebuffering a sufficient number of video frames. Then if the transfer rate tem-

porarily drops, the extra content in the buffer is used to prevent dropouts at the

rendering side.
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An attractive feature of peer-to-peer architectures for delivery of video streams

is their self-scaling property. Each additional peer added to the P2P system adds

additional capacity to the overall resources. Even powerful server farms are lim-

ited to the maximum number of simultaneous video streams that they can deliver.

In a P2P network, any peer receiving a video stream can also forward it to a few
other peers. If D > 1 peers are directly connected to the source peer and each

peer can in turn support D peers, then up to D2 þ D peers can receive a video

stream within two hops from the source. Likewise, if each of the second-tier D

peers can in turn support D peers, up to D3 þ D2 þ D peers can receive the video

stream in three hops. Note that each hop adds a small forwarding delay, which is

usually not a problem in one-way video-streaming applications.

This simple model is good if all peers watching the specific video stream are

viewing the same position in the stream close to simultaneously, equivalent to a
broadcast television channel. However, in video-on-demand type applications,

peers start viewing a stream at arbitrary times, and those peers that start view-

ing a stream concurrently may soon diverge in stream position due to user

actions such as pause or rewind. To avoid transferring complete copies of video

files to peers at playback, a method is needed for a peer to locate the next

chunk of video in its playback schedule from some other peers in the P2P sys-

tem. One technique used in BitTorrent 243 is for the source of the content to

seed other peers with chunks of the content. These peers then access the tor-

rent created by the source to identify each other and retrieve the content

chunks directly from other peers. Such a group of peers exchanging chunks is

called a swarm.

As is the case with other P2P applications, the volatility of peers could cause

gaps in stream playback if the peer that is the source of the next segment of video

suddenly leaves the P2P system. Since peers are user-controlled end systems,

unpredictable and unannounced departures are an assumed hazard. Most P2P net-

works have specific protocols to recognize such departures and to continually
locate new peers that are joining the P2P system. For video-streaming applica-

tions, mitigating the departure of a source peer can involve periodically searching

for redundant sources (which are also volatile) and providing a sufficient buffer to

reduce the impact on the user’s viewing experience when a source peer depar-

ture does occur.

Outside of P2P video applications, a great deal of research has dealt with the

issues of reliable network delivery of real-time video. Due to network congestion

and network failures, packets may sometimes get dropped. P2P networks depend
on the underlying physical network. Consequently, techniques already developed

for reliable delivery of streams in packet networks are applicable in P2P overlay

networks. Such techniques include adaptive video delivery, multiresolution video,

and scalable video and are discussed in Chapter 8.

Several P2PTV applications are available. Examples include Babelgum,

Joost, PPLive, PPStream, SopCast, TVants, TVUPlayer, Veoh TV, and Zattoo (see

Figure 1.4).



FIGURE 1.4 P2PTV applications, (A) Bablegum # 2008 Bablegum. Reprinted by permission,

(B) Zattoo # 2007 Zattoo. Reprinted by permission, (C) TVU Networks # 2008 TVU

Networks. Reprinted by permission.

P2P Emerges as a Mainstream Application 7
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P2P NETWORKING AND THE INTERNET
P2P Overlays and Network Services

Peers in P2P applications communicate with other peers using messages transmitted

over the Internet or other types of networks. The protocol for a P2P application is

the set of different message types and their semantics, which are understood by all
peers. The protocols of various P2P applications have some common features. First,

these protocols are constructed at the application layer of the network protocol

stack. Second, in most designs peers have a unique identifier, which is the peer ID

or peer address. Third, many of the message types defined in various P2P protocols

are similar. Finally, the protocol supports some type of message-routing capability.

That is, a message intended for one peer can be transmitted via intermediate peers

to reach the destination peer.

To distinguish the operation of the P2P protocol at the application layer from
the behavior of the underlying physical network, the collection of peer connec-

tions in a P2P network is called a P2P overlay. Figure 1.5 shows the correspon-

dence between peers connecting in an overlay network with the corresponding

hosts, devices, and routers in the underlying physical network. Later in this book

we discuss important properties and details of P2P overlays. For consistency, when

we want to talk about a system of peers using a common P2P application layer pro-

tocol, we will refer to it as a P2P overlay or simply an overlay. It might be conve-

nient to think of a P2P system or P2P network as synonyms for P2P overlay.
The practice of overlay networks predates the P2P application era. For exam-

ple, protocols used in Internet news servers and Internet mail servers are early

examples of widely used overlays that implement important network services.

These specialized overlay networks were developed for various reasons, such as

enabling end-to-end network communication regardless of network boundaries

caused by network address translation (NAT).

Another important reason for the use of overlays is to provide a network ser-

vice that is not yet available within the network. For example, multicast routing is
a network service that to date has been only partially adopted on the Internet.

Multicast routing enables a message sent to a single multicast address to be routed

to all receivers that are members of the multicast group. This is important for

reducing network traffic for one-to-many applications such as video broadcasting

or videoconferencing. Since multicast routing is not universally supported in

Internet routers, researchers developed an application layer capability for multi-

cast routing called application layer multicast (ALM) or overlay multicast

(OM). These techniques, discussed in Chapter 9, use a type of overlay network
to provide the multicast service for applications.

Another aspect of Internet routing is that some messages are not routed via

the shortest path. This is due to the economics of the network providers that col-

lectively provide the backbone of the Internet. These network providers establish

network regions that connect at peering points to other network providers. The
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FIGURE 1.5 Peers form an overlay network (top) that in turn uses network connections in

the native network (bottom). The overlay organization is a logical view that might not directly

mirror the physical network topology.
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traffic load at a peering point may be asymmetric. To maximize the value of the

network to its customers, a network provider may route traffic coming into its

peering point differently depending on the source of the packet. Consequently,
different hosts sending messages to the same destination could see significantly

different delays. Resilient overlay networks (RONs) are a type of overlay network

that seeks to provide the shortest path in the physical network for a message.

Such overlays are discussed in Chapter 11.

Finally, other examples of network services that can be supported using an

overlay include secure delivery of packets, trust establishment between arbitrary

endpoints, anonymous message delivery, and censorship-resistant communica-

tions. Such services are incompletely provided in today’s Internet and can be
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more rapidly delivered using an overlay network because application layer fea-

tures do not require network hardware upgrades.

Impact of P2P Traffic on the Internet

The growing popularity of P2P applications has created additional controversy due

to its impact on network performance. Although traffic measurements of the global

Internet are difficult to collect and evaluate, data such as that shown in Figure 1.6

indicate that a significant and growing proportion of network traffic is due to the

popularity of P2P applications. More recent measurements10 in large U.S. Internet
service providers (ISPs) show that P2P traffic continues to be around 50% of Inter-

net traffic in access networks. This situation is expected to continue as P2P appli-

cations grow in popularity and are used to deliver more and more video files to end

systems. From the perspective of the ISP, a relatively small proportion of network

users can overwhelm the capacity of the network. Since end users in many ISPs

are charged either a flat rate or for connect time and not bit usage rate, the cost

of such usage is borne by all the ISP’s customers.

A second issue is that the broadband access networks were not designed for
P2P traffic. P2P traffic is inherently symmetric because each peer acts as both a

client and a server in the P2P overlay. But the widely available broadband access

networks such as Digital Subscriber Loop (DSL) and cable modems are asymmet-

ric, with downstream bandwidth capacity being at least five times that of
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upstream capacity. Thus the networks of broadband ISPs are being overloaded by

large volumes of upstream traffic produced by P2P applications.

The outcome of these conflicts between P2P applications and network provi-

ders depends in part on the continued popularity of P2P applications, particularly

for media delivery versus the emergence of other distribution models that provide
the same cost/benefit. A discussion of current approaches to ISP management of

overlay traffic is found in Chapter 15.
MOTIVATION FOR P2P APPLICATIONS
P2P from the End User’s Perspective

Though P2P applications have transformed the typical user’s experience of getting

content and communication services from the Internet, at the same time other

popular Internet applications have not been built with P2P technology. Examples

include social networking sites such as MySpace and content-sharing sites such as
YouTube. Both P2P applications and these Web-based applications provide free ser-

vices to large numbers of end users. But the owners of the Web-based applications

generate revenue using inline advertisements. These Websites can measure ad

viewership and click-throughs. Depending on the application, the Websites can

also relate these statistics to user information that the Website gathers.

This revenue model has not been successfully integrated into popular P2P appli-

cations. Usage statistics gathering, which drives ad-based revenue, is more difficult

in the P2P architecture because it is highly distributed. Additionally, as discussed in
Chapter 15, the distributed architecture and dependence on user-controlled end

system resources mean that it is more difficult to provide expected levels of service

quality.

One might then argue that P2P is primarily a low barrier of entry, enabling

technology for new applications. Once proven, such applications can be replaced

with easier-to-manage and more reliable client/server technology. But P2P offers a

uniquely self-scaling architecture, in which increased participation increases the

capacity of the system. This plus the cost differential enabled by using end-system
resources suggest that P2P should always be able to provide certain types of ser-

vices at a cost level not achievable by client/server architectures. Further, popular

applications that have reached a critical mass have been historically difficult to

retire or replace, undermining the practicality of replacing P2P applications with

corresponding client/server ones.

When a user interacts with an application, what features tell the user that it is

implemented using a P2P overlay? There is no single function that can’t be imple-

mented in both architectures. But as the usage grows to a global community with
significant information sharing, the difference in scaling properties means that,

ideally, P2P should be able to support a much larger degree of interaction in terms

of number of concurrent users and amount of content that can be mutually
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shared. For example, it is widely known that Web search engines index only a

portion of the Web. Could a P2P architecture enable Web search to cover more

content and provide more powerful semantic search capability? The answers to

such questions will impact the future of P2P architectures.
Is P2P ¼ Piracy?

P2P is not the first technological innovation to have its initial success due to

somewhat less than ideal use. If P2P file sharing had from the start included

ways for content owners to obtain licensing revenue, the role of P2P as a transfor-

mational technology would not have been obscured by the piracy association.

Certainly, methods exist for protecting licensed content that can be applied in

P2P file-sharing systems.
Consequently, we believe P2P is a disruptive technology that has important legit-

imate uses. In the case of music file sharing, early P2P systems demonstrated a large

market for a new distribution model and new business model. This new distribution

model uses global search, exchange of content directly between end users, high-

quality audio, the capability to select individual tracks, and the ability to use the con-

tent on a variety of personal devices. Further, this distribution model is not restricted

to content provided by the major labels. It is a low-barrier-of-entry means for inde-

pendent artists and others to publish content for consideration by a wide audience,
without the requirement to go through a music publisher. As for the business model,

payment for indefinite personal use of track playback is widely accepted. Subscrip-

tionmodels have shown viability. Others such as ad-driven models are in trial phases.
P2P Strengths and Benefits

Much of this book discusses the details of designing P2P applications and over-

lays. As a prelude to that, we should consider the benefits as well as the limita-
tions of building and deploying an application using the P2P approach versus

conventional client/server or Web-based approaches. Naturally, P2P might not

be the best choice in many cases.

A P2P overlay is a collection of distributed networked hosts whose resources

are available for use by the P2P applications associated with the overlay. These

resources include computation, network capacity, and file storage. While their

host is connected to the overlay, each end user shares in the cost of operating

the overlay. This cost sharing by the participants lowers the barrier of entry to
overlay providers. The low barrier of entry means that little hardware or network

investment is needed to launch a P2P application.

As discussed earlier, the P2P architecture is inherently self-scalable, since each

new peer adds additional capacity to the system. However, the developers of

early P2P applications soon discovered that not all peers have equal capacity to

contribute. For example, the host might be relatively limited in terms of CPU

speed and memory capacity. Or the host might be behind a firewall, making it
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difficult for that peer to participate in the routing algorithm of the overlay. Or the

host might be used for other applications that consume much of the available

capacity. Consequently, some designs have organized peers into different cate-

gories depending on their capacity and reliability. The more capable or super

peers might perform all the overlay operations, whereas the less capable peers
play a more limited role.

The self-scaling property by itself doesn’t necessarily translate into good per-

formance under heavy loads since the load might not be uniformly distributed

across the overlay. To illustrate, consider the well-known phenomenon of flash

crowds that occurs when a very popular item is first available at a Website. As

word spreads about the availability of this new item, large numbers of users simul-

taneously try to retrieve it using their Web browsers. This creates a sudden and

excessive load on the Web servers that provide the object. Examples of objects
that cause flash crowds include major news stories or new music or video

releases by popular artists.

Flash crowds and less dramatic uneven loading can also occur in P2P overlays.

On the Web, one technique to redistribute the load is to use Web caches that are

distributed around the Internet. Caches are placed along the request path for a

Web page and contain copies of objects that have been recently retrieved. When

a browser requests an object, the request is first routed to nearby caches. If the

object is located there, it will be returned to the browser without the request
ever reaching the Web server. Some P2P overlay designs use a similar approach

by keeping copies of objects that have been retrieved at intermediate peers along

the search path. When another request for the object is routed along the same

path, the intermediate peer will return the object before the request reaches

the original peer serving the object. As discussed later in Chapter 11, such tech-

niques don’t work in all overlays. In addition, as objects lose popularity, a method

is needed to replace old infrequently referenced objects with newer more popu-

lar ones.
The typical peer lifetime in a P2P overlay is short and of unpredictable dura-

tion. The lifetime of each peer is subject to local decisions of the user and is out-

side the control of the overlay designer. To successfully operate, an overlay must

compensate for the variability in peer membership and dynamic behavior of par-

ticipating peers. A key parameter affecting the design is the average rate at which

peers join and leave the overlay, or the churn rate. An important feature of P2P

overlays is the ability to self-organize in the face of this dynamic behavior. We’ll

discuss self-organization further in Chapter 2.
Volatility in peer membership effects peer reliability, another important prop-

erty of P2P overlays. In general, reliability improves with increased redundancy.

For example, if copies of an object are placed at multiple unreliable peers, it is

more likely for some searching peer to locate the object than if a single unreliable

peer stores the object. Likewise, peers need to identify a set of neighbors for rout-

ing messages to the rest of the overlay. A larger neighbor set can be useful for

increasing the likelihood that at least one peer is online when a message is to
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be sent. On the other hand, redundancy increases state and maintenance over-

head. P2P overlays use techniques such as redundancy to provide reliability and

improve load distribution.

Finally, as we discuss in Chapter 3, P2P overlays can mimic the social intercon-

nections of large communities. This has the advantage of leveraging well-known
social group structure and relationships in information searching and sharing.

Also, the P2P model can operate in both Internet-scale and ad hoc networks such

as those formed spontaneously when a group of friends join their devices

together.

P2P Open Issues

The potential benefits of P2P applications have spurred many research papers

and industry proposals for improving the basic mechanisms. Much of the remain-

der of this book presents many of these ideas in detail.

The assumption of altruistic peers is idealized. In practice, peers can be

expected to behave according to their own best interests. Thus peers may con-

tribute only the minimum level of their own resources needed to access the

shared resources of the P2P overlay. Peer participation is of unpredictable dura-

tion. Peers are heterogeneous in terms of both network and system capacity,
meaning that some sets of peers subsidize other peers. Peers are autonomous

and some peers could behave maliciously—for example, masquerading under

multiple identities or interfering with the operation of the overlay.

Without centralized control, it is difficult to validate peer identity and trust-

worthiness. Such validation is required for enforcement of overlay behavior and

validation of transactions. However, central control is contrary to the P2P model

and may lead to scaling problems. These issues are discussed in more detail in

Chapter 14.
P2P ECONOMICS
The P2P Value Proposition

The attraction of P2P overlays for delivering Internet applications includes the

potential size of the customer base, a low barrier of entry, and high scalability.

A certain critical mass is needed, however, and latecomers have had difficulty dis-

placing those applications with a popular following. The large potential size of

the customer base is due directly to the penetration of personal computers and

broadband Internet access worldwide.

In addition, in many cases consumers pay a flat rate to access the Internet and

have excess capacity on their computers and access network. As long as the P2P
application resource use stays below a threshold, the user is likely to perceive a

negligible cost in terms of contributing computer and networking resources that

would otherwise not be used.



The P2P value proposition for the user is to exchange excess computational, storage,

and network resources for something else of value to the user, such as access to other

resources, services, content, or participation in a social network.
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We further observe that the value of a P2P overlay grows as a function of the num-

ber of participating peers. This is an application of Metcalfe’s law that states that

the value of a telecommunications network is proportional to the square of the

number of users of the systems. In this case the P2P overlay is a virtual telecom-

munications network.
Barrier to Entry

Compare the costs of the client/server model with the P2P model for launching a

new network application. For a number of significant applications, the relative

software complexity is comparable. For large user populations, client/server

requires a server farm, that is, a set of server-class hosts maintained in a data cen-

ter with sufficient network capacity to carry the aggregated traffic from all the cli-

ents to the servers. For fault tolerance, the server farm is typically replicated at
multiple locations. The servers are managed to provide 24 � 7 service. The ser-

vers are also monitored for faults, security, and utilization versus capacity.

In the P2P model there are no server farms. The client machines or end systems

contribute resources. Systems are not managed. Service quality may be low. In real

P2P deployments, servers can be used to download the initial client software, sup-

port the bootstrapping of the P2P overlay, and provide user account registration.

These servers are typically modest in terms of costs compared to the server farms.
Revenue Models and Revenue Collection

The largest P2P applications today are embedded in a custom P2P overlay. In this case

there are three basic revenue-producing scenarios. First, end users can be directly

charged for use of the application. An example is some of the services provided by

Skype. Second, if the application enables use of other services or licensed content,

per-transaction fees might be extracted from these providers or licensors. For exam-

ple, if a VoP2P application is installed on awireless handset, every VoP2P call over the
wireless network provider might produce a royalty to the VoP2P application. Like-

wise, if the P2P application is used to obtain content licenses for shared content,

the licensors might pay a fee per licensing transaction to the P2P application. Third,

advertising can be embedded into the application so that using the application user

interface leads to advertisement presentation to the end user.

The P2P overlay must be able to monitor such transactions, collect them, and

report them to the overlay operator. These steps must be done in a reliable and

secure way. Users should be able to review their transactions and dispute them.
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If third parties are used to provide some of the services, the P2P overlay must

mediate all transactions between the end user’s peer and the third party’s sys-

tems. Transaction collection could be done by specific peers deployed by the

overlay operator or by hosts at well-known addresses. The mechanism must scale

as the size of the overlay and the transaction rate grow.
In the future, the P2P overlay could operate as an application platform, analogous

to Web hosting and application servers. The P2P overlay then is designed so that

third-party services can be added to the overlay. These services can be revenue gen-

erating, with the P2P overlay operator receiving a percentage of the proceeds. Sup-

pose Vendor V builds a software Service S that runs on a P2P platform. Any number

of peers might deploy Service S for other peers to use. Let’s assume that the peers are

incented to deploy such services, for example, by getting a better grade of service or

discounts on their own use of the service. For a pay-per-use service, each time a peer
uses Service S anywhere on the P2P overlay, the transaction record must be captured

and delivered to Vand the P2P overlay operator. For a subscription service, the accu-

mulated use by a peer must be likewise captured and periodically delivered to V and

the P2P overlay operator. In either case, the identity of the peer using the service

must be traceable and nonspoofable. The transaction records must be nonrefutable.

Both the P2P overlay and any third-party services could also generate revenue

by offering grades of services in which service quality varies in proportion to the

cost of the service grade. A P2P overlay could provide premium overlay operation
using specially deployed peers that are located in high-bandwidth networks. The

hosts for these peers could also be high capacity, with a high percentage of

uptime. Peers that subscribe to the premium service must be able to restrict their

own message routing to the premium peers in the overlay. Another approach is to

introduce priority classes so that messages from peers in the higher-priority class

receive priority treatment compared to lower-priority classes.

In conventional networks the distinction between quality-of-service (QoS)

classes for different traffic requires a network mechanism to route by class of ser-
vice and to police the traffic in the priority classes. There is typically a way to

measure actual service quality provided and compare it with the service quality

that was delivered. There may be financial penalties if service quality falls below

agreed-on levels. For future P2P overlays to make such stringent guarantees will

likely depend on coupling the P2P overlay QoS mechanisms with the underlying

network QoS mechanisms.
P2P Application Critical Mass

The attractiveness of P2P applications is affected by the number of participating

peers. If the number is small, the service choices may be unappealing for new

users to join. A P2P file-sharing application with only hundreds or thousands of

users would typically offer a more limited range of content choices than an appli-

cation with millions of concurrent users. Likewise, a VoP2P application with a

small community of users offers fewer buddies with which to communicate.
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The concept of P2Papplication critical mass refers to the level of participation

in a P2P application in which the scale of membership and activity is sufficient to

make it self-sustaining, either in terms of membership stability or economic viabil-

ity. When a P2P application is operating below critical mass, some means to contin-

ually draw new users at a faster rate than existing users leave the P2P application is
needed. Two advantages of the early P2P applications are the novelty factor and rel-

atively open landscape. The success of the leading entrants now makes it more dif-

ficult for new entrants to leverage the novelty and newcomer status.

The bootstrap appeal factors are those aspects of a P2P application that pro-

duce a magnetic effect on potential users to join the P2P application’s community

during its precritical mass stage. For file-sharing systems these factors have

included free content, wide selection, and convenient access. For VoP2P, factors

have included low-cost international calls, free Internet telephony, and high-
quality audio. For P2PTV, access to out-of-region programming and convenience

while traveling have been important. A challenge for P2P entrepreneurs is to iden-

tify the right set of appeal factors—more a social and marketing dimension than

an engineering problem.
ANATOMY OF SOME P2P BUSINESS MODELS
VoP2P

Consider an imaginary VoP2P provider that offers free unlimited P2P voice calls

for all users. The free services are a way to attract users who will then be willing

to pay for additional services, such as peer to PSTN calls and voicemail, charged

on either a pay-for-use or subscription basis. Let’s consider the costs for operating
this service in two parts: fixed and per service use. As shown in Table 1.1, the

VoP2P provider needs to maintain some server infrastructure so that it can man-

age user accounts and provide the charged services such as voicemail. Most likely

these servers are hosted in multiple data centers for redundancy. There is some
Table 1.1 Example Costs Borne by VoP2P Provider

Fixed Costs Costs Per Service Use

Development and maintenance of P2P software Data center network use for

transaction collection

Bootstrap and login servers Per-call-minute access via PSTN

gateway

Servers to mediate access to worldwide PSTN

gateways for peer-to-PSTN calls

Voicemail storage on servers
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per-service use of these services, such as storage use and network traffic in the

data center. For free unlimited P2P voice calls, the costs to the VoP2P provider

are primarily fixed. The provider develops and maintains the application software

and operates some server infrastructure for overlay bootstrap and user account

management.
A user downloads the VoP2P application and installs it on his machine. Typi-

cally the user will stay connected to the VoP2P overlay when not making phone

calls so that he can receive calls and view the status of her buddies. Since the peer

host is online, the VoP2P overlay uses such hosts for relaying traffic between

other peers. As discussed in Chapter 12, relays can reduce end-to-end delay and

increase throughput—important for voice traffic, particularly for calls between

continents. In addition, some peers are behind NATs and require some peer

with a public network address to mediate the connections on its behalf. As part
of the VoP2P overlay, the peer will also perform overlay message routing and

maintenance.

Since some peers are acting as traffic relays, they are receiving and forward-

ing voice packets for peers that could be anywhere in the Internet. The traffic

relay peers are those peers that are not behind firewalls—for example, some

home networks or university networks. The network providers for these net-

works in which the relay peers are located bear traffic-related costs for this

relayed traffic. In addition, almost all VoP2P traffic is carried over the Internet
backbone, so these ISPs also incur traffic-related costs. In effect, some network

operators are subsidizing VoP2P voice call traffic that would otherwise be car-

ried over voice networks. In addition, those open networks tend to subsidize

the relay traffic flows for peers in closed networks. These costs are summarized

in Table 1.2.

If all peers were behind NATs, the VoP2P overlay would have to provide its own

servers to act as traffic relays and NAT traversal mediators. The number of servers

needed to do this could be large. The relay peers are contributing disproportionately
to the operation of the VoP2P overlay.

Today, VoP2P traffic is a small percentage of worldwide voice calls. The pro-

portion of voice calls to other Internet traffic is relatively small. If VoP2P call

volume grew to 50% of worldwide voice calls, the costs of network providers

would increase substantially, and the economics of the PSTN might be effected

as well.
Table 1.2 Example Costs Borne by Peers and Network Providers

Costs Borne by Peers Costs for Network Providers

Traffic relaying by superpeers Relayed traffic carriage in access networks

NAT traversal mediation by superpeers VoP2P traffic carriage in backbone network

Traffic from originated or terminated calls
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File Sharing

Next consider a hypothetical P2P music file-sharing service, which supports free

content and licensed content with legitimate access models for both. The free

content could include song previews, songs licensed for a limited number of play-

backs, or songs that are freely released to advertise a new artist or new album.

The licensed content could include content in which a license must be acquired

or content with embedded advertisements that produces advertising revenue for
the content owner each time the song is played.

Suppose all the content is protected with encryption. Then a peer may freely dis-

tribute the media to any other peer, but playback of the media requires a license that

includes the decryption technique. Figure 1.7 shows the initial acquisition of the

content and license. A media distributor and licensor may operate separately from

the P2P overlay to which Peer 1 belongs. Peer 1 obtains the media and a license

for Peer 1’s use of the media. Later Peer 1 can distribute the media to other peers.

The ability to freely distribute protected media is referred to as superdistribution.
Many other peers may be interested in having this content, and these peers

can share the content files without returning to the media distributor (see

Figure 1.8A). If a license file is required to play the content, each peer can obtain
Media
Distributor

Licensor

Peer 1

Distributor
Peer

Acquirer
Peer

P2P Network
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media license

3
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FIGURE 1.7 Licensed media acquisition for P2P redistribution.
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a peer-specific license by either sending a request back through the distribution

chain (Figure 1.8B), directly to a license distributor (Figure 1.8C), or opportunis-

tically (Figure 1.8D). Prior to purchase of the license, there could be different

policies for use of the protected content:

n None
n Unlimited use up to an expiration time
n A limited number of uses
n Preview only
n Compulsory advertisement per each use
n Offline use permitted until device connects to network which reaches con-

tent distributor; user must then either obtain license or pay for any usage

done while offline

As in the previous example, we divide the costs of the P2P file-sharing provider

into fixed and per service (Table 1.3). In addition to the costs for developing

the application software and managing users on the P2P overlay, the provider

needs additional capability to populate media files into the overlay and to



Table 1.3 Example Costs Borne by P2P File-Sharing Provider

Fixed Costs Costs Per Service Use

Development and maintenance of P2P software Data center network use for

transaction collection

Bootstrap and login servers Per-playback advertisement-

viewing collection

Servers to access media files at media distributors’ servers

and push these media files into the P2P overlay

Servers to integrate advertisements into media files
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integrate advertisements into the content. These functions could also be per-

formed by other peers as well. The provider also needs to collect transaction
records so that the provider’s share of license revenue can be verified. Likewise,

the viewing of advertisements must also be tracked.

In addition to exchanging media files with other peers, peers may also store

media files for which they have no particular interest, simply to enable easier

locating of content by other peers. The storage of these files and the network traf-

fic to upload and download these files to other peers are costs borne by each peer

(Table 1.4). Content providers may still face lost revenue due to pirated content,

and they require servers to perform the content distribution and licensing. Finally,
network providers in both access networks and the backbone network bear costs

for media file transfer and the overlay operation.
SOCIAL IMPACT
Like other Internet trends such as Web publishing, blogging, virtual worlds, and

RSS feeds, P2P carries the perception of empowerment of the end user and
Table 1.4 Example Costs Borne by Peers, Content Providers, and Network Providers

Costs Borne by Peer
Costs for Content
Providers

Costs for Network Providers

Storage of media files Lost revenue due to

pirated content

Traffic carriage in access networks

for peers acting as media

repositories

Remote peer traffic to

store and retrieve

media files

Servers to handle media

file distribution and

licensing

Media file transfer traffic carriage

in backbone network
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leveling of the playing field. Each peer represents a user who at some level is an

equal member of the peer community formed by the P2P overlay. As a paradigm,

P2P implies symmetry among all participants. This is a powerful association

because it can be used in the application design to create a sense of community

among the members. This social dimension may also motivate increased participa-
tion. P2P doesn’t have an exclusive lock on this social orientation. Many Web stor-

efronts have long used user recommendations and feedback to create a

community experience. However, in most cases, transactions are still between

the individual and the storefront, or at least mediated by the portal. The P2P par-

adigm can be used to enable direct and unmediated interactions in the P2P com-

munity, which might have both positive and negative consequences.

Users who adopt this P2P paradigm may experience a sense of community and

may be motivated at the social level to contribute to this community. Intuitively, it
is possible to see how P2P systems can be used to create large communities of

users. Many contemporary social networking sites also foster community. In most

cases these communities are relatively small social groups that share common

interests. Whether large P2P applications can catalyze large social communities

remains to be seen. Factors such as the antisocial behavior of a minority and

the anonymity of large groups that seem to foster such behavior as observed

today in chat rooms and blogs are the kinds of impediments that might be diffi-

cult to overcome.
The P2P model is not restricted to applications such as file sharing and instant

messaging. The P2P overlay can be separated from the specific application, simi-

lar to the principles of service-oriented architectures, and multiple applications

could be delivered by one P2P overlay. Service-oriented P2P architectures have

been proposed in which the overlay acts as a service delivery platform and in

which each peer can offer specialized services to other peers. Peers seeking

services use the overlay’s search capability to perform service discovery. This is

discussed further in Chapter 11. This potentially provides a new channel to
deliver information and communication services. The potential for users to con-

tribute new services is another kind of empowerment. Thus P2P is a vehicle for

the end user to adopt the role of publisher and service offerer, not just a

consumer role.
TECHNOLOGY TRENDS IMPACTING P2P
The question as to how the future adoption of P2P architectures evolves depends

on the resolution of some of the technology issues raised earlier in this chapter. It

also depends on trends in other technologies. Higher-capacity networks will

enable larger-scale applications. Delivery of HDTV quality video over the Internet

using techniques such as IPTV will likely spur the use of P2PTV approaches for
delivery of HDTV.
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The proliferation of broadband wireless networks and the increasing capacity of

mobile devices means that in the future a large percentage of devices attached to

the Internet could be mobile. Furthermore, many types of consumer electronics

devices are likely to be network capable as well.

The emergence of pervasive sensor grids for a wide range of applications such
as weather prediction, environmental monitoring, and safety and protection of soci-

ety are another important trend. P2P networking may be a useful tool for coordinat-

ing and adapting the operation of such grids. Other interesting new P2P

applications may emerge due to increasing availability of position and location-sens-

ing devices such as GPS receivers.
SUMMARY
P2P is a disruptive technology for deploying applications that scale to millions of

simultaneous participants. Because each user contributes computer and network-

ing resources, it offers a low-barrier-of-entry platform with high scalability. Exten-

sions to the basic model could offer different grades of service as well as address

limitations of the basic model. These limitations are due to the decentralized char-

acter of the overlay and the unreliability of the peers.

As a disruptive technology, P2P raises important questions about the long-term
impact on other approaches for video delivery, telephony, and other information

delivery services. In addition, P2P applications to date have been primarily

adopted in the consumer space. Requirements for further growth such as man-

ageability, security, or ability to generate revenue may in the near term require

hybrid variations of the basic model.

Today, deployed P2Papplications demonstrate that it is feasible to launch an entry-

point application at a low cost-quality operating point. As the application adoption

grows, new services can be added and pricing can include service quality differentia-
tion. The ability to incorporate reliable and secure transactions is still nascent.
FURTHER READING
The key ideas of P2P overlays can be seen as the confluence of a number of ear-

lier concepts, including distributed systems, peer-to-peer protocols in local area

networks (LANs), and specialized overlays developed for network services such
as email and Internet relay chat (IRC). Consumer device technologies such as Uni-

versal Plug and Play (UPnP)7 and Bluetooth enable devices to network peer to

peer in a limited area. Because of the networking techniques used in these sys-

tems, they don’t scale beyond home or personal area networks.

Clark et al.1,2 have examined the impact of overlays on the technology and

business of the Internet. Peterson et al.3 present the benefits of network virtuali-

zation achievable through overlays.
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The potential application of P2P search to Web search has been discussed by

Li et al.4 and Suel et al.5

Several industry consortia promote P2P technology, including the Peer-to-Peer

Universal Computing Consortium (PUCC)8 and the Distributed Computing Indus-

try Association (DCIA).9



CHAPTER
2
Peer-to-Peer Concepts
Looking beyond the popular P2P applications surveyed in the previous chapter,

here we present a forward-looking view of the operation of a P2P system, where

P2P encompasses mobile and other consumer electronics devices. We then dis-

cuss the principles of P2P overlays, such as self-organization and peer autonomy.

Then we provide a sequence of sections giving various perspectives on the P2P

model, including a graph theoretic perspective, a design space perspective,

a routing performance perspective, and an implementation perspective.
OPERATION OF A P2P SYSTEM
The User View

A user downloads P2P application software from a Website on the Internet and

installs it on his personal computer. Let’s assume that the computer is connected

to the Internet via a broadband connection. After the application is launched, it

attempts to connect to certain hosts on the Internet that are configured in the

software for bootstrapping purposes. It uses these connections to find other

peers to connect to so that it can join the overlay. Initially it makes a few con-
nections, gradually adding other connections. It may periodically change existing

connections to newpeers if the original peers leave the overlay or are unresponsive,

or if the new peers provide better access to portions of the overlay.

Even if the user hasn’t initiated any file searches or selected local files for

sharing, the P2P application is most likely using the computer and its network

connection for other peers. It may be responding to search requests from other

peers or acting as a bootstrap peer for newly joining peers. It may be caching

popular files on its disk drive to save search time for other peers. It could be
proxying connections on behalf of peers that are behind firewalls. The user might

not be aware of this use of his computer, or he might notice that the system is

more heavily loaded now that the peer software is running. Network connections

might appear slower. However, the details of how the P2P application uses the

25
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local machine and its resource, including what other peers are accessing its

resources, are generally hidden from the user.

Later, when the user starts searching for files on the P2P network or publishes

his own files for sharing with others, the P2P application will send messages to

other peers to which it is connected. These messages may be further propagated
to other peers if needed. The messages can contain search requests or carry

information about the files the peer is sharing.
P2P Beyond the Desktop Computer

Though the majority of P2P applications today are running on desktops, the use

of P2P technology is not restricted to desktop computing. In fact, P2P appears

to be an even better fit for the capabilities and usage patterns of networked
consumer electronics (CEs). For example, Figure 2.1 illustrates a P2P scenario

involving streaming media with peercasting of live video to a set of different view-

ing devices.

On a limited scale, P2P is already being used for such personal devices.

Because P2P means that a user’s personal devices can interoperate without

requiring a server, it is attractive to many consumers. Several industry specifica-

tions have been developed for devices to connect peer to peer and to share

resources and services. For example, the Universal Plug-and-Play (UPnP) stan-
dard12 defines protocols for devices in the home network to directly advertise

their services to other devices and for other devices to discover and use these

services. Bluetooth13,14 is another standard for wireless devices to locate other

devices and share services.
Live scene

Internet-scale
P2P Overlay

FIGURE 2.1 A P2P streaming scenario involving networked consumer electronics devices

as peers.
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Sharing services between devices can expand the capability of the device

without changing its form factor or cost (Figure 2.2). For example, the keypad

of one device (Figure 2.2A) might be a more capable way of controlling a second

device while displaying its output on a third device with a larger screen. Using

local P2P connections, devices can also share storage (Figure 2.2B) or services

such as instant messaging (Figure 2.2C).
Specifications such as UPnP and Bluetooth focus on home networks and near-

field networking. In local area networks, peer-to-peer functions can be performed

using existing broadcast protocols. But such protocols don’t scale beyond local

networks. If such protocols could be made to work in wide area networks, what

kinds of capabilities would result? Applications that involve wide area networks

include remote-to-home device control, wide area resource sharing, and location-

based services. In remote-to-home device control, a consumer roaming outside

the home uses a personal mobile device to connect to her home network and
access information and services there. A consumer could retrieve video, photos,

or music stored on the home media server or could control the home environment

remotely.

In wide area sharing, a consumer accesses other device resources anywhere

on the Internet. For example, let’s say that a user scheduling a recording on

a home personal video recorder (PVR) has a scheduling conflict (Figure 2.3).

Is there a PVR elsewhere that could be used remotely to record the desired pro-

gram? PVRs that are available advertise their availability and services using a wide
area P2P network. When a program scheduling request occurs, the busy PVR dis-

covers the available PVRs using a P2P discovery mechanism, schedules the

recording request, and later obtains the media. If the media format needs to be

converted to a specific format, other peers can perform the transcoding, again

located using P2P advertisement and discovery.

In location-based services, a consumer uses a personal mobile device to access

services and resources according to their geographic position. The services could

be in the immediate vicinity, along a planned travel route, or in a specific area,
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such as California wine country or Broadway in New York City. As we discuss in

Chapter 11, location-based discovery uses geographic position or geographic area
as one of the search criteria.
Overlay View

Let’s assume that a device’s capabilities are sufficient for it to participate in broad-

band networks, connect to the Internet, and support the message rates prevalent

in P2P applications. Then how would such a wide area P2P network work?

How is the network formed? How does it maintain its connectivity in the face
of membership changes? How do applications use it for application purposes?

Initially there could be a small number of devices available to form a P2P net-

work, but no P2P network is yet formed. At this stage we encounter the boot-

strap problem. If there is no wide area P2P network, then, since these peers

may be widely distributed on the Internet, they need some other way to discover

each other and form the initial overlay. Possible ways of doing this include using a

well-known server to register the initial set of peers, using a well-known multicast

group address for peers to join, or using local broadcast to collect nearby peers,
followed by progressively merging these peer sets into larger sets until the overlay

is formed.

Once a sufficient set of peers are interconnected, then the overlay is formed.

The overlay is a logical layer for message delivery between peers. If two peers

aren’t directly connected, they can use the overlay routing mechanism to send
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messages to each other indirectly via other peers. There is a wide range of

schemes to organize the overlay. These schemes vary by how much state each

peer has to keep, how much message overhead is needed to stabilize the overlay,

and the message delivery performance that the overlay provides.

Peers are autonomous and may leave the overlay at any time. New peers may
join the overlay. Fluctuations in overlay membership may ripple through the over-

lay, changing overlay peer relationships. For example, peers may change their

adjacencies and neighbors in the overlay due to membership changes. The coor-

dinated management of overlay routing state among the peers is called overlay

maintenance. Since the peers are collectively coordinating the management of

the overlay routing behavior without the use of a centralized overlay manager,

P2P overlays are self-organizing.

Some peers store information or content that other peers would like to access.
Peers search the overlay for the information of interest, perhaps using keywords.

P2P search is different from Web search. Web search engines index a large number

of Websites and store the indexed text in a set of servers that are then queried by

users. In P2P search, the index itself is distributed across the entire P2P overlay.

A query must be routed to the correct peer. Efficient search query routing is an

important aspect of P2P design.

Overlay routing of messages and search are the building blocks for construct-

ing many types of P2P applications. In the next section we discuss the principles
of P2P overlays. Then we provide a sequence of sections giving various per-

spectives, including a graph theoretic perspective, a design space perspective,

a routing performance perspective, and an implementation perspective.
PRINCIPLES OF THE P2P PARADIGM
A peer-to-peer overlay is a distributed collection of autonomous end-system com-
puting devices called peers that form a set of interconnections called an overlay

to share resources of the peers such that peers have symmetric roles in the over-

lay for both message routing and resource sharing. The P2P overlays of interest in

this book have several inherent characteristics that we treat as the principles of

the P2P paradigm: self-organization, role symmetry, resource sharing, scalability,

peer autonomy, and resiliency.

The peers self-organize the overlay. Self-organization is a characteristic of many

physical and social systems such that the organization of the system increases with-
out being controlled by an encompassing agent or the environment. An overlay net-

work design that is consistent with self-organization would not use a star topology or

a broadcast topology to operate the peers or form the overlay. Instead the topology

is likely to be decentralized such that the interconnectedness of any peer, referred

to as the degree, doesn’t dominate the overlay graph. Further, self-organization

means that peers cooperate in the formation and maintenance of the overlay, with

each peer using local state and partial information about the overlay.
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The peers have symmetric roles. In contrast to client/server computing,

where the roles of the endpoints are asymmetric, peers are functionally equal.

Any peer can store objects on behalf of other peers, support queries, and

perform routing of messages. In practice this idealized property is affected by

peer lifetimes, variations of peers’ hardware and network capacity, and network-
ing issues such as Network Address Translation (NAT) that are discussed in

Chapter 6. The relaxing of a strict interpretation of role symmetry has led to hier-

archical schemes such as superpeers, as discussed in Chapter 5. Similarly, band-

width capacity variations have led to proposals for variable-hop overlays, which

are discussed in Chapter 13.

Peer-to-peer overlays are highly scalable. Several P2P applications operate

today with millions of peers participating. An important dimension of scalability

is the ability to operate the P2P overlay as the size grows by 100 times or more.
Quantitatively, scalability means that the network and computing resources used

at each peer exhibit a growth rate as a function of overlay size that is less than lin-

ear. The overlay should also scale geographically so that peers throughout the Inter-

net can participate. Another key aspect of scalability is graceful degradation. As the

performance limits of the overlay are reached, service levels fall off gradually. Early

designs for some P2P applications that used controlled flooding were not scalable,

because the message traffic grows exponentially with the number of peers.

Peers are autonomous. Each peer determines its capabilities based on its own
resources. Each peer also determines when it joins the overlay, what requests it

makes to the overlay, and when it leaves the overlay. Peer autonomy leads to

unpredictability in the services offered by the overlay. A peer that searches for

an object and doesn’t find it might not be able to determine whether the object

doesn’t exist in the overlay or the peer storing the object has left the overlay.

Peers may act to limit their resource contribution to the overlay, for example,

by disconnecting from the overlay when not using it. Design techniques to coun-

teract unpredictability include redundancy and incentives. Peer autonomy also
means that peers may not have preexisting trust relationships. This exposes

P2P overlays to a variety of security issues, discussed in Chapter 14.

A P2P overlay provides a shared resource pool. The resources a peer contri-

butes include compute cycles, disk storage, and network bandwidth. There is a

minimum resource contribution threshold for a peer to join the P2P overlay. Each

peer’s resources are used to support the operation of the overlay and provide

application services to other peers. Resource contribution should be fair. A fair

resource-sharing criteria might be that peer resource contribution never exceeds
a certain bound. Another criteria might be that the average resource contribution

of any peer should be within a statistical bound of the overall average of the P2P

system. Resource contribution should be mutually beneficial. Users are incented

to participate in P2P applications if the benefit is comparable to the resources

being contributed. Free riders are peers who use the resources of the P2P overlay

without contributing to the overlay. Nonuniform popularity of resources may lead

to an imbalanced load on peers.
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Peer-to-peer overlays are resilient in the face of dynamic peer membership,

referred to as churn. Since peers have an incomplete view of the overlay topol-

ogy and peer membership, the overlay depends on intermediate peers to forward

messages to the correct region of the overlay. When peers leave or join the over-

lay, the routing paths are affected. The overlay graph structure or geometry con-
tributes to resilience by enabling connectedness in the topology despite peer

node changes. The graph structure provides multiple paths between every pair

of endpoints. The connectivity of the graph is reflected at each peer in terms

of its adjacencies to other peers. As the peer membership changes, adjacent

peers have incorrect adjacency information. Mechanisms referred to as overlay

maintenance are used to keep the peer state refreshed.

The principles of P2P overlays are generally not completely satisfied in any sin-

gle system. Hybrid P2P systems may relax one of more these design goals. Some
systems use central servers to authenticate peers; after peers are authenticated,

the overlay itself operates without the central server. Improving the design of

P2P overlays is an active area of research.
A GRAPH-THEORETIC PERSPECTIVE
Overview

We introduce a graph-theoretic notation to provide additional clarity to some con-

cepts and terminology. In parts of several later chapters, a graph-theoretic view is

helpful to explain functions such as overlay multicasting, mobility, and security

that depend on the semantics of the overlay.

Another use of this section is as a step toward proving certain aspects of an
overlay algorithm. Examples include:

n Stability. Does the rate of change of state of the peers follow the rate of

membership change?
n Convergence. Is a message guaranteed to reach any peer in a bounded num-

ber of steps? Does the routing state stay within a certain accuracy bounds?
n Boundary conditions. At what churn rate does the algorithm become

unstable or nonconvergent?

These questions are difficult to answer in general and have been studied in most

cases for specific algorithms.
Overlay

A P2P overlay can be viewed as a directed graph G ¼ (V,E), where V is the set of

nodes in the overlay and E is the set of links between nodes. Nodes are located

in a physical network, which provides reliable message transport between

nodes. Each node p has a unique identification number pid and a network
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address nid. An edge (p,q) in E means that p has a direct path to send a message

to q; that is, p can send a message to q over the network using q’s nid as the des-

tination. It is desirable that G be a connected graph. Maintaining connectedness

and a consistent view of G across all nodes is the job of the overlay maintenance

mechanism.
Due to peers joining and leaving the overlay, the overlay graph G is dynamic.

As an approximation (Figure 2.4), we say that the overlay proceeds through a

temporal sequence Gi(Vi, Ei), Giþ1(Viþ1, Eiþ1), Giþ2(Viþ2, Eiþ2), . . . . When a

peer p0 joins Gi at time i, the overlay join operation causes the overlay to become

Giþ1(Viþ1, Eiþ1), where V iþ1 ¼ Vi [ {p0} and Eiþ1 ¼ Ei [ {(p0, m)} [ {(n, p0)}.
That is, the join operation adds p0 to the set of nodes and adds at least one incoming

and at least one outgoing link between p0 and some other node in the overlay. Like-

wise, when a peer p0 leaves Gi at time i, the overlay join mechanism causes the over-
lay to become Giþ1(Viþ1, Eiþ1), where Viþ1¼ Vi�{p0} and Eiþ1 ¼ 8m, n Ei�{(p0,
m)}�{(n, p0)}. That is, the leave step removes p0 from the set of nodes and removes

all incoming and outgoing links between p0 and the remaining nodes in the overlay.

We treat overlay membership operations join and leave as part of the overlay

maintenance mechanism. Peers p and q are adjacent in the overlay if they have

an edge (p,q) or (q,p) in E. A join or leave operation by peer p directly affects

peers to which p is adjacent and may indirectly affect the state of other peers. That

is, there is a direct effect on node q if (q,p) is added to q’s routing table as a result
of p joining the overlay, or if (q,p) is removed from q’s routing table as a result of

p leaving the overlay. If there is no direct effect on q, there may still be an indirect

effect on q that causes it to change the organization or contents of its routing table.

Overlay maintenance is the management of these changes through the exchange of

information about G between peers.

Peers p and q are neighbors in the overlay address space if pidp and pidq have

a successor or predecessor relationship. Such neighbors are used to store object

replicas in some designs. In some designs, neighbors are also selected as special
adjacent peers.
Gi Gi+1 Gi+2

FIGURE 2.4 Overlay as a sequence of membership changes.
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The preceding temporal sequence model of G is an approximation because

it assumes that peer membership changes are sequenced and that the overlay

maintenance for a specific membership change completes before the next join

or leave begins. It is possible that several nodes may join or leave the overlay

simultaneously. In a large overlay, it is usually the case that overlay maintenance
operations due to a specific membership change will take an extended period

of time and will overlap many other overlay maintenance operations. Also, if a

large number of peers leave the overlay simultaneously, it could cause the overlay

to form one or more partitions.

G is a global view on overlay node membership and routing. Each peer has a

local view of overlay node membership and connectivity, which is its routing

table. Ignoring dynamics, each peer has a routing table Rp (Vp, Ep) � G such that

Vp � V,
Ep � E,
Ep � 8(p,q) 2 E ) (p,q) 2 Ep,
Vp � 8 (p,q) 2 E ) q 2 Vp ^ �∃ q 2 Vp^ (p,q) =2 E.

That is, p’s routing table lists all nodes and edges to which it has a direct link. Each

node entry in the routing table includes both its pid and nid. Given the approxi-

mated overlay dynamics (Gi, Gi+1, Gi+2, . . .) previously stated, it is possible that
two peers p0 and p00 could have routing tables that are out of sync not only with each

other, that is, Rp00 � Gi and Rp00 � Giþ1, but also with respect to the current overlay

state Gi+n. Further, Rp
0 and Rp00 could have inconsistent views that are not subsets

of any Gj. These inconsistent views are due to lack of global synchronization in the

overlay and delays in propagating membership state changes throughout the overlay.

The routing procedure for peer p to send a message to some peer u is:

n If (p,u) 2 Ep, then send the message directly to u.
n Otherwise, select one or more edges e ¼ (p,q) from Ep according to a

routing criteria that converges, that is, moves the message closer to the

destination at each step.

Each edge from one peer to another peer that a message traverses in G is called a

hop. Message path length from source to destination is frequently measured in

terms of number of hops.

Graph Properties

Graph geometry affects routing performance, maintenance, and resiliency.23,24,25,26

The graph geometry defines the basic static graph topology. Example geometries

that have been used in various P2P overlay designs include rings, de Bruijin graphs,

hypercubes, and butterflies. In Chapter 3 we discuss power-law graphs, random

graphs, and the small-world model in the context of unstructured overlays. In this

subsection we define several important graph properties.
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The graph diameter is the maximum distance between any two nodes in the

graph. From an overlay routing perspective, graph diameter provides a worst-case

path length for sending a message between any two nodes in the overlay under

static conditions. Consequently, graph diameter is an important parameter for

comparing various geometries that might be used in an overlay.
Each peer in the overlay has a number of adjacent peers to which it has

a direct connection. The number of such adjacencies is the degree of the peer.

Outgoing degree is the number of adjacencies from the current peer to its neigh-

bors. Incoming degree is the number of adjacencies to the current peer from its

neighbors.

A routing path is the sequence of edges or hops from the peer sending the

message to the peer which is the target of the message. The routing path is recur-

sive (Figure 2.5A) if each successive peer along the path forwards the message to
the next peer in the path. The routing path is iterative (Figure 2.5B) if each suc-

cessive peer along the path replies to the sender with the next-hop information.

The sender then forwards the message to the next hop. An iterative path, though

less efficient than a recursive path in terms of number of messages, allows the

sender to determine the progress of the delivery.
Object Storage and Lookup

A set of objects S is stored in the P2P overlay. Each object s has a unique identifier

sid and a binding with the peer that stores it (p,s).
In a distributed hash table (DHT), the object ID space and the peer ID space

are the same, and each peer p with predeccessor q is responsible for sids such
that pidq < sid � pidp. On average, the number of objects p is responsible

for is |S|/|V|. The DHT has at least two operations, insert(sid, s) and s ¼
lookup(sid), which use key-based routing to store and retrieve objects in the

DHT, respectively, according to their sid. In key-based routing, the object key
or sid is used as the overlay address for the DHT messages. Thus an insert mes-

sage with destination equal to sids is routed to that peer that is responsible for

sid. Peers at intermediate hops forward the insert message using the sid as

the destination address.
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FIGURE 2.5 (A) Recursive and (B) iterative routing paths.
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A DESIGN SPACE PERSPECTIVE
The designer of an overlay can view the design problem as selecting an operating

point in a design space. Understanding the design space is important for finding

solutions that might be advantageous for certain uses. Several researchers have

proposed general-purpose frameworks or models. Here we’ll follow the reference

model proposed by Alima et al. later expanded in [20] and shown in Figure 2.6.
First there is an identifier space to which all object and peer IDs are mapped.

The identifier space has size, an ordering relationship, a distance relationship, and

an equality test. Since it is used for addressing, it must be efficient for storage and

routing. The number of peers and resources that are represented in the identifier

space could be very large, so it must be scalable. It must be location independent

so that moving the device doesn’t affect its addressability. For message routing to

converge, the identifier space should support a metric such that at any position in

the address space some distance to the target can be computed. At a minimum,
this distance function should be 0 when the target is the same as the current

node, and it should be greater than or equal to 0 if it is a different node.

As we discuss later in this chapter, the mapping of peers to the identifier space

is important for locality properties of the overlay with respect to the underlying

network. The mapping of peers to an identity in the identifier space is denoted

by F(P)! I. The mapping should be done so that each peer has a unique identity

in the identifier space. Each peer is responsible for a subset of the identifier

space. In practice, the usual approach is for a peer to cover the range down to
its predecessor in the identifier space. If I1, I2, and I3 are the identities of three

adjacent peers, I2 is responsible for the range I1 < I2 � I3.
Peers

Resources 

Identifier
Space

Universe
of Overlays 

Structuring
Strategy

FP→I

FR→I

FIGURE 2.6 P2P reference model.
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Mapping resources to the identifier space is done to facilitate discovery of

those resources and is denoted by F(R)! I. A typical mapping scheme distributes

resources randomly in the identifier space—for example, using a hash function.

Other schemes could be used to produce locality or clusters for supporting range

queries or enabling associative semantic search.
The overlay has geometry, the static structure of the graph. There is a wide range

of possible geometries. Important properties guiding the selection of the geometry

include the diameter of the graph, the connectedness of the graph, and the distribu-

tion of node degree across the nodes in the graph. The structuring strategy integrates

the geometric model with a routing strategy and a maintenance strategy.
A ROUTING PERFORMANCE PERSPECTIVE
Routing Geometries and Resilience

The overlay geometry refers to the static model of the graph that the routing

and maintenance algorithm constructs in the absence of churn. Such models

have been widely studied in graph theory, and some examples are listed in

Table 2.1, along with selected overlay algorithms Chord, CAN, and Pastry, which

are described in Chapter 4.
Table 2.1 shows the degree and diameter for various graph models, where N is

the size of the overlay. From this table we see that there are graph structures

whose node degrees are independent of the size of the overlay and whose

diameters grow more slowly as a function of overlay size than those of several

proposed overlay designs.

For illustration, consider an overlay of 106 nodes. Table 2.2 compares the

diameter of these same graph types for different values of k, the degree of each

peer in the overlay. Looking at k ¼ 20 row highlighted in the table, we see a sub-
stantial difference in the diameters of the graphs. Similar results hold for average

distance in these graphs.
Table 2.1 Asymptotic Degree-Diameter Properties of Various Graphs25

Graph Degree Diameter

de Bruijin k logk N

Trie kþ1 2 logk N

Chord log2 N log2 N

CAN 2d ½ dN 1/d

Pastry (b–1) logb N logb N

Classic butterfly k 2 logk N(1-o(1))



Table 2.2 Graph Diameter for an Overlay of 106 Nodes25

k de Bruijin Trie Chord CAN Pastry Classic Butterfly

2 20 — — huge — 31

3 13 40 — — — 20

4 10 26 — 1,000 — 16

10 6 13 — 40 — 10

20 5 10 20 20 20 8

50 4 8 — — 7 7

100 3 6 — — 5 5

Note: — indicates that the graph does not support that node degree.
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Tradeoff Between Routing State and Path Distance

If each peer had complete information about all other peers in the overlay, each

P2P message would take at most one hop. However, all peers would need to

maintain an O(N) routing table size, and each join and leave event would need

to propagate to all other peers in the overlay, creating a large maintenance load.
This maintenance load would grow with both the size of the overlay, N, and

the churn rate. On the other hand, if a node knows only the link to its successor

on a ring, routing state and maintenance load would be nominal but routing

performance would be O(N).

Since neither of these two operating points is generally practical, there has been

a great deal of interest in exploring the state versus overhead tradeoffs (Figure 2.7)

of various algorithms. These tradeoffs are explored in detail in Chapters 4 and 5.
Churn and Maintaining the Overlay

The dynamic behavior of the peer population is an important aspect to the perfor-

mance of the overlay. Peer lifetimes and arrival and departure rates can be assessed
for existing overlays and used to evaluate new designs. Since P2P overlays are large

and decentralized, such statistics are difficult to collect. Existing systems have been

analyzed using crawlers. These measurements provide insights into peer behavior.

Overlay measurements have multiple uses for improving overlay design as well

as for comparing designs. Uses include:

n Estimating themaintenance traffic needed tomaintain the overlay routing state.
n Providing criteria such as previous session history and peer uptime, which

can be used to determine which peers are likely to be long lived. Long-lived

peers may be preferred by the overlay for certain roles (and thus elevated to
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FIGURE 2.7 Asymptotic tradeoff between peer-routing table size and overlay diameter.28
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superpeer) and may also be preferred by applications to render long-lived

application services.
n Determining the data replication level to mitigate data loss.
n Determining path redundancy to mitigate routing failures.

Figure 2.8 shows the peer lifetime or session time distributions for three different

file-sharing P2P applications: Gnutella, Kad, and BitTorrent. These distributions

show a median peer lifetime of less than 1 hour and as little as 3 minutes. Accord-

ing to these measurements, as many as 2% of the peers will have a lifetime as long

as one day.

Figure 2.9 shows measurements for the Skype P2P telephony application,
which is discussed further in Chapter 12. These measurements were only col-

lected for the Skype superpeers, that is, those nodes that, because they have

more capacity and are not behind NATs, are able to act as relays for regular peers.

Skype shows much longer median lifetime of about 5.5 hours. Since Skype is a

personal communications application, users are motivated to stay connected for

longer periods of time to receive calls. In typical file-sharing use, users download

the desired content and then disconnect. About 1% of Skype supernodes have

lifetimes exceeding eight days.
Figure 2.10 shows interarrival times for new peers joining two of the file-

sharing systems used for measurements in Figure 2.8. Frequently an exponential

distribution is assumed to model peer join rates. An exponential distribution

is suitable for independent events that have a constant average rate of arrival.

As Figure 2.10 shows, an exponential distribution doesn’t fit the data well, possi-

bly because the independence assumption is violated due to bursts of requests for

a new release or temporal correlation.
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Locality

The performance of routing in the overlay is also strongly affected by the relation-

ship between the topology of the overlay and the underlying network, often
called the underlay. If the overlay adjacencies are constructed without
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considering the underlay, peers that are near in the overlay might be far away in

the network. Consequently, each routing hop in the overlay might map to many

network layer hops.

Figure 2.11 illustrates the difference between an overlay constructed with

regard to the underlying network (Figure 2.11A) versus one that is not
(Figure 2.11B). In general, assigning peers to the overlay according to their
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position in the underlay will lead to much greater efficiency. However, it requires
that network distance information be collected and may decrease reliability in

designs that use neighbors to store replicas. Chapter 10 discusses measurement

techniques needed to determine node locality.
AN IMPLEMENTATION PERSPECTIVE: OVERLAYWEAVER
OverlayWeaver30 is an open-source P2P emulator and toolkit developed by

Kazuyuki Shudo. It is designed for experimenting with peer-to-peer overlay algo-

rithms and has an extensible design that is convenient for adding new routing

algorithms. It includes a number of existing multihop overlay algorithms, includ-

ing Chord, Pastry, Tapestry, and Kademlia.

OverlayWeaver runs on one or more computers and can be configured to emu-

late thousands of peers on each computer. Simple application behavior can be

specified in text files called scenario files, which are loaded when the emulator
is launched. Alternately, a developer can extend the behavior of OverlayWeaver

by writing new Java classes. OverlayWeaver provides an API for the distributed

hash table, which closely follows the design proposed in 31.

Figure 2.12 shows the architecture of OverlayWeaver. Specific routing algo-

rithms are loaded by the routing driver and invoked using the routing runtime

interface. The creation and parsing of messages between peers is handled by

the messaging service, which is also integrated with the routing driver. The spe-

cific routing algorithm being used is transparent to the application, which uses
the DHT interface to insert and look up objects.

In addition to the functions shown in Figure 2.12, the OverlayWeaver design

has a distributed emulation framework that automatically launches and inter-

connects multiple emulators across a network of machines. Running within each
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emulator are one or more peers, as specified at startup time using scenario files.

The peers use the usual virtual name space and overlay messaging, which is

mapped by the emulation framework to the correct host and port on the net-

work. Thus using OverlayWeaver it is possible to run thousands of peers on a

small network of machines.
FIGURE 2.13 OverlayWeaver message visualizer tool. Reprinted from 30, Copyright (2008),

with permission from Elsevier.
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OverlayWeaver also provides some tools for monitoring the operation of the

overlay during an emulation session. Figure 2.13 shows screen shots of the mes-

sage visualizer for small overlays of about 25 peers. Each node is a peer, and arcs

between nodes are messages between those peers. The visualizer can be used to

see routing patterns over time as the emulation runs.

Shudo et al. did an experiment (Figure 2.14) with OverlayWeaver on 196 com-

puters. The message load shows an initial peak as the peers form the overlay and
initialize their routing state. Peers join the overlay at intervals of 8 seconds, so the

overlay is formed after about 1600 seconds. After the overlay is formed, each

node randomly issues a DHT get and put request at 2-second intervals until the

emulation completes.
SUMMARY
The idea of peer-to-peer communication has a long history with many interesting

examples. The creation of self-organizing, decentralized, Internet-scale peer-to-

peer overlays has a relatively short history but has garnered a significant amount

of interest. The dynamic behavior of peers is perhaps the key factor complicating

the optimization of P2P overlay design.

There are a number of ways to look at P2P overlays, from user to application

developer, system designer, and researcher. Similarly, there are a variety of
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relevant conceptual, theoretical, and implementation perspectives to consider. In

this chapter we have sampled some of the different perspectives for P2P overlays

and laid some of the important conceptual foundations that will be needed in

subsequent chapters.
FOR FURTHER READING
Schollmeier17 presents definitions of peer-to-peer concepts. Various researchers

have provided frameworks and reference models. Alima et al.33 and Aberer

et al.20 define a P2P reference architecture that is discussed in Section 2.

Biskupski, Dowling, and Sacha32 characterize self-organization in P2P systems.
In their analysis, self-organizing systems exhibit properties of decentralization,

localized consensus, and utility optimization. The mechanisms to achieve self-

organization include partial views, feedback, decay, an evaluation function, and

action selection. Many existing P2P systems including DHT designs are relatively

static to be considered self-organizing in their model.

Graph-theoretic views of overlays are discussed further in Chapter 3, “Unstruc-

tured Overlays.” Loguinov et al.25 use a graph theoretic view of P2P overlays to

evaluate overlay diameter and resilience. Other studies of overlay resilience
include Gummadi et al.23 and Wang, Xuan, and Zhao.22 Kong et al. use a probabi-

listic failure model to develop the Reachability Component Model framework for

evaluating overlay resilience.24

There has been growing realization that stochastic models of overlay churn

and maintenance are more appropriate than analyses that start with a stable graph

and use maintenance to repair it. This is due to the strong likelihood that large

overlays never stabilize. An example stochastic analysis of Chord is found in 19.

This is discussed in Chapter 5.
A number of researchers have studied existing peer-to-peer systems for their

dynamic characteristics. Stutzbach and Rejaie18 use a particularly fast crawler,

Cruiser, to collect measurements on three file-sharing P2P applications. They also

provide a detailed analysis of the types of errors that occur in measuring large P2P

systems.



CHAPTER
3
Unstructured Overlays
Most deployed P2P applications have used unstructured topologies. Here we look at

this important class of overlay in detail, starting with the basic routing mechanisms.

Then we discuss the theory of various types of unstructured graphs such as random

graphs, power-law random graphs, and scale-free graphs. Influential designs such as

Gnutella, Freenet, Fastrack, and Gia are then discussed. Ideas from social networks,

especially the small-world phenomenon, are related to unstructured topologies,

and an overview of social overlays follows. The chapter concludes with a brief look
at how an experimental overlay emulator implements its routing layer.
CONNECTING PEERS ON A GLOBAL SCALE
Envision aworldwide content-sharing system that permits any type of information to
be discovered and shared among users. Of course, many file-sharing systems have

been available for a number of years, but these existing systems—although highly

popular—perhaps don’t work optimally. It might be difficult to find specific files if

the files are low in popularity, since therewon’t bemany copies of the files in the net-

work. The search request might take a long time to respond. Files that show up in the

search might not be retrievable, because the host is no longer on the network. After

retrieval the files might be found to be corrupted, truncated, or polluted. The use of

the file-sharing software itself might lead to spyware or malware infesting a user’s
computer, and the performance of a user’s computer and network connection might

degrade substantially when connected to the file-sharing system. There could be a

large number ofmatches to the search query, and itmight be difficult to decidewhich

version of the file is the best one to download. Information that a userwanted to share

with only specific parties or under specific content-licensing terms might inadver-

tently be shared in an unrestricted fashion to all users of the file-sharing system.

These issues involve a variety of design dimensions, from security to distributed

search and semantics or efficient and fair resource sharing.We candivide theproblem
into how the nodes interconnect (this chapter and next), how search criteria are spe-

cified andperformed (Chapter 7), and how the system and its information are secured

45
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(Chapter 14). In this chapter we look at the way file and similar information sharing

works when the P2P application does not impose much if any structure on the inter-

connection of the peers. Such approaches are classified as unstructured overlays.

An important observation about the nature of information sharing in P2P appli-

cations compared to information delivery via the World Wide Web is that P2P
involves primarily individuals as both information publishers and users. Thus there

is a social dimension to P2P information sharing that is derived from the social rela-

tionships between the individuals who comprise the P2P system. These relation-

ships might be explicit, as in sharing photographs with friends or family, or

implicit, such as sharing based on common interests or common properties. Infor-

mation sharing tailored according to common interests is successfully exploited by

many recommender systems.

What are the important social relationships in information sharing, and how can
they be exploited in a P2P system? More specifically, how can social relationships

be reflected in the P2P interconnection structure? These social relationships might

range from close friends with common interests, a small peer group with a shared

common interest, or a larger community of interest to a large population in which

subsets of individuals have common interests or social properties that are predic-

tors of other information interests.

Another interesting question is, if nodes connect to other peers based on

proximity in the network, as a result of successful queries, or based on social rela-
tionships, what kind of structure emerges? How does the number of nodes that

are neighbor peers affect performance? What are the requirements for search

on overlay topology, and how does topology affect various types of queries such

as exact match, wildcard, range, and semantic lookup?
BASIC ROUTING IN UNSTRUCTURED OVERLAYS
Flooding and Expanding Ring

Let’s assume that each peer keeps a list of other peers that it knows about. We

can call these peers the neighbors. If neighbor relations are transitive, we have
connectivity graphs such as the one shown in Figure 3.1A. In this particular

graph, peers have between two and five neighbors in the overlay. The number

of neighbors a peer has is called the degree of the peer. Increasing the degree

of the peers reduces the longest path from one peer to another (the diameter

of the overlay) but requires more storage at each peer.

Once a peer is connected to the overlay, it can exchange messages with other

peers in its neighbor list. An important type of message is a query for specific

information. The query contains the search criteria, such as a filename or key-
words. Since we don’t know which peers in the overlay have the information,

we could try sending a query to every peer we know. If the neighbor peers don’t

have the information, they can in turn forward the request to their neighbors, and
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FIGURE 3.1 (A) Unstructured topology showing connections between peers and (B) query

flooding to four hops.
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so on. A few checks are needed to prevent messages from circulating endlessly.

First, in case the message loops back or is received over more than one path, each
peer can keep a list of message identifiers that it has previously received. If it sees

the same message again, it simply drops the duplicate message. Second, so that

peers don’t have to remember messages for an arbitrary time, which would

require a continuously growing amount of storage, each message has a time-to-

live (TTL) value that limits its lifetime. The TTL value of a message is set by the

message originator and decremented by 1 at each peer that receives the message.

When the TTL value of a message reaches 0, it is no longer forwarded.

This simple query algorithm is called flooding (Figure 3.1B) and is shown in
the following pseudo-code:

FloodForward(Query q, Source p)

// have we seen this query before?

if(q.id 2 oldIdsQ) return // yes, drop it

oldIdsQ ¼ oldIdsQ [ q.id // remember this query

// expiration time reached?

q.TTL ¼ q.TTL – 1

if q.TTL � 0 then return // yes, drop it

// no, forward it to remaining neighbors

foreach(s 2 Neighbors) if(s 6¼ p) send(s,q)

As mentioned earlier, each peer has a list of neighbors. It initializes its list of

neighbors when it joins the overlay, for example, by getting a copy of the neigh-

bor list of the first peer in the overlay that it connects to. Over time it can add and

remove peers from its neighbor list. To refresh and update its neighbor list, it can

send requests to current neighbors asking for their neighbors. It can also use
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queries from nodes it hasn’t seen before to add to its neighbor list. It removes

neighbors when they are unresponsive to keep-alive messages.

When the query is satisfied at some peer that receives the query message, a

response message is sent to the requesting peer. If the object is found quickly,

the flooding mechanism nevertheless continues to propagate the query message
along other paths until the TTL value expires or the query is satisfied. Generally

this creates substantial redundant messaging, which is inefficient for the network.

One way to alleviate this redundant messaging is to start the search with a small

TTL value. If this succeeds, the search stops. Otherwise, the TTL value is

increased by a small amount and the query is reissued. This variation of flooding

is called iterative deepening
77 or expanding ring and is particularly effective for

significantly replicated objects. The pseudo-code for expanding ring is shown in

Table 3.1 for both the peer sending the search request (left) and a peer receiving
and forwarding a request (right).

If popular objects are frequently replicated throughout the overlay, the chance

of finding a match to the query within a few hops is high. Objects that are

sparsely placed in the overlay might not be found at all for some queries. The abil-

ity to guarantee that an object can be found if it exists in the overlay is an impor-

tant feature for many applications and has motivated the structured overlay

approach discussed in the next chapter. An alternate strategy taken in
Table 3.1 Pseudo-Code for Expanding Ring

Sending Peer Forwarding Peer

ExpandingRingRequest(SearchTerm st) ExpandingRingForward(Query q, Source p)

q.st ¼ st

q.TTL ¼ minTTL // first try a small TTL

// is it an expansion of a previous query?

// send search request to neighbors

if(q.expansion ¼ false) {

foreach(s 2 Neighbors) send(s,q)

// no, have we seen this query before?

// wakeup and do a retry if request fails

if(q.id 2 oldIdsQ) return // yes,

drop it

lastTTL ¼ minTTL }

setTimer(ERRequestRetry,100) // remember this query

oldIdsQ = oldIsQ U q.id

ERRequestRetry()

// have we exceeded the permitted TTL?

// expiration time reached?

// if so, then stop

q.TTL ¼ q.TTL – 1

if (lastTTL > maxTTL) return

if q.TTL � 0 then return // yes, drop it

// no, increase TTL and try again

// no, forward it to remaining neighbors

lastTTL ¼ lastTTL þ 1

foreach(s2Neighbors) if(s 6¼ p) send(s,q)

// send it to neighbors

foreach(s 2 Neighbors) send(s,q)

// wakeup and do a retry if request fails

setTimer(ERRequestRetry,100*

(lastTTL-minTTL))
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unstructured overlays is to control the replication and placement of objects and

the neighbor relationships to increase the likelihood of finding the objects. We

discuss several approaches later in this chapter and describe overall search

mechanisms in Chapter 7.
Random Walk

To avoid the message overhead of flooding, unstructured overlays can use some

type of random walk. In random walk (Figure 3.2A), a single query message is
sent to a randomly selected neighbor. The message has a TTL value that is decre-

mented at each hop. If the query locates a node with the desired object, the

search terminates and the object is returned. Otherwise the query fails, as deter-

mined by a timeout or an explicit failure message returned by the last peer on the

walk. The initiating peer has the choice to reissue a query along another ran-

domly chosen path. To improve the response time, several random walk queries

can be issued in parallel (Figure 3.2B).

The key step in random walk is the random selection of the next hop, which
avoids forwarding the query back to the node from which the query was

received. The pseudo-code for RandomWalk follows:

RandomWalk(source, query, TTL)

if (TTL > 0) {

TTL ¼ TTL – 1

// select next hop at random, don’t send back to source

while((next_hop ¼ neighbors[random()]) ¼¼ source)

send(source, query,TTL)

}

Query
A

Query
B

FIGURE 3.2 (A) Random walk and (B) k-way parallel random walk, k ¼ 3.
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UNSTRUCTURED TOPOLOGY CONSIDERATIONS
Types of Unstructured Graphs

As observed in Chapter 2, an overlay can be viewed as a graph in which peers

are vertices and edges are overlay connections. Generally the approach used

by an unstructured overlay to collect and maintain its neighbors affects impor-
tant properties of the graph formed by the overlay. These properties include

the degree distribution of nodes in the graph, which effects load distribution,

and the diameter of the graph, which affects the hop count in query routing.

Graph properties for networks found in many different phenomena—ranging

from manmade networks such as the Internet and the hyperlink topology

formed by the World Wide Web to social networks, epidemics, and physical sys-

tems—have been extensively studied. Surprisingly, there are important classes

of graphs that can describe a large range of such real-world phenomena. As
interest in the behavior and performance of overlay networks have grown, these

graph models have naturally been used to assess the design of overlays. In

particular, random graphs and scale-free or power-law random graphs are rel-

evant to most unstructured topologies. In this section we very briefly summa-

rize some of the key points about these models, and the reader is referred

to 48 for a comprehensive recent discussion.

In addition, most P2P applications can be described in terms of social interac-

tions and can be related to the social properties of the participating users. Conse-
quently, properties of social networks have attracted the interest of P2P overlay

designers. The small-world model is a well-known result related to social net-

works proposed by the psychologist Stanley Milgram40 to explain degree of sepa-

ration in society.
Random Graphs

A random graph is formed for a given set of vertices by adding edges between

pairs of vertices chosen uniformly at random. The random graph Gn,p is a class of

random graphs in which p is the probability of an edge existing between any
two vertices, independent of any other edge in the graph, and 1-p is the probabil-

ity of the absence of an edge between any two vertices. Since the number of edges

in Gn,p is n(n-1)p/2, the average degree of a node in Gn,p is approximately np.
Although random graphs are important for their analytical properties, they

have been found to differ from real-world networks in two important ways. First,

real-world networks exhibit clustering. Clustering is a property of a network such

that two nodes are more likely to have an edge if they have a common neighbor.

This can be measured using the clustering coefficient,39 which is the probability
of vertex clustering averaged over all pairs of vertices in the graph. In random

graphs, edges are independently formed between nodes, so the value of the clus-

tering coefficient is p, the probability of an edge being selected between two
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nodes. In many real networks, the clustering values range from a few percent to
as much as 50%.35

Second, the distribution of node degrees for most real-world networks follows

a power-law function, meaning that a small portion of nodes have very large

degree. Figure 3.3 shows the node degree distribution for a random graph

(Figure 3.3A) and power-law graph (Figure 3.3B). The distribution for the random

graph has a Poisson distribution with mean at k ¼ <k> and decays exponentially

for large k. The distribution for the power-law graph does not have a peak and

decays as a power law, P(k) � k-g. Such networks are also referred to as scale-free
networks, a term introduced by Barabási and Albert.36Scale-free refers to the

behavior of functions that satisfy the form f(ax) ¼ g(a)f(x), that is, an increase

in the scale of x doesn’t affect the density of f(x) [42].

For a P2P overlay, scale-free networks offer the possibility that as the network

becomes very large, it will still have very short diameter due to clustering, the

existence of a small number of nodes with very high degree, or a few long-range

connections. This property can be very important to limiting the hop count of

query routing in unstructured overlays, provided it can be leveraged in the rout-
ing mechanism. For example, Figure 3.4 visually compares the level of reachabil-

ity for a random graph and a scale-free graph with the same number of nodes and

edges. The nodes with the largest degrees in each graph are effectively hubs that

can be used to route to larger portions of the network. The five largest hubs in

the random graph (Figure 3.4A) connect to 27% of the graph, whereas the five

largest hubs in the power-law graph (Figure 3.4B) connect to 60% of the graph.
Power-Law Random Graphs

Given the benefits of scale-free graphs, we might ask what mechanisms could

be used to construct the overlay organization to produce and maintain the
power-law degree distribution. Further, how does such an overlay organization



FIGURE 3.4 (A) A random graph and (B) a power-law graph. Each graph contains 130 nodes
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interact with query routing, node capacity, object placement, and peer

relationships?

Barabási, Albert, and Jeong37 identified two characteristics of real-world net-

works to explain the occurrence of scale-free networks. First, most networks

grow over time by connecting to existing nodes in the network. Second, new

nodes tend to form connections with existing high-degree nodes, a property they

refer to as preferential attachment. However, other competing explanations have

also been proposed.
Adamic et al. analyzed two search strategies in power-law graphs, comparing

random walk with query routing biased toward high-degree nodes. Biasing the

query routing toward high-degree nodes outperforms random walk in terms of

both search time and coverage of the overlay (Figure 3.5).
Scale-Free Graphs and Self-Similarity

Power-law, scale-free networks have received wide-spread attention because of

their apparent universal applicability to a wide range of domains, yet there have

been some criticisms of their use as models due to lack of precision in formulat-

ing the key properties of such graphs and questions as to their applicability to

engineered systems such as the Internet.34
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Li et al.42 have recently provided a more precise “scale-free metric” derived as

follows: Let g be a graph with edge-set ¼ e, and let the degree at a vertex i be di.

They define the metric:

sðgÞ ¼
X

ði;jÞ2e
didj:

For a given degree distribution, this is maximized when high-degree nodes
are connected to other high-degree nodes. The following metric is in the range

of 0 and 1, such that values close to 1 are scale free and values close to 0 are

scale rich.

S gð Þ ¼ s gð Þ
smax

Here smax is the maximum value of s(g) for the set of all graphs with an identical

degree distribution to g. Their analysis shows that scale-free networks (1) are cre-

ated by random growth processes, (2) have a hublike core structure, and (3) are

self-similar.
Social Networks and the Small-World Phenomenon

The intuitive notion that every person has some indirect connection through a

small set of intermediaries to every other person is referred to as the small-world

phenomenon. The idea was popularized by Milgram,40 who performed a well-

known experiment involving letter delivery between strangers in different regions

of the United States. Using only local knowledge of immediate acquaintances, each

participant was asked to forward the letter to a well-known acquaintance selected

to bring it closer to the ultimate destination. The experiment showed that short
paths, between five and six in Milgram’s experiment, exist in large social networks

and that using only local information, individuals can find these paths.38

Watts and Strogatz39 were subsequently able to show the construction of ran-

dom graphs that exhibit the small diameter of uniform random graphs and the

clustering behavior of real networks. Starting with a random graph in which all

edges are to nearby neighbors, called short-range edges, some edges are selected

randomly and replaced with edges connecting the node to another node in a dis-

tant part of the graph. These new edges are called long-range edges, and the com-
bination of short-range and long-range edges creates the required properties to

support the small-world phenomenon.

The P2P model mirrors a social network because of the potential relationships

between users of a P2P application. Consequently there is some interest in using

a search approach similar to the social cues and context that people use in social

networks. The intent is to mirror the familiar social phenomenon of finding infor-

mation by contacting those in one’s social circle who either are likely to know it

or can find someone in their social circle who is likely to know it. We discuss
some current approaches to this topic in a later section of this chapter.
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EARLY SYSTEMS
Napster

Napster65 is a file-sharing system that used a central server for storing and search-

ing the directory of files, but performed the file transfer in a direct P2P fashion.

After its launch in 1999, Napster achieved huge notoriety, first as the earliest
and as an immensely popular file-sharing system and, subsequently, in a relative

short period of time, as a legal test case for personal use of shared media. After

losing on the legal front, Napster was shut down. In reaction to the legal issues

Napster faced, subsequent file-sharing systems used a full P2P architecture for

both the file directory and file transfer functions. The majority of these designs

used an unstructured overlay mechanism. Although Napster is not a full P2P

system, it popularized the P2P concept in the mass media and influenced

subsequent file-sharing systems.
Gnutella

Gnutella was the first full P2P file-sharing system and has remained one of the

more popular systems to date. The earliest versions of the Gnutella protocol,

through version 0.4, used an unstructured overlay with flooding for query rout-

ing. After scalability became an apparent performance issue, the most recent ver-

sion of the Gnutella protocol (version 0.6) adopted a superpeer architecture in

which the high-capacity peers are superpeers and all queries are routed, using a
flooding mechanism, between superpeers.

The Gnutella protocol is implemented in a variety of P2P clients and its messag-

ing is described in Chapter 6. Gnutella has been the subject of many research ana-

lyses intending on improving the efficiency and effectiveness of the protocol

design. The properties of the Gnutella network have also been the focus of various

studies to determine, for example, whether the Gnutella network has a power-law

distribution and what the peer lifetime distribution is. For example, [51] analyzes

snapshots of the Gnutella network over a period longer than 18 months. As shown
in Figure 3.6, the node-degree distribution is not power law but has an abrupt peak

at about 30 edges. The range of node degree < 30 represents nodes that have

recently joined and are in transition to the maximum connected state. The small tail

> 30 represents either several nodes that are clustered behind a firewall or clients

that have been modified for a higher level of connectivity.
FastTrack

FastTrack is another unstructured P2P overlay that appeared around the same
time as Gnutella and was used by a number of file-sharing clients, including

KaZaA, Grokster, and Imesh. It is a proprietary system that uses an encrypted pro-

tocol. FastTrack was analyzed in 200353 using a modified client and a protocol
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decryption package developed by the giFT project. In this study, two sets of mea-

surements were made separated by two months using specially instrumented cli-

ents and a packet sniffer platform.
FastTrack uses a superpeer architecture in which high-capacity peers are

supernodes (SN) and low-capacity peers are ordinary nodes (ON). In an overlay

of about 3 million nodes, the number of SNs is in the range of 25,000 to

40,000. Each ON maintains a connection with one SN. The SN provides its client

ON with a list of other SNs, which the ON caches. After an ON issues a query to

the SN and receives its responses, the ON disconnects from the current SN and

reconnects to a new SN from its list. During reconnections to new SNs, it also

receives a new SN list that it merges with the existing list.
An SNmaintains about 40 to 50 connectionswith other SNs (Figure 3.7A). An SN

on a residential broadband connection (Figure 3.7B) maintains connections to

about 50 to 80 ONs. SNs with greater network capacity—for example, a university

campus network—maintain connections with about 100 to 160 ONs at any given

time. The average lifetime of an SN-SN connection is 34 minutes and an SN-ON is

11 minutes. Approximately 33% of the connections last less than 30 seconds.

The dynamics of the SN-SN and SN-ON connections appear to have several

purposes, including load distribution across SNs, improving the locality of con-
nections, and connection shuffling by ONs to increase the coverage of long

searches over the overlay. High connection entropy also makes tracking of peer

transfers more difficult, a potential motivation considering the legal battles of sev-

eral of the file-sharing systems.
Freenet

Freenet was proposed by Ian Clarke43 in 1999 as a distributed peer-to-peer file-
sharing mechanism featuring security, anonymity, and deniability. The Freenet

design discussed here is described in a paper published in 2000.44 Both objects



0

A
1 2 3

Time (hrs)

N
um

be
r 

of
 a

ct
iv

e 
T

C
P

 c
on

ne
ct

io
ns

0

20

40

60

80

100

120

140

160

180

200
ON to SN connections

SN to SN connections

4 5 6

0
B

1 2 3

Time (hrs)

N
um

be
r 

of
 a

ct
iv

e 
T

C
P

 c
on

ne
ct

io
ns

0

20

40

60

80

100

120
ON to SN connections
SN to SN connections

4 5 6

FIGURE 3.7 FastTrack supernode (SN) and ordinary node (CN) connectivity: (A) an SN located

on a university campus network and (B) an SN located on a residential broadband connection.

Reprinted from 53 # 2006, with permission from Elsevier.

Early Systems 57



58 CHAPTER 3 Unstructured Overlays
and peers have identifiers. Identifiers are created using the SHA-1 one-way hash

function. Peer identifiers are called routing keys. Each peer has a fixed-size rout-

ing table that stores links to other peers. Each entry contains the routing key of

the peer. Freenet uses key-based routing for inserting and retrieving objects in

the mesh. Requests are forwarded to peers with the closest matching routing
key. If a request along one hop fails, the peer will try the next closest routing

key in its routing table. The routing algorithm (Figure 3.8A) is steepest-ascent hill

climbing with backtracking until the request TTL is exceeded. Consequently,

depending on the organization of the links and the availability of peers, it is pos-

sible that requests could fail. Freenet counteracts this by caching objects along

the return path both on lookup and insert requests. An object is stored at a peer

until space is no longer available and it is the least recently used (LRU) object at

that peer.
As shown in Figure 3.8B, performance grows logarithmically until the network

reaches about 250,000 nodes.

Freenet is an open-source project. The evolution of the design of Freenet is

described in [47].
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FastFreenet45 is a proposed modification of the Freenet design to improve the

request hit ratio by over six times compared to regular Freenet routing. In Fast-
Freenet, each peer shares a fuzzy description of the files that it has with its neigh-

bors. When a query is received, a node can tell which neighbors are likely to have

the information, and forwards the query accordingly. The fuzzy description is

an N-bit number in which each bit corresponds to 1/N segment of the key space.

A 1 bit means that one or more files in that part of the key space are stored at that

peer. A 0 bit means that no files in that part of the key space are stored at

that peer.

Freenet caches objects that have been returned in response to earlier queries,
to increase the likelihood of a successful query response. When the cache is full,

space is made for new object query results by removing the LRU entry in the

cache. An alternate policy is to prefer objects that are clustered around keys

of interest. Objects that are furthest from the clustering key are removed first

from the cache when new query results are available. Inspired by the clustering

property of the small-world model, Zhang, Goel, and Govindan46 show that this

caching policy significantly improves Freenet’s query hit rate. Since the cache

policy is purely a local decision, no change to the Freenet protocol is needed to
implement it.

The key clustering mechanism works as follows. Each node randomly selects

a seed key that it uses to form the key cluster in its cache. When the cache is full,

the key furthest from the seed key is removed. This is called strict enhanced cluster-

ing. A variation of this is called enhanced clustering, in which some cache entries far
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from the seed key are randomly retained in the cache. Figure 3.9A compares the two

key clustering cache schemes with LRU. As the number of objects in the overlay

increases, the clustering policies provide a substantial improvement to the hit ratio

compared to LRU. For successful requests, the average number of hops using LRU

is somewhat better than enhanced clustering and significantly better than strict
enhanced clustering (Figure 3.9B).
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IMPROVING ON FLOODING AND RANDOM WALK
Techniques

The basic flooding and random walk routing techniques have limitations. Flood-

ing is inefficient and doesn’t scale. Random walks could take a long time to find

an object. In the unstructured overlay approach, what additional techniques are
available to improve performance? The key choices include the overlay topology,

object placement, caching, and query forwarding criteria.

In an unstructured overlay, each peer has control over the number of incoming

and outgoing connections to other peers and to which peers such connections are

made. There are many criteria that can be considered for determining these choices.

Among them include the capacity of the peer, the type of content stored at the

remote peer, and the connectivity of the remote peer. In addition, as discussed ear-

lier, each peer’s connectivity contributes to the average diameter of the overlay.
Clustering can be used to increase the route or object density with respect to

some property. For example, clusters are formed in the topology when the probabil-

ity of two vertices being connected by an edge is higher when these vertices have a

common neighbor. Topology clusters can be based on proximity of the peers in the

network, a preference for connecting with high-degree nodes, or shared properties

of the peers or their local contents. Object clusters can be created by having each

peer store objects that are close in some identifier or semantic space. Assume that a

peer remembers those remote peers that returned results to previous queries. The
existence of clusters can be used in future queries when a peer wants to locate

objects similar to those that it found in the past. By routing such queries to related

peers in a cluster, the chances of locating similar objects increase.

Object placement is the selection of nodes in the overlay where an object is

stored. Factors influencing placement include object popularity and the query-

routing mechanism. Distributing replicas of popular objects across the overlay

can help distribute the search load and reduce the message cost to locate an

object. Object placement may be accomplished by explicit push of objects to
other peers or by caching the responses to previous queries.

Randomwalk forwards queries in the absence of any particular knowledge about

where the object is likely to be. It may be possible to improve on random walk by

informing the forwarding algorithm about the objects that are stored at neighboring

peers. Neighboring nodes can exchange summaries of the types of objects that they

store. These summaries can be cached and might need to be periodically refreshed.

Attractive properties of random walk and flooding are their relative simplicity to

implement and minimal storage and computation overhead. As more intelligence is
added to the query-routing algorithm, increased overhead is likely to result. A way

to quantify the resource-performance tradeoff is needed. Various metrics are used

to quantify performance, and these metrics are frequently evaluated using a query

load that approximates real application use. The next section discusses several

important metrics used in studying unstructured overlay algorithms.
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Metrics

As a query is sent from one node to the next, a message is transmitted at the net-

work level between the nodes. Each step of transmitting a message between

neighboring peers is called an overlay hop or simply a hop, and the overlay

hop may correspond to many network hops, depending on the proximity of

the peers in the underlying network. The more hops a query uses to find an

object, the more latency for responding to the request. Two query-routing techni-
ques can be compared using hops per request and hops per successful request.

Hops per request count the number of message hops a request accumulates, inde-

pendent of whether the request is successful or not. Hops per successful request

count the accumulated message hops for successful requests only. This answers

an important question: If the object can be found, how quickly can it be found?

Increasing the number of successful requests is also desirable. An important

component is the design of the query language used in the query request, and

this is discussed in Chapter 7, “Search.” Assuming that the query language is fixed,
various query-routing techniques can also be compared using the request hit

rate. The request hit rate is the ratio of the number of successful requests to

the total number of requests issued. For a given message overhead and peer

resources consumed, the higher-request hit rate is preferred.

To evaluate query-routing algorithms, a representative topology and workloads

are selected. These values can be selected based on existing deployed P2P appli-

cations. During simulation analysis, the preceding metrics are computed for a

given workload and then used to compare two or more algorithms.
Case Study: Gia

Gia48 is an unstructured overlay that improves on the scalability of designs that use

flooding or random walk. A key aspect of Gia is its ability to distinguish overlay

nodes according to their capacity and to distribute load through the overlay accord-

ing to the capacity of each node. In particular, node index state, connection
degree, and permitted query rate are each regulated according to the available

capacity of the node. The ability to recognize and adapt to node heterogeneity is

a practical issue because large overlays will have a significant range of node band-

width, CPU, and storage capacity. It also means that low-capacity nodes won’t be

overloaded.

Gia’s design enhancements can be divided into the following four components:

n Dynamic topology adaptation. Gia forms an overlay in which the hub

nodes, those with high connectivity degree to other nodes, are the high-

capacity nodes. The mechanism is adaptive in that nodes actively seek more

neighbors to satisfy their own capacity level.

n Active flow control. To prevent nodes from being overloaded with mes-

sages, nodes provide tokens to their neighbors to regulate the message rate.
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Thus a node can only send a message to its neighbor when it has received a

token from that neighbor. Tokens are assigned to neighbors in proportion to

their capacity.

n One-hop index replication. Nodes send a copy of the index of the objects

they store to their neighbors. When a node receives a query message, it

looks in both its local index as well as the copies provided by neighbors

to see if there is a match.

n Biased random walk search protocol. As a result of the previous three

enhancements, high-capacity nodes are likely to have a high connectivity

degree and have the index information for the largest numbers of peers. Fur-

ther, these nodes are able to handle more of the query traffic. A peer

forwarding a query preferably forwards it to a high-capacity neighbor.

For a given network size and peer capacity, the query rate can be increased until

it reaches a saturation point, after which the performance degrades. The query

level at which this saturation is reached is called the collapse point.48 Larger

values of the collapse point are preferred because they mean that the overlay
has more capacity to support queries. Figure 3.10A shows the collapse point of

Gia compared with three other unstructured query mechanisms for networks of

size 5000 and 10,000 nodes. The three other mechanisms are random walk on

a random topology (RWRT), flooding (FLOOD), and a superpeer architecture
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(SUPER). In the superpeer architecture, high-capacity peers form a backbone

overlay and other peers connect only to superpeers. A query from a peer is sent

to its superpeer, which propagates the query to other superpeers using flooding.
As shown in Figure 3.10A, Gia provides significantly higher values for the collapse

point, followed by the superpeer architecture.

For low replication rates, the superpeer architecture does provide a lower hop

count value per query compared to Gia and other schemes (Figure 3.10B), where

hop count measures the average number of hops in the overlay to reach the object

being queried. A replication rate of 0.1% means that in an overlay of 10,000 nodes,

each object would have 10 copies. So, at a replication level of 50 on a 10,000 node

overlay, Gia and the superpeer architecture are comparable in terms of hop count.
Figure 3.11 shows the ability of Gia to distribute message load according to the

node’s capacity rating. In the figure, node capacities are 1, 10, 100, 1000, and 100000.
SOCIAL OVERLAYS
Using Similar Interests Among Peers

In the small-world experiment recounted earlier, individuals located other widely

separated and previous unconnected individuals using a small amount of informa-

tion about these remote individuals and leveraging only their immediate contacts.

Generalizing, when looking for information that is not widespread knowledge,

people often look in their social circle to find the best “expert” or someone

who knows the best “expert.” For example, a person traveling abroad for the first
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time will seek someone else who has recently traveled to that same region for
information. In a short period of time, a person could seek information from dif-

ferent individuals in their social circle on widely ranging and unrelated topics,

from travel to cooking in a new cuisine to music recommendations. Individuals

are able to use their social networks to find the nearest “expert” and search simul-

taneously for “experts” on unrelated topics without difficulty. They can find

“experts” whose information or experience is likely to be close enough even if

it is not an exact match. Further, one’s social network is dynamic, changing due

to chance encounters, introductions from peers, and life situation changes.
Peers in a computer network are agents for people who are typically acting on

their own personal information goals. Although the social context in the peer-to-

peer environment is usually not identical to the offline social network, many

social applications form communities of interest. Thus the goal of social overlay

design is for peers to interconnect in a way that mimics social networks and that

can then be used for routing queries to neighbor peers who are likely to have the

information. Unlike other overlays, such social overlays do not rely on network

layer relationships between peers. Social overlays require ways to describe peers’
interests, discover peers with similar interests, order multiple peers from most

similar to least similar for both queries and overlay relationships, and revise peer

relationships due to changes in interests.

Tribler

The goal of Tribler is to exploit social affinity between peers with similar prefer-

ences. Peers with similar tastes are likely to have files of interest to a peer that is

searching for files. Several issues must be addressed for this approach to
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improve search time and reduce overhead. In a large overlay, only a small frac-

tion of peers are likely to be close matches for similar tastes, and an efficient

method to locate these peers is needed. For example, a recent survey of the

social network Friendster.com58 involving 27,000 users found that a user has

on average 243 friends and 9,147 friends of friends (Figure 3.12). An efficient
way to locate other peers with similar tastes is needed. Second, a way to

describe a user’s preferences and match preferences between users is needed.

Such techniques have been developed for recommender systems and are used

in many online e-commerce and social networking sites. Tribler peers exchange

preference lists and use Bloom filters to reduce the amount of information each

peer has to exchange.

To prepare for future searches being directed toward the most appropriate

peers, each peer maintains several caches about other peers in the overlay. These
caches contain the other peers’ friends lists, peer neighbors, file metadata cache,

and preference lists. This information helps the peer determine the parts of the

overlay that should be explored and where to direct queries when new informa-

tion is sought.

To keep the caches fresh, peers periodically exchange their preferences for

certain files with other peers. These exchanges use an epidemic protocol called

buddycast. Epidemic protocols, also called gossip protocols, mimic the flow of
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viruses in social networks and, typically, the peer selected for information

exchange is selected randomly. During the contact, both peers exchange informa-

tion that affects the other peer’s behavior. In the case of Tribler, peers update

their preference lists in two phases. Then they can find other peers in the overlay

that have similar tastes. In the exploitation phase, peers periodically contact
peers already known to have similar tastes to collect new preference lists. In

the exploration phase, peers periodically randomly select peers that they haven’t

previously contacted.

Lin et al.57 evaluate a similar system that uses random walk to locate peers

with similar preferences. Peers that have close matches are arranged as neighbors

in the overlay. Then, during a search for a new object, query-routing proceeds to

neighbors that are most likely to have the object based on preferences. This

scheme was simulated using user preferences from a music playlist database of
1300 users. The similarity links improved both the success rate and the precision

rate compared to flooding and random-walk queries in overlays with no similarity

links but with increased messaging overhead.
INGA

INGA56 creates a semantic social overlay in which each peer has four types of
peer links. Each peer organizes a semantic index for its local content using the

Resource Description Framework (RDF) ontology representation language. Infor-

mation is associated with a topic, and topics are organized in a semantic hierar-

chy. The semantic hierarchy and topic set is shared across all peers. Queries for

information are routed according to the associated topic and evaluated using a

semantic matching function evaluating the topic against topics in the local index.

The four types of peer links are:

n Content provider. Each response to a query is remembered by the querying

peer as a content provider shortcut. Subsequent queries for the same topic

will be routed to these peers.

n Recommender. The source of each query that is routed through a peer is

remembered by the receiving peer. Subsequent queries for the same topic

will be forwarded to these recommender peers.

n Bootstrapping. These are links to hub peers that are also in the same con-

tent provider and recommender associations; hub peers have the largest

in-degree and out-degree. Peers include their in-degree and out-degree in

their queries, and as the query is routed in the overlay, intermediate peers

extract the degree information.

n Network. As in Gnutella, a new peer connects randomly to a set of neigh-

bors in the overlay. Using these connections, a peer can gradually form its

other connection layers.
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Query routing uses only the k best matching shortcuts, and content and recom-

mender shortcuts have the highest priority. Some queries are forwarded to ran-

domly selected peers to avoid having queries stuck in local minima and to help

each peer adapt to changes in the overlay. Figure 3.13 shows performance com-

parison of INGA versus Gnutella-style lookup and a interest-based lookup design.
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KEY-BASED ROUTING IN UNSTRUCTURED TOPOLOGIES
Overview

In this section we consider two unstructured overlays that use object keys in

their query mechanism. In both examples, routing itself uses random walks.

The use of object keys means that such overlays could support distributed hash
table (DHT) semantics but with less strict guarantee on object lookup. In fact,

the UDHT design presented here provides DHT operations put and get. Later,
in Chapter 4, we look at key-based routing in structured overlays and DHTs with

deterministic behavior.

Local Minima Search

Local Minima Search (LMS)55 is an unstructured overlay that combines random walk

with consistent hashing of object identifiers and node identifiers. A node in the over-

lay is called a local minima for a given object identifier if the node identifier is the

closest match to the object identifier in a one- or two-hop vicinity around the node.

LMS proactively replicates objects at randomly selected local minima in the overlay.

As with structured overlays, discussed in the next chapter, each node in the

overlay is assigned a unique random identifier—for example, using SHA-1 hashing

of the node’s public key. Object identifiers are also unique and random in the same
m-bit address space. The distance between an object identifier x and node identi-

fier w is the arithmetic difference modulo 2m, that is, min{x-w mod 2m, w-x mod 2m}.
The basic protocol for inserting and locating an object consists of a probemessage

with the fields [initiator, key, walk_length, path]. Here initiator identi-

fies the node that is the source of the message, key is the object identifier, walk_-
length determines the number of hops the random walk phase follows, and path
is the accumulated record of nodes visited during the randomwalk. After the initiator

sends the probe message to a randomly selected neighbor, the probe is forwarded as
in the generic random walk algorithm described earlier. Each subsequently visited

node adds its identifier to the path field and forwards the probe until the walk_-
length number of hops is reached. At that point, the randomwalk phase is finished

and the deterministic walk begins. The node receiving the probe message computes

the distance between the key and the identifier of each node in a specifick-hop radius

around it. If it is the closest, the probe routing has completed. Otherwise it forwards

the probemessage to the closest node. The pseudo-code for the LMS forwarding algo-

rithm follows:

LMSForward(initiator, key, walk_length, path)
if (walk_length > 0) {

// non-deterministic phase
walk_length ¼ walk_length – 1
next_hop ¼ neighbors[random()]
send(probe, initiator, key, walk_length, path þ this_node)
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} else {
// deterministic phase
nearest ¼ this_node
foreach(node 2 neighborhood)

if (distance(node,key) < distance(nearest,key)) nearest ¼
node

if (nearest ¼¼ this_node) // store or retrieve object
else send(probe, initiator, key, walk_length, path þ
this_node)

}

One of the strengths of the LMS design is the proof of probabilistic bounds on lookup

performance for a given replication factor and number of probe messages. The

asymptotic performance bounds for search are O((N log N)/r�dh), where r is the

replication factor and dh is the size of the neighborhood. Table 3.2 shows LMS perfor-

mance for a selected set of graphs, where the average number of probes issued per

lookup is approximately equal to the number of replicas. Performance improves fur-
ther when LMS is augmented with an additional optimization, labeled Bloom Filter in

Table 3.2. In this technique, nodes create summaries of the objects that they store

and propagate the summaries to nodes in their neighborhood. The summaries are

computed using a Bloom filter. A Bloom filter is a compact bit vector representation

of a set in which a 1 bit indicates the likelihood of an element being present in the set.
Unstructured Distributed Hash Table

An unstructured distributed hash table (UDHT)54 is an overlay that supports both

unstructured and structured overlay functionality in a single overlay. There are

several rationales for such a design. First, the two types of overlays provide com-

plementary search mechanisms. Unstructured overlays provide flexible query
Table 3.2 LMS Lookup Performance for Various Graphs55

Graph
Type

Overlay
Size

Average
Degree

Number of
Replicas

Number
Visited
(LMS)

Number Visited
(LMS with Bloom
Filters)

Power law 10K 4.11 3 17.7 4.4

Random 10K 4.11 22 131.1 21.8

Gnutella 61K 4.7 16 83.9 15.7

Random 61K 4.7 45 282.8 43.8

Random 100K 17 14 55.9 14.0

Random 100K 12 19 87.1 19.0

Random 100K 7 34 185.4 34.0
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capabilities, whereas DHTs provide an exact match lookup that is guaranteed

with high probability to find any object in the overlay. Second, since most overlay

deployments today are based on unstructured overlays, UDHT could be used to

transparently transition unstructured overlay deployments to structured overlays.

The unstructured routing in UDHT is similar to Gia, described earlier. UDHT
also uses random walk, but rather than having each peer maintain a history of

queries that it has seen, to avoid duplication a list of last n nodes visited is kept

in the message itself. This mechanism is called an embedded n-window. UDHT

uses one-way random walk and a TTL of 750 hops.

Each object is identified by its key K. To store an object in the overlay, a peer first

queries the overlay for other objects with the same key. It does this by sending a

get(K)message along a randomwalk. UDHTattempts to store objectswith the same

keys at the same peers. If no object is found, UDHT issues k-way parallel randomwalk
to find k nodes to store the object. A typical object replication value for k is 5.

Figure 3.14A shows the frequency of successful lookup versus object repli-

cation factors for two different topologies. These topologies are taken from
100

95

90

85

80

%
 o

f S
uc

ce
ss

fu
l L

oo
ku

ps

75
2 3 4

Replicas per ObjectA
5

Skype-UDHT-proactive
Gnutella-UDHT-proactive

Skype-DHT-proactive
Gnutella-DHT-proactive

6 7

3

100

98

96

94

92

90

88

86%
 o

f S
uc

ce
ss

fu
l L

oo
ku

ps

6

UDHT-750-1RW-10RF
UDHT-1500-1RW

UDHT-1000-1RW
UDHT-750-1RW

9
Network Size (� 1000)B

12 15

FIGURE 3.14 (A) Comparison of unstructured DHT (UDHT) with Chord (DHT) under topologies

from Gnutella and Skype networks.54 (B) Lookup success rate for UDHT as network size

grows for several max hop-count variations for a single random walk.54 # 2007 IEEE.
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measurements of the Gnutella and Skype overlays and have respectively 1787

and 2100 peers in each. UDHT is compared with a conventional DHT based

on the Chord design described in Chapter 4. Thus Figure 3.14A shows that

DHT lookups over an unstructured topology can achieve comparable lookup

success rates compared to a DHT. However, the average number of hops for
UDHT lookups is about 200, whereas for Chord the maximum number of hops

in an overlay of 3000 nodes is less than 12. Figure 3.14B shows that increasing

the size of the overlay significantly reduces the lookup success rate unless the

TTL or replication factor is substantially increased.
UNDER THE HOOD: AN OVERLAY EMULATOR
OverlayWeaver Routing Layer

Following [63], OverlayWeaver30 separates the overlay operation into several

layers starting with the lowest layer, which implements key-based routing

according to the specified routing algorithm. On top of the key-based routing

layer are the DHT, application multicasting, and generic messaging functions.

To support the ability of the application to run different routing algorithms

without modifying application code, OverlayWeaver separates the routing algo-
rithm from the algorithm-independent portions of the routing layer using a

modular design. This allows new routing algorithms to be easily added to the

OW toolkit. The routing driver provides both recursive and iterative styles. Iter-

ative routing can support a-way parallel requests for Kademlia and other paral-

lel lookup algorithms.

The routing algorithm interface, specified in ow.routing.RoutingAlgo-
rithm, includes the following methods:

n closestNodes. Returns a set of nodes from the routing table that are clos-

est to the destination node, sorted in decreasing proximity. The calculation

of closeness depends on the distance metric used by the specific routing

algorithm.
n adjustRoot. Among the currently implemented algorithms, this method is
used only by Chord. It is invoked at the last stage of routing to select the

root node out of the list of neighbors.
n join. Invoked when a node joins the overlay. Routes a message in the over-

lay toward the identifier of the new node, causing the routing table of neigh-

bors to be updated.
n touch. The specified node, which is the sender of an incoming message, is

added to the routing table. This is an explicit feature of the structured over-

lay Kademlia discussed in Chapter 4; OverlayWeaver also implements this
behavior for Pastry and Tapestry.

n forget: The specified node is dropped from the routing table, as when the

node fails to respond to messages.
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Each routing algorithm has a separate implementation in OverlayWeaver but

relies on generic messaging operations, including:

n Routing an object request to the root node corresponding the object

identifier
n Routing a message to the node nearest the specified identifier
n Checking another node’s status
n Sending/receiving an algorithm-specific message
Unstructured Overlays in OverlayWeaver

Unstructured overlays can be built in OWusing the messaging service. Algorithms

described earlier for random walk and flooding can use the send primitive in the

OW message service.
SUMMARY
Unstructured overlays have been used in several widely used file-sharing systems,

despite their inefficiencies. In the research community there has been much

effort to study the properties of these overlays using crawlers to measure the

overlay network, peer, and content properties. In addition, many improvements

have been suggested to increase their performance and reduce overhead. Since

structured and unstructured overlays have somewhat complementary characteris-

tics, there are proposals to create hybrid overlays that combine both types of

routing algorithm. Patterning the overlay organization on power law and social
networks has also drawn a great deal of interest.
FOR FURTHER READING
Random graphs and power-law graphs have been studied extensively. A recent

collection of surveys of research in random graphs is found in [34].

An important design goal of Freenet is providing anonymized queries.
Recently, Landsiedel et al.62 developed an onion-routing scheme for multipath

routing that provides anonymized routing in overlays.

The Gnutella2 protocol52 is an offshoot of the Gnutella protocol and organizes

the overlay into hub nodes and leaf nodes. A hub node is a high-capacity node

that maintains a large number of connections to both other hub nodes and leaf

nodes. Queries are routed from one hub node by successively contacting its

neighbor hub nodes.

Other unstructured overlays include PROSA (P2P Resource Organisation by
Social Acquaintances).60,61



CHAPTER
4
Structured Overlays:
Geometry and Routing
A second category of overlays, called structured overlays, emerged to address lim-

itations of unstructured overlays by combining a specific geometrical structure

with appropriate routing and maintenance mechanisms. Here we focus on geom-

etry and routing; the next chapter is devoted to overlay maintenance. A large

number of multihop designs have been studied, which we organize into prefix

routing, ring with logarithmic degree mesh, and constant degree, such as butterfly,

cubed-connected cycles, and de Bruijin graphs. In addition, O(1)-hop approaches
offer lower hop counts but increased maintenance. The chapter concludes with

discussion of criteria for comparing various designs.
STRUCTURED OVERLAYS
Motivation and Categories

The earliest peer-to-peer systems used unstructured overlays that were easy to

implement but had inefficient routing and an inability to locate rare objects.

These problems spawned many designs for overlays with routing mechanisms

that are deterministic and that can provide guarantees on the ability to locate

any object stored in the overlay. The large majority of these designs used overlays

with a specific routing geometry and are called structured overlays. At the same

time, many unstructured overlays have incorporated some degree of routing
structure, such as clustering, near/far links, and semantic links to improve search

efficiency. In addition to the structured and unstructured overlay categories, there

are hierarchical models, which are discussed in Chapter 5.

Another difference between structured and unstructured overlays is that the

former support key-based routing such that object identifiers are mapped to

the peer identifier address space and an object request is routed to the nearest

peer in the peer address space. Peer-to-peer systems using key-based routing
75
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are frequently called distributed object location and routing (DOLR) systems.

A specific type of DOLR is a distributed hash table (DHT) in which the identifiers

are computed using a consistent hash function78 and each peer is responsible for

a range of the hash table.

Within the category of structured overlays are several dimensions for distin-
guishing the many designs. These dimensions include:

n Maximum number of hops taken by a request given an overlay of N peers.

The primary categories are multihop, one-hop, and variable-hop. We discuss

multihop and one-hop designs in this chapter and variable-hop designs in
Chapter 13.

n Organization of the peer address space. Typically the identifier space is large

and peer address assignments are uniformly distributed. The primary categories
of address space structure are flat and hierarchical. Hierarchical designs are dis-

cussed in Chapter 5.

n Next-hop decision criteria. For routing to converge to the correct destination,

the distributed routing algorithm needs to ensure that the distance between
the route progression and the endpoint is narrowing at each step. The criteria

is often referred to as a distance metric, and computation of the distance

metric in a routing context is done by a distance function. Distance metrics

that converge include prefix matching, XOR metric, Euclidean distance in a d-

dimensioned space, linear distance in a ring, and modulo bit shifting in de

Bruijn graphs.

n Geometry of the overlay. Important graph properties for search such as the

small-world model and power-law graphs were discussed in Chapters 2 and 3.

Another important characteristic is how the node degree changes as the size

of the overlay grows. This in turn reflects the growth of the routing table and

maintenance traffic. Two important categories are logarithmic degree graphs
and constant degree graphs such as butterflies and de Bruijn graphs.

n Overlay maintenance. Overlay membership changes due to peers joining and

leaving the overlay require that routing tables be updated. Strategies for overlay

maintenance include active versus correct on use. Overlay maintenance is
discussed in Chapter 5.

n Locality and topology awareness. To improve overlay performance, many

designs determine peer neighbor relationships according to the proximity
and connectivity of the peers in the underlay. Chapter 10 discusses these tech-

niques and their impact on overlay performance.

In this chapter we focus on the overlay geometry and the associated routing algo-

rithms. The dynamics of overlay self-organization, including membership changes
and overlay maintenance, are discussed in Chapter 5.



Structured Overlays 77
Geometry and Routing

Geometry defines the idealized static graph model for interconnecting peers.

It constrains the available paths for sending a message between two peers,

whereas a routing algorithm selects among these paths, depending on the

distance metric.

During the design of an overlay, the selection of the overlay geometry should

consider both static and dynamic conditions. Dynamic peer membership could
cause a specific geometry to be unstable or expensive and complicated to

maintain. Further, the important properties of the geometry that are realized

when the overlay address space is completely populated might be unpredictably

altered when the address space is sparsely populated, which would be the usual

case in practice. Other geometry-related design goals to consider include reduc-

ing the maintenance bandwidth and lowering worst-case and average-case routing

delay.

For a given geometry there may be multiple possible routing algorithms. The
routing state used by an overlay routing algorithm is referred to as the routing

table, but the actual organization of the routing state is algorithm dependent.

Organization of the routing table for fast selection of the next-hop peers is an

important aspect of the algorithm performance.

The routing behavior of a peer can be abstracted as a message-forwarding pro-

cedure as defined by the following NextHop function. The first step is to find can-

didate peers for forwarding the message. A special case is if the current peer is

the intended destination of the message. Otherwise, there may be several choices,
ordered according to their distance from the destination peer, using the distance

metric and the current values in the routing table RT. Other elements not shown

in this simplified NextHop function include whether the algorithm uses parallel

lookups, uses intermediate responses to update the routing table state, or gathers

overlay metrics.

NextHop(dest)

if(dest == this_peer) return this_peer
peer_choices = closest(dest,RT)
return peer_choices

Later in this chapter we illustrate the NextHop pseudo-code for specific
algorithms.
Roadmap for the Chapter

In the rest of the chapter we discuss a variety of multihop structured overlays

in four categories: (1) logarithmic degree using prefix routing, (2) ring with

embedded logarithmic degree mesh, (3) constant degree geometries, (4) some
specialized distance metrics. Then we discuss several O(1)-hop (one-hop)
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structured overlays that show designs that use significantly more peer-routing

state to reduce the number of routing hops. Table 4.1 identifies each of the sys-

tems and, where available, implementations and applications that have been cre-

ated to demonstrate and validate the design. Further information on accessing

implementations and Websites for these systems can be found on the Website
for this book.
Table 4.1 Structured Overlays Discussed in This Chapter

Type Systems Applications Implementations

Logarithmic mesh with prefix

routing

PRR, S-PRR

Tapestry Oceanstore,

Bayeaux

Chimera,

OverlayWeaver

Pastry PAST, Scribe FreePastry,

P-Grid UniStore,

PIX-Grid

OverlayWeaver

Bamboo P-Grid

Z-Ring OpenDHT

Ring with embedded logarithmic

degree mesh

Chord DHash, CFS Chord,

OverlayWeaver

DKS DKS

Chord#

Constant degree Ulysses

Koorde OverlayWeaver

Cycloid

Logarithmic degree with specialized

distance metrics

CAN

Kademlia KAD,

OverlayWeaver

O(1)-hop Kelips

OneHop

EpiChord

D1HT
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LOGARITHMIC DEGREE WITH PREFIX ROUTING
PRR

Prefix routing is used in many structured overlays, including Tapestry, Pastry,

P-Grid, Cycloid, and Z-Grid. Plaxton, Rajaraman, and Richa (PRR)79 presented the

first algorithm for a peer-to-peer object location and routing system in a 1997 paper.
By mapping object identifiers to the address space of peers, PRR enables key-based

routing and is able to support read, insert, and delete operations on objects stored in

the overlay. This principle is the basis for subsequent DHT designs.

PRR uses suffix-based routing, which is a symmetric case of prefix routing.

Suffix and prefix-based routing match increasing portions of the destination

address at each hop along the path until the destination is reached. For example,

if the target address is the hexadecimal address 3A9F1, in suffix-based routing

matching 4 bits at a time, successive hops along the path match xxxx1, xxxF1,
xx9F1, xx9F1, and 3A9F1, where x is a wildcard. Tapestry uses a variation of

PRR routing; other overlays, including Pastry and P-Grid, use prefix-based routing.

Tapestry, Pastry, and P-Grid are described later in this section. The PRR algorithm

doesn’t deal with overlay formation or maintenance issues.

In PRR, peers are connected in a static overlay mesh network and each peer has

a routing table to route messages. The routing table is organized in a fixed number

of levels and within each level a fixed number of entries. The number of levels cor-

responds to the number of suffix match steps performed to route an address, and
the number of entries corresponds to the number of digits in an address. So if

addresses are 24 bits in length, and each hop matches the next 4 bits of the

address, each peer needs 24/4 ¼ 6 routing table levels and 24 ¼ 16 entries at each

level. Level 1 matches the suffix position S as in xxxxxS, level 2 matches the suffix

SS as in xxxxSS, and so forth. At each level there are 16 possible digit choices to

match; hence the 16 entries at each level. In general, suppose that identifiers are

represented as a sequence of digits in some base b, with the number of digits equal

to B ¼ 2b, and the number of nodes N in the overlay is a power of B. Then suffixes
are matched b bits at a time at each hop, and the routing table at each peer has

(log2 N)/b levels and B entries per level.

In addition, in the PRR design, each entry has a cost value for routing between the

peer and the corresponding destination. The lowest-cost neighbor at any (level,
i2b) position is the primary neighbor for that entry. If there are other neighbors that

meet low-cost criteria for a given (level,i2b)position, these are stored in the rout-
ing table as secondary links. If a node w is a primary neighbor of node x at entry

(level, i), node w has a reverse link to x at the (i, j) position in its routing table.
Figure 4.1 illustrates suffix-based routing using 24-bit hexadecimal addresses

matched 4 bits at a time at successive hops. On the left are the routing table levels

at each of the six hops, showing only the primary neighbor entries; on the right

is the path the message follows from starting node to destination node. Each rout-

ing table level contains the address of the current node, with the matched
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hexadecimal digits highlighted in each row. The matching entry in each level is

shown with an arrow connecting to the next hop.
Figure 4.2A shows a fragment of a PRR overlay with the primary, secondary,

and reverse neighbor links. The insertion of an object with identifier 1AF7C94
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FIGURE 4.2 (A) Insertion of object with identifier 1AF7C94 in PRR overlay with root node

AF7C94.
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in the PRR overlay is directed along the primary neighbor links toward the root

node for this object, with the root node address equal to AF7C94. The secondary

links provide an alternate higher-cost path to the root node if the primary link

fails for some reason.
For each object identifier A, there is some node r in the overlay that (1)

matches the maximum sized suffix and (2) has the largest node identifier.

This node is the root node for A and is unique in the overlay. The root node is

where the object A is stored when it is inserted. Intermediate nodes along the

path to r store references to A. Then when a query for A is routed along these

paths, nodes that cache the reference to r can avoid further routing. If multiple

copies of an object exist in the mesh, the reference to the closest object is saved

at each hop to the root. The reverse-neighbor links are used to locate the refer-
ences so that the references can be removed when an object is deleted at the root

node.

For example, after the object 1AF7C94 is inserted at the root node, references

to the object are stored at the nodes along the insertion path (Figure 4.2B). Each

reference is a link to the object and contains the object identifier, the root node

identifier, and the cost to reach the root.

When no node in the overlay matches the (i,j) position in a routing table,

the largest node identifier matching (i,z) is chosen instead. PRR supports the
operations read, insert, and delete as follows.
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n read(A). The request starts at some node x in the overlay. The node does a

local lookup in its routing table to select the primary link and forwards the

request to the next hop. If x has a reference to A with cost k, it forwards the

cost value k with the request to the next hop. If the node receiving the request

is the root node, the object A is sent to x. If not, it checks with its primary and
secondary neighbors to see if any neighbor has a lower-cost reference to A. If
so, it updates its reference to A to refer to the new lower-cost location. Depend-

ing on which path provides the lowest-cost reference to A, the request either

returns the local reference back to x or forwards the request to the next pri-

mary neighbor, which repeats the procedure until either the root node is

reached or the lowest-cost reference A is found.

n insert(A). The request starts at some node x in the overlay. If an intermediate

primary neighbor finds a new lower-cost path, it updates its reference to A and

forwards the request along that path. Otherwise the insertion request is not

forwarded.

n delete(A). The reference to object A at the current node is removed. After

removal, the peer first checks with its reverse neighbors that share the suffix

of A’s identifier to see if any have a reference to another copy of A. If so, the
current node adds a reference to this copy of A. Then the delete request is for-

warded to the primary neighbor.

The PRR design is based on a static set of nodes. It does not consider dynamic

node membership, and no mechanism for updating routing tables on node join

or node leave is given. A simplified version of PRR called SPRR was subsequently

proposed by Li and Paxton.80 SPRR removed the locality criteria on neighbor
selection and added algorithms for node join and leave. Tapestry extended PRR

to support dynamic membership and is described next.
Tapestry

Tapestry89 is based on PRR and adds algorithms for peer join, peer leave, and

overlay maintenance. It uses prefix routing and, like PRR, organizes peer-routing
tables into levels and entries per level based on the radix of the prefix.

Figure 4.3A shows an object with identifier 4378, which is stored at two peers,

4228 and AA93, being inserted in the overlay. The two insertions are routed

toward the root node 437A along different paths, and a reference link back to

the object is stored at each hop along the path. When read operations for the

object occur, as shown in Figure 4.3B for nodes 4664, 4B4F, and 57EC, these look-

ups are routed along the primary neighbor paths until they encounter a node

with a reference to the desired object, at which point the request proceeds
directly to the peer storing the object.

Message routing in Tapestry is done hop by hop.
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FIGURE 4.3 Tapestry object publish and lookup example. (A) Object 4378 is inserted into the

overlay at two peers, and (B) three lookups for object 4378 are routed to nearest copy in the

overlay, using the reference links to quickly locate the nearest copy.89 # 2001 Springer-

Verlag, with kind permission of Springer Science and Business Media.
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NextHop(dest,n,G)

if the prefix is completed {
return this_peer

} else {
d is next digit in radix B
e is the routing table entry at level n, digit d
while e is null do {

d ¼ d þ 1 mod B
e is the routing table entry
}
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if e ¼¼ self then return NextHop(dest,nþ1,G)
else return e

}

P-Grid

P-Grid (Peer-Grid)92,93 also uses prefix routing (Figure 4.4). In this example, each

key prefix is the responsibility of two different peers, for a replication factor of 2.

The prefix tree shows which peers are responsible for the corresponding pre-

fixes. For example, peers 1 and 7 store keys that start with the prefix 000,
whereas 2 and 12 store keys that start with the prefix 11. Unlike other prefix

routing schemes, the peer identifier itself is not used for associating keys. Instead,

each peer has an assigned path prefix separate from its identifier, and it is this

path prefix that is used for prefix routing. This allows P-Grid to use arbitrary size

key identifiers for object identifiers.
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FIGURE 4.4 P-Grid overlay example with peers 1 .. 14. Each pair of peers is responsible for

keys with the indicated prefix as shown in the labeled tree. In addition, each peer has a routing

table or cache that associates key prefixes with other peers’ identifiers. Some entries in the

cache may be out of date.92 # 2004 IEEE.
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A P-Grid lookup uses the local routing table in the peer to match the closest

prefix. If the indicated peer is not available, P-Grid will perform separate check-

ing to see whether the peer is still online but with a separate IP address. After

updating any routing table entries that are out of date, the P-Grid peer forwards

the lookup with the longest prefix-matching entry. This continues until the key
prefix is completely matched.

P-Grid has a number of interesting features, including a public key mechanism

for authenticating peer-to-peer interactions, and a use-driven maintenance mech-

anism for updating its routing table when needed.
Pastry

Pastry88 is a multihop structured overlay that uses prefix routing until the last hop,
at which point it uses a separate list L of leaf nodes to finish the routing. The leaf

nodes are a set of |L|/2 successors and |L|/2 predecessors in the address space,

and are also used for placement of object replicas. Like PRR and Tapestry, the Pas-

try routing table has logB N levels and B ¼ 2b entries per level. Routing table entries

have only a single peer address at each position, which, like PRR and Tapestry, is

selected using a proximity mechanism. There are no secondary or reverse pointers.

Pastry maintains a third set of nodes M called the neighborhood set that are the

closest in terms of proximity to the current node. Each peer has a 128-bit randomly
generated identifier. A typical value for L, M, and B is 16.

Pastry’s NextHop algorithm shown below first checks the leaf nodes if the des-

tination peer is in range, and, if so, selects the closest leaf node to the destination.

Otherwise, the routing table is consulted for the entry which matches the next

digit d in the destination address. If there is no such entry, then the node from

any of the three sets (neighborhood, leaf, or routing table) which is closer than

the current node and matches the same or more prefix digits is selected.

// return the peer closest to the destination peer ‘dest’
NextHop(dest)
// L-,Lþ 2 L are leaf set peers with the smallest, largest
identifier

if L- � dest � Lþ {
next ¼ Li 2 L such that |dest-Li| is minimal
} else {

// p is this peer, 0 � r
dest[r] is the r-digit prefix of dest that matches p[r]
d is next digit in radix B of dest

// e is the routing table R entry at level r, digit d
if e ¼ R[r,d] is not null {

next ¼ e
} else {

// rare case, there is no entry in the routing table



86 CHAPTER 4 Structured Overlays: Geometry and Routing
// use leaf set L, neighborhood set M, and routing table R
8 T 2 L [ M [ R
next ¼ T where T[rþi] ¼ dest[rþi], 0 � i, and |T-D| � |p-D|

}
}

return next
Other Prefix-Routing Overlays

Bamboo94 is the overlay used to implement the OpenDHT service on PlanetLab.

Bamboo is similar to Pastry but with different mechanisms for join and neigh-

borhood management. Overlay performance enhancements to OpenDHT are

discussed in Chapter 6.
Z-Ring104 uses a much larger base B ¼ 4096 than Pastry, which increases rout-

ing state but reduces latency. Z-Ring uses a three-level address space in which

each level is a group of peers that have full routing between them using Pastry

prefix routing.
RING WITH EMBEDDED LOGARITHMIC DEGREE MESH
Chord

Chord81,82 organizes peers on a logical ring, and peers maintain neighbor pointers

spaced at logarithmic intervals around the ring. In addition, each peer has a link

to its predecessor and successor peers on the ring. The Chord routing table is

called a finger table. Figure 4.5 illustrates a Chord ring with eight peers. Peer

1’s finger table consists of three intervals: from Peer 2 to 3, from Peer 3 to 5,

and from Peer 5 wrapping around back to Peer 1. In addition to the finger table,
each Chord peer maintains links to its successor in the address space.

Chord uses consistent hashing78 to map keys to nodes. It can be shown that if

the hash function has a random distribution, there is a high probability that K keys

will be distributed across N nodes such that each node is responsible for, at most,

(1þe)K/N keys. In addition, also with high probability, when a node joins or

leaves an overlay of size N, only O(K/N) keys move to or from the joining or leav-

ing node. These characteristics are important for the load distribution and effi-

ciency of the overlay under churn.
Chord’s routing function uses its successor ring in the last hop and uses the

finger table to maximize the size of the step toward the destination, as shown

in the following NextHop function:

NextHop(dest)

// if dest is in range of this peer and its successor, then
// the successor is responsible
if (dest 2 (this_peer,successor]) return successor



7

6

5

4

3

2

0

finger[3].interval = [finger[3].start, 1]

finger[1].start = 2

finger[1].interval =
[finger[1].start,
finger[2].start]

finger[2].start = 3

finger[2].interval = [finger[2].start, finger[3].start]
A

finger[3].start = 5

1

B

finger table
start int. succ. 6

1

7

0
1

2

3

4

5

6

[1,2]
[2,4]
[4,0]

2
4

1
3
0

keys

finger table
start int. succ. 1

2 [2,3]
[3,5]
[5,1]

3
5

3
3
0

keys

finger table
start int. succ. 2

4 [4,5]
[5,7]
[7,3]

5
7

0
0
0

keys

FIGURE 4.5 (A) Chord finger table intervals and (B) finger tables.81 # 2001 ACM, Inc.

Reprinted by permission.

Ring with Embedded Logarithmic Degree Mesh 87
// otherwise, search the finger table for
// highest predecessor of dest
for i ¼ log2 N downto 1

if (finger[i] 2 (this_peer,dest)) return finger[i]
return this_peer
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DKS(N,k,f)

DKS83,84 uses distributed k-ary search, in which the routing region at each hop

is partitioned into k equal intervals until the final hop, at which point the parti-

tions each contain only one element. Then the partition that contains the key

of interest is used to resolve the key. DKS with k ¼ 2 has similar routing charac-

teristics to Chord. In DKS(N,k,f), N is the number of nodes in the overlay, k is the

number of partitions at each level of search, and f is the replication factor for
placing objects on multiple nodes.

Overlay maintenance in DKS assumes that the lookup rate dominates the

churn rate so that there is enough traffic between peers to carry routing table

updates. Otherwise, routing tables will gradually degrade, becoming less and less

accurate. Like Kademlia,95 discussed later in the chapter, peers in DKS exchange

routing information during lookups rather than perform active stabilization by a

separate maintenance mechanism. DKS’s correction-on-use is based on the

assumptions that peer routing tables will normally have out-of-date entries and
that peers can provide more accurate routing information when exchanging

lookup messages. It uses a lazy (as opposed to greedy) strategy of updating rout-

ing information only when it is needed.

Each peer has a logk N size routing table. The routing table is organized into

k-1 levels, and each level has k entries. Figure 4.6 shows a routing sequence

from peer x ¼ 23 to peer z ¼ 59 in an overlay of size N ¼ 64 with k ¼ 4. The
…

S(x⊕(2N/k))2

S(x⊕((k-1)N/k))k-1

S(x⊕(N/k))1

x01

NextIntervalLevel
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FIGURE 4.6 DKS k-ary search with k ¼ 4, routing from x ¼ 23 to z ¼ 49 where N ¼ 64.
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notation S(p) means the successor of peer p, and a � b means (a þ b) modulo
N. There are three levels to the route, labeled (A), (B), and (C) in the figure. At

each level, the first interval is owned by the current node, for example, peer x
in Level 1. Each interval at a given level has size N/kL, where L is the level num-

ber. The first node in each interval is responsible for that interval on behalf of
the peer referencing it.

Routing starts at the first level (a), where interval 1 is selected and the request

is forwarded to the peer S(x � (N/k)), that is the owner of the first interval start-

ing from this peer or Peer 39. The request is forwarded to Peer 39, which does

the second level lookup in its routing table. Interval 2 is selected, which is owned

by the peer defined as S(y � (2N/k2)). In this case, that is Peer 47, and the

request is forward to Peer 47. Peer 47 matches the destination address to Interval

2 and forwards it to Peer 49, completing the routing.
Routing takes logk N steps and proceeds as follows.

NextHop(dest,k,level)

1 i
f dest is between this_peer and this_peer’s predecessor, then

ext ¼ this_peer
n
2 // otherwise, lookup in the routing table
3 // compute the interval for the current level
4 t ¼ (dest – this_peer) modulo N
5 partition_size ¼ N/klevelþ1

6 j ¼ t / partition_size
7 next ¼ RT[level,j]
8 return next

Chord#

Chord#86,87 is a modification to the Chord algorithm, which reduces the cost of
updating a routing table entry from O(log N) to O(1) and which provides a tight

bound on lookup performance. The latter is illustrated in Figure 4.7, which shows

average lookup latency versus bandwidth used by the peer. The use of bandwidth

as a cost criterion is discussed in the performance evaluation section of this

chapter.

In addition, Chord# supports range queries, which are discussed in Chapter 7,

“Search.” Unlike Chord, Chord# does not use consistent hashing but instead uses

a key-order preserving function to generate object identifiers. In Chord and many
other P2P overlays, keys that are lexicographically adjacent are randomly

distributed in the overlay due to the consistent hashing function. As discussed

earlier, this has the benefit of distributing K keys across N nodes such that

each node is responsible for at most (1þe)K/N keys but makes range queries inef-

ficient. Because Chord# does not use consistent hashing, keys are likely to be

distributed nonuniformly across the overlay, leading to load imbalances unless

key redistribution is performed periodically.
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CONSTANT DEGREE
Features of Constant Degree Graphs

Unlike logarithmic-degree graphs in which each peer’s interconnections grow at

an O(log N) rate, in a constant degree graph each peer has a fixed maximum

number of interconnections, independent of the overlay size. This has the benefit
of fixed-size routing state and potentially low overlay maintenance costs. Offset-

ting these benefits are complexity in routing and maintenance. The overlay

address space is typically large and sparsely populated, requiring that the geome-

try structure be adapted. The dynamics of overlay membership require that the

geometry be maintained. Because of these issues, several designs “simulate” or

“approximate” constant degree graphs.

In the following subsections we describe three constant degree graphs:

de Bruijn, butterfly, and cube-connected cycles (CCC), examples of which are
shown in Figure 4.8. A de Bruijn graph has 2b number of nodes, where b is the

number of bits in the binary representation of the key. There is an edge from

every node a to neighbors b1 and b2 such that b1 ¼ 2�a mod 2b and b2 ¼ 2�aþ1
mod 2b. Routing to a key k from node x in a de Bruijn graph involves successive

shift of the bits of k into the rightmost bit of x. So, for k ¼ k1k2k3k4 . . . , successive
routing steps are p1 ¼ 2�xþk1 mod 2b, p2 ¼ 2�p1þk2 mod 2b, p3 ¼ 2�p2þk3 mod 2b,

and so on. The de Bruijn graph can be extended96 from base 2 to base B, and each

node has out-degree B and the graph has diameter logB N. An example de Bruijn
graph is shown in Figure 4.8A.

A butterfly graph is specified with diameter r and degree d and has N ¼ r�dr

number of nodes. Each node in the graph has a unique address (row,level),
where row is an r-digit value in base d and 0 � level � r�1. For any vertex

(x,y) where x ¼ x0x1. . .xk-1 and y < r�1 there are directed edges to vertices

in level yþ1 that connect to all nodes (x0x1. . .xizxiþ2. . .xk-1, yþ1) where 0 � z
� r�1. When y ¼ r�1, the graph wraps back to level 0: (x ¼ zx1x2x3. . .xk-1,0).
A two-level butterfly of eight nodes is shown in Figure 4.8B. Routing from any
node (x,y) to another node (e,f) uses successive transitions from level i to

iþ1 to transform the ith digit in x to the ith digit in e. After all digits in x are trans-

formed to the corresponding digits in e, taking at most r level transitions,

routing continues along row e until level f is reached. For example, for a two-level

eight-node butterfly the route (10,0)) (01,1) involves the steps (10,0)) (00,1))
(01,0)) (01,1).

A CCC graph has d dimensions. It is constructed as 2d cycles, each cycle

containing d nodes. Each node in a cycle is connected to a node in a different
cycle, and the edges connecting the cycles form a d-dimensional cube. Thus

the total number of nodes in a d-dimensioned CCC graph is d�2d. The construc-

tion of a CCC graph for d ¼ 3 is shown in Figure 4.8C. Each node is uniquely

referenced by its cycle index i and cube index j, where i 2 [0..d�1] and

j ¼ [0..2d]. Routing from any node (i,j) to another node (e,f) is done
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as follows. If j ¼ f, the nodes are on the same cycle and the message can be

sent along successive cycle edges until the destination is reached. If j 6¼ f, a
path through the cube edges is followed until the destination cycle is reached,

at which point the message is sent along successive cycle edges until the desti-

nation is reached.

Next, for each of these three types, we discuss specific overlay designs,

focusing on the static models that deal with sparsely populated address spaces

and their routing algorithms. Later, in Chapter 5, we discuss overlay

maintenance.
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Koorde

Koorde96 constructs a de Bruijn graph embedded in a Chord-like ring. Since one

of the outgoing edges in a de Bruijn graph is the same as the successor link in a

Chord ring, this embedding adds no additional edges to the nodes. Because the

overlay address space is usually sparsely populated, a method is needed to affect

de Bruijn routing when a node along the path is missing from the overlay. Koorde

handles the sparse address space by routing to the nearest predecessor of the
intended de Bruijn node, effectively simulating de Bruijn routing. Koorde reduces

the routing distance to O(log N) hops by selecting the starting node of a lookup

to be some node i between the current node and its successor. The node i is

selected so that the address of i contains as its low-order address bits the top

(b- (2 log N)) bits of the key k, where b is the number of bits in a Koorde

address. This reduces the number of routing steps to O(log N) bits.

Koorde uses Chord’s join algorithm, successor list, and stabilization algorithm.

Koorde’s ability to self-stabilize like Chord is unknown.96 Koorde can also support
base-B de Bruijn graphs for B > 2.
Ulysses

Due to the sparse population of the address space, to retain the butterfly routing
characteristics Ulysses98 needs a way to map all identifiers in the overlay address

space to actual nodes in the overlay. Each actual node is assigned an identifier

(P,h), where P is the row identifier and h is the level. Each (row,level) identifier
in the static butterfly is mapped to (P,l) as follows. There is a direct correspon-

dence between level and h. Each possible node address (x0x1. . .xk-1) in the over-

lay is mapped to bits i, iþk, iþ2k,. . .,iþ(k�1)k in P. Let P ¼ a0a1. . .ah and

the arithmetic progression extraction of P be defined as AP(P,{i}) �
aiaiþkaiþ2k. . .ah. For example, if k ¼ 5 and P ¼ a0a1. . .a12, we have

n AP(P,{1}) ¼ a1a6a11

n AP(P,{2}) ¼ a2a7a12

n AP(P,{3}) ¼ a3a8

n AP(P,{4}) ¼ a4a9

n AP(P,{5}) ¼ a5a10

Objects are also mapped to identifiers (a,h) using a uniform hash function. Row

identifier a is m bits in length so that the object space k � 2m >> N is large enough
to assign unique keys for all objects to be indexed. Then if k ¼ 5 and

B ¼ b0b1. . .b12, AP(B,{0,2,3}) ¼ b0b2b3b5b7b8b10b12.

Then a node with identifier (P,h) stores all keys (a,h) where P is a prefix of

a. The edge construction for Ulysses follows the static butterfly structure

described earlier. Each node with identifier (P,h) has links to all (P0, hþ1)
nodes such that P and P0 overlay in all dimensions except the iþ1 dimension.
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Then routing for key (a,h) in Ulysses proceeds in a similar fashion to the static

butterfly. Starting at some arbitrary node (P, h), it proceeds (P, h) ) (P0,
hþ1) ) (P00, hþ2) ) . . . where each successive stage matches the node row

identifier at the hth digit to a until a is completely matched.
Cycloid

Cycloid101,102 constructs a sparse CCC graph and uses Pastry-like prefix routing

to locate keys in the graph. As in the CCC graph, peer addresses consist of two

parts: a cyclic index and a cubical index. Figure 4.9 shows the neighbor relation-

ships for node (4-,101-1-1010) in a seven-degree Cycloid graph. Each peer has two

cyclic neighbors and one cubical neighbor, which are labeled in Figure 4.9. Like

Pastry, Cycloid has additional links called leaf sets.
In Cycloid there are two categories of leaf sets for each peer: inner leaf set and

outer leaf set, which are also labeled in Figure 4.9. Cycloid organizes peers that

have the same cubical index into an additional cycle. To distinguish this cycle

from the CCC cycles that are peers with the same cyclical index, we refer to

the additional Cycloid cycle type as a cubical cycle. Peers use the inner leaf set

to link to the predecessor and successor peers on their local cubical cycle. Peers

use the outer leaf set to link to other cubical cycles. The entire set of cubical

cycles is organized into a ring that uses the outer leaf sets to refer to the successor
and predecessor cubical cycles.
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Given this structure, Cycloid routing has three phases: ascending, descending,
and traverse. In the ascending phase, it routes to the nearest cubical index for the

desired destination using the outside leaf set. In the descending phase, the inside

leaf set is used to find the closest cubical and cyclic index. In the traverse phase,

if the destination is in the local cubical cycle, the message is routed using the

inside leaf set. Otherwise it is routed using the outside leaf set.

The mean path length of Cycloid is compared with several other overlays in

Figure 4.10 as a function of increasing overlay size. Cycloid with 11 entries adds

predecessor and successor entries to its inner and outer leaf sets, reducing the
mean path length.
OTHER DISTANCE METRICS
Content Addressable Network (CAN)

Content Addressable Network, or CAN90,91 is a constant-degree structured mul-
tihop DHT that organizes peers in a d-dimensional Cartesian coordinate system.

Like the other systems we discuss, CAN peers and objects have identifiers from

the same virtual address space. Each peer’s position in the d-dimensional space

and the boundaries it shares with other peers determine the extent of the zone

of the space for which the peer is responsible. An example two-dimensional

space with dimensions [0, 80] x [0, 80] is shown in Figure 4.11A. In the figure,

three peers are highlighted: x, y, and z. The extent of the zone for each peer is

shown to the right of the figure. Objects are hashed to keys in the same space and
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stored at the peer whose zone assignment contains that key. For example, object

t with key [65, 35] would be in peer z’s zone.
Peers in CAN maintain information about neighboring peers that abut them in

each of the d dimensions. When a message is being sent, a neighboring peer that

is the closest to the target is selected. Figure 4.11B shows three possible routing

paths in the two-dimensional space example. Notice that the space wraps around,

making a d-dimensional space a d-torus for d > 3. The number of hops for the

paths are as follows: a has six hops, b has seven hops, and c has five hops.

Assuming that the space is divided into equal zones, the average routing path

length is (d/4)(n1/d), where d is the number of dimensions and N is the number

of peers in the overlay.
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To join the overlay, a new peer performs three steps. First, it locates some

peer already in the CAN. Second, it randomly selects a peer whose zone will be

split to accommodate the new peer, and it sends a join request to it via the first

peer. Third, split the existing zone and notify the neighbors of the split zone so

that the routing decisions include the zone changes. In a d-dimension space
[d1, d2, . . ., dd], zones are split in a fixed order of the dimensions. Merging of

zones when a node subsequently leaves the CAN is done in reverse order. These

steps are highlighted in Figure 4.12. When a zone is split, the original peer retains

those key-value pairs that fall within its new subdivided zone. The remaining key-

value peers go to the joining peer. Similarly, the joining peer inherits the neigh-

bors of the original peer that abut the edges of the zone for which the new peer

is responsible. Both the new peer and the original peer become neighbors, and

the original peer prunes its neighbor list and notifies its neighbors accordingly.
Neighboring peers exchange heartbeat messages to verify that they are still

connected to the overlay. If missing heartbeat messages indicate that the peer is

no longer available, the neighbors of the leaving peer need to coordinate to deter-

mine which peer will assume ownership of the zone held by that peer. A message

exchange is conducted so that the neighbor with the smallest zone assumes

ownership of the orphaned zone.

Kademlia

Kademlia95 is a multihop overlay that uses a non-Euclidean distance metric, the

exclusive-or (XOR) function, which is defined as the bitwise Boolean exclusive-

or operation. The routing table is organized into log N buckets, where each
1

2 3

FIGURE 4.12 Peer join sequence in CAN: (1) Contact an existing peer in the CAN, (2) route to

the zone that will be split, and (3) split the zone and update the neighboring peers.
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bucket holds up to k entries such that entries in the ith bucket are a distance

[2i. . .2iþ1) from the current peer. Each routing table entry in turn includes

the host IP address, its peer identifier in the overlay, and the time of last contact

with that peer. Contact times are used to maintain a least recently used (LRU)

replacement policy when new peers are discovered.
Kademlia introduced two new mechanisms into overlay routing: parallel

lookup requests and exchanging routing table entries during lookups rather than

in separate maintenance requests. An example lookup is shown in Figure 4.13

with three-way parallel requests in an address space of 64 peers. Peer with iden-

tifier ¼ 38 issues a FIND_NODE 49 in parallel to the three closest peers in its rout-

ing table—43, 47, and 54. Each peer receiving the FIND_NODE message looks in

its routing table for matching entries and returns k entries from the bucket

corresponding to Peer 49. The requesting peer uses these responses to update
its routing table and selects those peers that will be sent the next stage of parallel

requests until an entry for Peer 49 is obtained.
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FIGURE 4.13 Kademlia node lookup using a ¼ 3 to nodes in k-bucket i ¼ 4, that is, nodes

whose distance is in the range [23..24), and each bucket has a maximum size of k ¼ 4.
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In general, during a lookup, a peer computes the XOR distance to the desti-

nation peer, looks in the corresponding k-bucket in its routing table to select

the a-closest nodes that it knows of already, and transmits parallel requests to

these peers. Responses return closer nodes because the routing tables are

organized to have higher density in the vicinity of the peer. Kademlia iteratively
sends additional parallel requests to the a-closest nodes until it has received

responses from the k-closest nodes it has seen. A typical value of a is 3 and a

typical value of k is 20.
O(1)-HOP ROUTING
Multihop Versus One-Hop

Though many multihop designs have demonstrated a high degree of scalability

and robustness, even with proximity-aware designs the performance might not

satisfy all applications. As discussed in Chapter 2, one-way response time can

be improved at the cost of increased routing state and maintenance overlay. An

interesting question is, When is multihop necessary? Rodrigues and Blake105 sum-

marized the tradeoffs between multihop and one-hop, as shown in Figure 4.14.

An O(1)-hop (or simply one-hop) overlay maintains sufficient routing information
to approach constant hop routing independent of the size of the overlay. To do

this, peers must have enough storage capacity to store the routing table and

enough upstream and downstream bandwidth capacity to propagate the majority

of join and leave events to all peers in the overlay. As the churn rate decreases

(the y axis in Figure 4.14), required bandwidth falls, and as the number of
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peers in the overlay increases (the x axis in Figure 4.14), the required bandwidth

rises. Further, the overlay is used to store and retrieve data objects. The more

bandwidth that is used for data movement, the less that is available for stabiliz-

ing the overlay, as shown by the diagonal lines labeled 1, 50, and 1000 TB (Tera-

bytes). Thus the boundary between feasibility of one-hop overlays and multihop
overlays depicts the operating points where there is insufficient bandwidth,

based on existing residential broadband capacity, for the one-hop stabilization

to be met.

In the next subsections we survey some of the designs for O(1)-hop overlays.

As observed in a number of the multihop designs, the base can be increased

to increase the size of each routing decision, at the cost of additional routing

state. If the base were set to N1/2, the worst-case number of hops is log√N(N)
¼ log√N((√N)

2) ¼ 2. This is the routing state used in Kelips106 and Tulip 120. If
the base is set to N, the number of hops is logN(N) ¼ 1, as approached by One-

Hop and EpiChord, discussed later in this section. Another recent one-hop over-

lay is D1HT.110,111
Kelips

Kelip106 is a O(1)-hop overlay that uses an epidemic multicast protocol to

exchange overlay membership and other peer states between peers. The epi-
demic multicast protocol consists of two subprotocols:107 (1) a multicast data dis-

semination protocol and (2) a gossip protocol to exchange message history for

reliability purposes. A gossip protocol is the periodic exchange of small amounts

of information between nodes.

The multicast data dissemination protocol is either IP multicast or random

spanning trees over the multicast group formed by unicast connections. How-

ever, available IP group multicast protocols don’t scale to the number of groups

that would be needed in large overlays.112 Unicast connections don’t leverage
the packet savings in multicast protocols.

The Kelips epidemic multicast heartbeat protocol maintains state in each peer

by gossip exchanges to peers in its own group and to contacts in other groups.

Each group size is less than √ N, and each node has two multicast groups in a

given gossip round. Intragroup targets for gossip are weighted toward neighbors.

Intragroup multicast groups are reused in subsequent rounds until the neighbors

change. Intergroup targets vary round by round, so intergroup multicast group

membership changes each round at each node. In a given gossip round, Kelips
requires O(N) number of multicast groups.
OneHop

OneHop109 is an active stabilization one-hop overlay. The overlay is organized into

slices, and each slice is decomposed into units. Each unit has a leader and each

slice has a leader. Join and leave events are forwarded to unit leaders, which then



Comparison and Evaluation 101
forward them to slice leaders. Consequently, OneHop places a disproportionate

load on unit and slice leaders. The OneHop topology is shown in Chapter 15

(Figure 15.2).
EpiChord

EpiChord108 is a one-hop overlay that uses an opportunistic routing table mainte-

nance algorithm. The EpiChord routing table is organized in slices. Slices are

organized in exponentially increasing size as the address range moves away

from the current peer’s position. This leads to a concentration of routing table
entries around the peer, which improves convergence of routing. EpiChord

doesn’t maintain a completely accurate routing table. It achieves close to one-

hop performance by combining parallel requests with increasing routing table

accuracy in the vicinity of each peer.

EpiChord adopts two techniques from Kademlia: p-way requests directed at

peers nearest to the node and passing back routing table entries in response to

lookup requests. More details about the opportunistic routing table stabilization

mechanism used in EpiChord are given in Chapter 5.
COMPARISON AND EVALUATION
Analytical Performance Bounds

At this stage a reasonable question to ask is, How do all these overlay designs

compare, and which ones perform best? The answer to this question depends

on the types of application the overlay is to be used for. Also, when designs

have similar performance characteristics, other less tangible attributes may be

considered, such as relative complexity and available implementations.

Considering performance, we can examine several different dimensions of

overlay operation.96 We divide these into two categories: algorithm correctness

and operational metrics. Correctness of performance includes two aspects:

n Convergence. Is the routing algorithm guaranteed to reach the destination

in a practically bounded hop limit?
n Stability. Is the overlay provably stable under churn? At what churn rate
does the overlay destabilize?

Performance metrics have to do with the amount of state, bandwidth, and other

resources consumed under a given workload. Metrics of interest include:

n Node degree. The number of neighbors with which a peer is in continuous

contact, which is proportional to routing table size and overlay maintenance

overhead.
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n Hop count. The number of overlay hops to send a message from a source to

a destination. There is worst case and average case.
n Degree of fault tolerance. The percentage of nodes that can fail without

losing data or causing message failures.
n Maintenance overhead. The bandwidth consumed at a peer for overlay
maintenance traffic and its relationship to peer churn rate.

n Load balance. Are a random set of keys uniformly distributed among the

peers, and is message-routing load uniformly distributed among the peers?

These metrics are interrelated, and there are tradeoffs between several, such
as node degree and hop count. Metrics can be evaluated both analytically and

through measurement in a simulation or deployment. Analytical evaluation usu-

ally focuses on asymptotic behavior—for example, as the size of the overlay N

grows large. Analytical metrics are not available for all overlay designs. Table 4.2

lists the analytical metrics for some of the overlays discussed in this chapter.

A related question is, How close are these existing overlay designs to the the-

oretic optimal performance? This question has been studied by Xu, Kumar, and

Yu,99 who give the asymptotic limits for number of hops in an overlay of size
N. Although the majority of multihop overlays have O(log N) lookup perfor-

mance and O(log N) routing table size, they show that the optimal graph diame-

ter is in fact O((log2 N)/(log2 (log2 N))). However, they also show that graphs
Table 4.2 Comparison of Structured Overlays

Type Design
Peer Insert
Cost (whp)

Per-Peer
Space

Object
Lookup
Hops

Prefix routing

PRR — O(log N) O(log N)

Tapestry O(log2 N) O(log N) O(log N)

Pastry O(log2 N) O(log N) O(log N)

Ring with embedded

logarithmic degree mesh

Chord O(log2 N) O(log N) O(log N)

DKS(N,k,f) O(logk N) O(logk N)

Fixed degree

Ulysses O(log N) O(log N)/

(log log N)

Koorde �2 O(log N)

Cycloid 7 O(d)

CAN O(d N1/d) d d N1/d

Note: Data based on [148][169]. whp ¼ with high probability. N ¼ number of nodes in the overlay.

d ¼ number of dimensions.
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meeting this optimal diameter don’t satisfy certain uniformity conditions on net-

work load between peers, whereas existing DHT algorithms such as those in

Table 4.2 do meet these uniformity requirements.
Measurement Through Simulation

Most of the designs discussed in this chapter have been the subject of analysis

through simulation. Typical simulations range from 1000 nodes to 100,000 nodes.

Due to the large number of different designs, there are no simulation results

directly comparing more than a few of the designs. Different simulations might

not be directly comparable due to different sizes of networks, different workloads,

and different churn rates. The performance versus cost (PVC) framework114 shown

in Figure 4.15 is proposed as a way to directly compare overlays using a single cost
metric: bandwidth.

In a PVC study,114 five protocols were compared by simulating a 1024-node

overlay. Each protocol was measured for various combinations of operating para-

meters. For example, Tapestry can be tuned by changing the base, the stabiliza-

tion interval, the number of backup nodes, and the number of nodes contacted

during repair. The best-performing combination of parameters for each algorithm

is plotted for average lookup latency versus average number of bytes sent by each

peer per second. This gives a cost-performance comparison basis for a given
topology and lookup load. Note that the bandwidth consumption includes both

lookup and maintenance traffic. Thus an algorithm that has the best lookup effi-

ciency might still perform worse than an algorithm that is more efficient with

respect to overlay maintenance, depending on the relative mix of lookups and

node churn in the workload.
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At low bandwidth, Chord performs the best of the five because it has a low-

maintenance ring structure to use when bandwidth is insufficient to maintain

the normal routing table. As bandwidth increases beyond 25 bytes per second,

the algorithms performance differences narrow, but the OneHop overlay provides

the lowest lookup latency.
SUMMARY
In the design of structured overlays, the geometry of the overlay is a key design

decision. To be effective for P2P use, the geometry must meet several criteria,

including:

n The overlay must be fully connected for resiliency to peer failure.
n Peers throughout the peer population, must have uniform degree to avoid

load imbalance.
n There must be support for at least one type of distributed routing function

that converges.
n Efficient and easy construction and maintenance of the overlay routing state

and topology using a distributed algorithm are required.

To organize the large space of structured overlays, we have used the following cri-

teria: multihop versus O(1)-hop, logarithmic degree versus constant degree, and

routing using prefix, Euclidean distance, and XOR metrics. Some overlay designs

might fit more than one criteria, so we also considered historical significance

and grouping by essential characteristics.
Performance analysis is analytic, through simulation, or through implementation.
FOR FURTHER READING
Surveys and Frameworks

Milojicic et al.66 provide the earliest survey of peer-to-peer computing. Many

peer-to-peer systems and issues are discussed in a 2004 survey of content distribu-

tion technologies.67 Lua et al.68 provide a thorough survey of structured and

unstructured overlays with an extensive bibliography. Alima et al. propose a refer-

ence model for structured overlays which characterizes the design space.69

An extended version of this reference model is given in [70]. Risson and

Moors71 provide a comprehensive discussion of search methods in overlays

and provide a precise delineation of early research work leading up to distributed

object location and routing. El-Ansary and Haridi72 provide a recent survey of

multihop structured overlays. Li et al.113,114 describe a PVC framework for com-

paring different overlays. A group theoretic framework based on Cayley graphs

for comparing DHTs is presented in [73].
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History of Distributed Hash Tables

Early versions of distributed hash tables were studied by Devine,77 which appears

to be the first published use of the term. Litwin et al.75 proposed Scalable

Distributed Data Structures (SDDS) that would scale when implemented across

a large number of computers. They analyzed a specific instance an SSDS, a

distributed linear hash table called LH* [75] [76]. LH* could grow as compu-

ters were added to the system.
Other Structured Overlays

Many interesting designs for structured overlays could not be discussed in this

chapter due to space constraints. These include Broose (de Bruijin),97 Cactus (2

tree combined with cube-connected cycle),115 D2B (de Bruijn),116 FissionE

(Kautz graph),117 HiPeer (multiring de Bruijin),118 HyperCup (hypercube),119

Symphony (ring with links at harmonic intervals),103 Tango (logarithmic
degree),85 Tulip (2-hop),120 and Viceroy (butterfly on a ring).100 SkipNet and Skip

Graphs are discussed in Chapter 7.
Routing and Geometry in Computer Networks

Overlays have many similarities with the design of computer networks, and many

schemes for network routing have been explored over the years. For example,

CIDR uses prefix routing, and the Internet uses hierarchical routing. See [74]
for a thorough discussion of network routing.
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tructured Overlays:
aintenance and Dynamics
We continue the discussion of structured overlays begun in the previous chapter,

here focusing on themethods bywhich the peers form a structured overlay andmain-

tain its geometric and routing properties, a process referred to as overlay mainte-

nance. The discussion is again organized into different overlay categories: prefix

routing, ring with logarithmic degree mesh, and constant degree graphs. In addition,

a stochastic model of overlay maintenance under churn is presented. The chapter

concludes with a discussion of hierarchical and federated overlay architectures.
PEER CHURN
Churn in a P2P overlay network means that peers join and leave the overlay arbi-

trarily and do not stay in the overlay for a predictable time. To ensure dependabil-

ity of the overlay, peers with neighbor links to the joining or leaving peers require

updates. If peers’ routing tables lose accuracy, the system’s latency increases due
to messages being sent to unavailable peers, leading to timeouts. As the churn

rate increases, this problem intensifies. As the churn rate increases further, the

overlay network eventually partitions, causing lookup queries to return inconsis-

tent results and significant degradation in the overlay’s service quality.

Overlay maintenance mechanisms require efficient methods to find stale rout-

ing table entries and replace them with new entries in a way that retains the

desired routing behavior. Since the lookup query traffic and overlay maintenance

traffic both compete for the underlying network bandwidth and resources, main-
tenance traffic should be constrained to that needed for target routing table accu-

racy. Intuitively the maintenance traffic per peer should be proportional to the

churn rate of its neighbors.

Therefore, overlay maintenance algorithms have to be devised to include efficient

features that are able to handle peer churn. For example, Kademlia121 maintains sev-

eral neighbors for each routing table entry. They are ordered by the length of time

they have been neighbors. If there is churn in the set of neighbors, newer peers will

replace existing neighbors to mitigate the effects of high “infant mortality.”

107
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Overlay maintenance algorithms have to cater to the fact that a P2P overlay net-

work is evolving continuously122 and that many peer join and leave operations are

happening concurrently. What happens as the churn rate changes? Will the mainte-

nance rate increase to keep the overlay stable, or will the system accept an increase

in latency to maintain the bandwidth used by the overlay to some limit? An overlay
maintenance protocol has to ensure that the amount of per-peer bandwidth con-

sumed due to the maintenance messages would not grow excessively as the net-

work size increases. Otherwise, the access bandwidth of the overlay peers could

be overwhelmed and the system become impractical. More important, the overlay

maintenance algorithms have to work efficiently and properly even though the P2P

overlay system is no longer in its ideal state during peer churn.

A metric is defined122 to quantify the performance of the overlay maintenance

algorithm. The performance metric of an overlay maintenance protocol is the rate

at which each peer must expend network resources in the system for maintenance.

The consumption of the resources needed for overlay maintenance should be kept

as small as possible, since these resources are therefore unavailable for useful work

by the P2P application. What is the minimum update rate that each peer in the P2P

systemmust achieve to keep the system in an ideal state? Howmuchwork is required

to provide a proper routing state so that lookup queries are correct and fast?

We use Figure 5.1 to answer these questions. Here a peer’s session time is the

elapsed time between joining and subsequently leaving the system. A peer’s life-
time is the time between joining the P2P overlay system for the first time and

leaving the system permanently. The total of a peer’s session times divided by

its lifetime is its availability. Peer session time is an important metric123 with

respect to the lookup functionality of a DHT. The temporary loss of a routing

neighbor weakens the correctness and performance of a DHT. The unavailability

of neighbors reduces a peer’s overlay connectivity, causing it to choose subopti-

mal paths that both affect lookup latency and increase the inefficiency of the

overlay maintenance in future churn events. When peers are volatile, with short
and unpredictable session times, remembering such neighbors is of little value

in performing lookup queries.
Node Lifetime
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FIGURE 5.1 Metrics of peer churn.
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Another overlay maintenance framework124 uses a cost/performance metric

to quantify peer churn effects, specifically treating lookup messages to absent

peers as a latency penalty. The communication cost is the average number of mes-

sage bytes sent per second by the live peers. This includes lookup queries, peer

join, and maintenance of the overlay routing table. The performance is the aver-
age lookup latency including timeout penalty and lookup query retries.
APPROACHES TO OVERLAY MAINTENANCE
The degree of performance degradation of a DHT due to churn depends on its
ability to detect join and leave events from other peers and its ability to select

fresh entries for its routing state. Two approaches to overlay maintenance are

called active and opportunistic.

Active Maintenance

In active maintenance, a peer handles the failure or departure of an existing

neighbor (or the new joining peer added to its neighbor table) by sending a copy

of its new neighbor set to other peers in the system. To save bandwidth, a peer

can send differences from the last state of the system, but the total number of

state is still O(k2) for a neighbor set of k peers. This algorithm converges quickly.

Pastry uses a more complex variant of active maintenance127 that is bandwidth

efficient. Cycloid (which makes use of Pastry), Tapestry and D1HT also adopt

such active maintenance overlay operation. We describe them in a later section.
Active maintenance runs the risk of creating a positive feedback cycle as fol-

lows: Consider the case whereby a peer’s access link to the network is sufficiently

congested, which causes timeouts for the peer to believe that one of its neighbors

has failed (left the system). If the peer is recovering in an active mode, maintenance

operations will begin. This operation will add even more packets to its existing

congested network link, which will increase the likelihood that more other peers

will mistakenly deduce that other neighbors have failed in the system. As this pro-

cess continues, congestion collapse on its access link may eventually happen.
Under low peer churn, active maintenance is efficient and scalable because

maintenance messages are only sent in response to actual overlay membership

change events. As the churn rate increases, however, this process becomes more

expensive. A peer sees more churn when its neighbor set gets larger in size.

Opportunistic Maintenance

In opportunistic maintenance, a peer periodically shares its neighbor set with

each of the members of that set, which responds in kind with its own neighbor

set. This process takes place independently of the peer detecting changes in its

neighbor set. A peer picks one randommember of its neighbor set to share state with

in each period of optimization. This change saves bandwidth but still converges in

O(log k) stages, where k is the size of the neighbor set. Similar opportunistic
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maintenance algorithm is currently used by Bamboo and Ulysses, and the periodic

nature of this algorithm is also adopted by Chord and its variants such as Koorde

and EpiChord, to keep track of its successor list in terms of its correctness and overlay

maintenance. We describe them in a later section.

By decoupling the rate of maintenance from the discovery of peer churn,
opportunistic maintenance prevents the feedback cycle described. In addition,

by lengthening the maintenance period with the observation of system state time-

outs, this method will introduce a negative feedback cycle, which further

improves resiliency. Such a process can be more conservative in detecting peers

to mitigate the instability associated with active maintenance. One drawback with

this technique, however, is that neighbors that have actually departed the overlay

remain in a peer’s routing table for some period of time. Query lookups that

would route through these staled neighbors are thus delayed, resulting in long
query latencies. To solve this problem, a peer stops routing through a neighbor

after seeing some specified number of consecutive system timeouts to that neigh-

bor. In addition, some overlays use parallel lookups to compensate for having

some inaccurate routing table entries.

Under low peer churn, opportunistic maintenance becomes wasteful. How-

ever, when a peer’s neighbor set becomes larger as the system size grows, the

set of other peers that it must notify about the resulting churn in its own neigh-

bor set gets larger opportunistic maintenance aggregates all churn events in each
period of time into a single maintenance cycle. Thus, the bandwidth consumed

under high churn rate and large neighbor size is controlled to a scalable level.
OVERLAY MAINTENANCE ALGORITHMS
The following subsections discuss overlay maintenance algorithms in each cate-

gory of structured overlays, parallel to the text organization in Chapter 4.
Logarithmic Degree with Prefix Routing

Pastry
Pastry implements a periodic routing table maintenance protocol127 to actively

repair entries of the routing table due to peer churn and to prevent gradual dete-

rioration of the locality properties over a long period of time. Pastry uses a con-

strained gossiping algorithm via which peers send probes to measure the

distance to peers to update the routing tables based on a Proximity Neighbor

Selection (PNS) strategy. As shown in Figure 5.2, the implementation of Pastry’s
overlay maintenance algorithm127 (probing_receivei()) uses variables to keep

track of peers being probed by peer i (peer_probingi) and the number of probe

entries sent to each peer (peer_probe_retriesi(j)) and a set of peers that are

faulty (peer_failedi). Note that a peer i has a routing table Ri and a leaf set Li
(total number of peers in leaf set is l); the Boolean variable peer_activei indi-

cates whether peer i is active.



FIGURE 5.2 A simplified version of an overlay maintenance algorithm in Pastry.

function probing_receivei (j,{MSG-PROBE,MSG-PROBE-REPLY},L, peer_failedi)

// The joining peer probes all the nodes in its leaf set to ensure
consistency.
peer_failedi ¼ peer_failedi � {j}
Li.add({j})
Ri.add({j})
for each a 2 Li \ peer_failedi

do peer_probei(a)
Li.remove(peer_failedi)
L0 ¼ Li

L0.add(L – peer_failedi)
for each a 2 L0- Li

do peer_probei(a)
if (message ¼ MSG-PROBE) then

send([MSG-PROBE,i, Li,peer_failedi]) to j
else

complete_probingi(j)
function peer_probei (j )
// Sending probes to peers to measure distance to peers.
if (j =2 peer_probingi AND j =2 peer_failedi) then

send [MSG-PROBE,i,L, peer_failedi] to j
peer_probingi ¼ peer_probingi [ {j}
peer_probe_retriesi(j) ¼ 0

function complete_probingi (j )

// This function removes peer jfrom the set of peers being probed.
peer_probingi ¼ peer_probingi– {j}
if(peer_probingi ¼ { }) then

if (Li.complete) then
peer_activei ¼ TRUE
peer_failedi ¼ { }

else
if (|Li.left | < 1/2) then

peer_probei(Li.leftmost)
if (|Li.right | < 1/2) then

peer_probei(Li.rightmost)
function peer_probe_timeouti (j )

// Peers are marked faulty (failed) if they do not receive a probe
reply within Tout seconds (timeout).
if (peer_probe_retriesi(j) < max_probe_retries) then

send[MSG-PROBE, i, Li, peer_failedi] to j

peer_probe_retriesi (j)þþ
else

Li.remove(j)
Ri.remove(j)
peer_failedi ¼ peer_failedi [ {j}
complete_probingi(j)

Overlay Maintenance Algorithms 111
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Peer Joining

The joining peer i sends a join request to the seed peer (the overlay peer that is

the nearest neighbor derived from the nearest-neighbor algorithm to seed the join

process), which routes the join message to i’s nodeID. The peer i obtains the r
th

row of its routing table from the peers along the overlay route whose nodeID
matches peer i’s in the first (r�1) digits. The joining peer becomes inactive until

it first probes all the peers in its neighbor set to ensure consistency. When a peer

received a neighbor set probe from peer j (the MSG-PROBE message is sent by

peer j and contains a copy of j’s L and peer_failedi), it adds peer j to its

neighbor set and routing table. It then sends probes for peers in the neighbor

set that are in faulty state. These identified peers are removed from its neighbor

set. To ensure no false positives, these removed peers are probed to confirm their
faulty state. That is, the peer i creates a clone L0 of its leaf set and adds nonfaulty

peers from Li to L0. The peers in L0 that are not in Li are peers for inclusion in i’s

leaf set are probed before inclusion. Last, the peer i sends a MSG-PROBE–REPLY
message back to peer j. After the processing of a probe reply from peer j, a peer

invokes the complete_probingi(j), which removes peer j from the set of peers

being probed.
Peer Leaving (Failure)

If a peer i does not receive a probe reply from peer j within Tout seconds
(timeout) in time, a timeout state occurs; the peers are marked faulty in peer_
probe_timeouti(j). To reduce the case of marking a live peer faulty, probes

are retried a few times with a large timeout. Once it’s confirmed that peer j is faulty,

it is marked faulty, removed from the routing state, and added to the faulty state. If

there are no outstanding probes and the neighbor set is incomplete, a repair is

involved by probing the neighbor set. The intuition in the algorithm is to have

probing iterates toward the correct side (leftmost or rightmost side) of the neigh-

bor set while notifying the probed peers about the probing peer. In this way, a peer
never inserts another peer into its neighbor set without receiving a message

directly from that peer. Thus, the problem of probes propagating the dead peers

is prevented. In addition, the routing tables are used to aid repair so that the main-

tenance process is efficient even when simultaneous peer churn occurred.
Tapestry
Tapestry has a number of overlay maintenance mechanisms to maintain routing

table consistency and ensure object availability.125,126 The majority of control
messages described here in the system require acknowledgments and are retrans-

mitted where required.

New Peer Joining

There are four key maintenance operations for a new peer i joining a Tapestry

overlay network, as illustrated in Figure 5.3:



function peer_join (gatewayIP, newpeerIP,newpeer_name)
// The peer join process starts by contacting a gateway node in the
Tapestry network. The object pointers are then transferred and the
neighbor table optimized.
(surrogateIP,surrogate_name)  get_primary_surrogate(gatewayIP,
newpeer_name)
a  largest_commonprefix(newpeer_name,surrogate_name)
obtain_neighbortable(surrogateIP)
multicast_acknowledged(surrogate_IP,a,pointers_correction_root
(newpeerIP,newpeer_name))
optimize_neighbortable(newpeer_name,newpeerIP,surrogate_name,
surrogateIP)

FIGURE 5.3 New peer insertion in Tapestry overlay network.
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n The new peer i begins by contacting a surrogate peer with the ID closest to its

own in the Tapestry network and obtains a copy of the surrogate’s neighbor
table. Using the multicast_acknowledged() function,125,126 the new peer

contacts the peers that the peer i fills a null entry in their neighbor table. It

sends out a Multicast-Acknowledged message to reach the set of all existing

peers that share the same prefix by traversing a tree based on their nodeIDs
and the first list of the nearest-neighbor algorithm.

n A near-optimal routing table is constructed for new peer i.

n Peers that are near the new peer i are notified so that they can consider using
new peer i in their routing tables as an optimization process in such a way that

the new peers joining the Tapestry overlay network do not fail to notify each

other about their existence.

n If new peer i becomes the new object root for existing objects in the system,
pointer links to those objects must be moved to new peer i to maintain object

availability. The pointers_correction_root() function ensures correctness

of pointers to objects by making the object pointers that should be rooted at

the new peer and removing pointers that are no longer on the existing current

peer. By redistributing the object pointers, it would make the objects to be

located optimally.
Existing Peer Leaving Voluntarily

As shown in Figure 5.4, if an existing peer i leaves the Tapestry overlay network

voluntarily, the set D of peers in peer i’s backpointers and a replacement peer for

each routing level from its own routing table are notified of its intention. The

notified peers each send object republish traffic to both peer i and its replace-

ment. Removing a peer of its links to peer i could end up leaving this peer with

a wrong hole in the neighbor table. Therefore, replacements’ information can



function peer_leaving_voluntary (i.pointer)

// Peer i volunteers to leave the network; it removes itself and
permits seamless object location by following its backpointers to
notify corresponding nodes that it is leaving the network.
for i.pointer 2 {i.backpointers}

routing_level ¼ get_routing_level(i.pointer)
leave_network(obtainIP(i.pointer),i.nodeID, routing_level,
obtain_nearest_neighbor(i.pointer,routing_level))

for i.pointer in {neighbors [ i.backpointers}
remove_link(obtainIP(i.pointer),i.nodeID)

FIGURE 5.4 Voluntary peer removal operation in Tapestry overlay network.
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maintain a correct neighbor table by running the nearest-neighbor algorithm peri-
odically. After the peer i has contacted all its backpointers, the objects rooted at

peer i can be located through new surrogates. Finally, the peer i informs those

peers in its backpointers and forward pointers that it is leaving the network,

and it removes all links.

Existing Peer Leaving Involuntarily

Tapestry improves object availability and routing in a dynamic churn environment

by building redundancy into routing tables and object location references, for
example, by having backup forwarding pointers for each routing table entry.

Peers use periodic beacons to detect link and peer failures to trigger repair of

the routing mesh and initiate redistribution and replication of object location

references, augmented by soft-state republishing of object references. Tapestry

is able to retain nearly a 100% success rate at routing queries to peers in a contin-

uous churn environment.
Ring with Embedded Logarithmic Degree Mesh

Chord
Chord makes use of the successor pointers and fingers operations to handle the

unexpected events of peer joining and leaving the system concurrently.122

New Peer Joining

The algorithm in Chord to handle peers joining the system is as follows: When a

new peer i joins the system, it must set i.successor to point at its immediate suc-
cessor peer s on the Chord ring. The new peer i’s immediate predecessor will
update its successor pointer to point to new peer i. Its finger table entries and

some other peers have to also update the fingers to point to new peer i. To han-

dle simultaneous joins, as shown in Figure 5.5, an optimization process122 is car-

ried out whereby each peer stores an additional predecessor pointer that is used



function i.optimize( )

// Verify i’s successor s and inform s of i. Run only after join process.
x ¼ successor.predecessor
if (x 2 (i,successor)) then successor ¼ x
successor.notify(i)
function i.inform (i0)
// i0 think it might be the predecessor.
if (predecessor ¼ null OR i0 2 (predecessor,i)) then predecessor ¼ i0

FIGURE 5.5 Algorithm for peer-joining operation in Chord.
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to record the closest predecessor that the peer has learned. That is, peer i will

update its successor to (i.successor).predecessor when its successor is

between i and i.successor. This optimization function is done periodically,
including updates to the finger table.

Peer Departing (Failure)

Chord handles both cases whereby the peer i departs the system voluntarily and

due to unexpected failures. This is illustrated in Figure 5.6. To handle a peer’s suc-

cessor failure, each peer keeps a successor list of the first r peers following it on

the Chord ring. In the event of peer failures, Chord’s operation will check the

operation of forwarding search to a live peer instead of failed peers and considers
the peers in the successor list for the next routing hop on the search path. In

searching for a node, the i.closest_peer_search() function checks that the

search is to a live peer instead of failed peers along the search path. A peer’s suc-

cessor list is maintained by repeatedly obtaining the successor list of its immedi-

ate successor s as well as periodically confirming that its predecessor is alive.
function i.closest_peer_search (nodeID )
// Searchthe localtable forthehighest predecessorofthe peer nodeID.
return (largest peer u that is alive in finger[1,. . .,m] OR successor_
list so that u 2 (i,nodeID))
function i.update_successor_list( )

// Reconcile with successor’s successor list periodically.
[s1,. . .,sr] ¼ successor.successor_list
successor_list ¼ [successor,s1,s2,. . .,sr]
function i.update_successor( )

// Updated failed successor pointer periodically and if necessary.
if (succesor ¼ faulty) then (successor ¼ small live peer u in finger

[1,. . .,m] OR successor_list)
function i.update_predecessor( )

// Confirms predecessor is alive periodically.
if (predecessor ¼ faulty) then predecessor ¼ null

FIGURE 5.6 Algorithm for peer-leaving (failure) operation in Chord.
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Constant Degree

Koorde
Koorde128 is a new distributed hash table (DHT) based on Chord122 and de

Bruijn graphs.129 Similar to the finger pointers in Chord, Koorde’s de Bruijn

pointer is an important performance optimization. So Koorde can utilize the

successor property in Chord’s join algorithm. In addition, to keep the overlay

connected in case peers leave the overlay network, Koorde uses Chord’s succes-

sor list and stabilization algorithm. The extension of Koorde to degree-k de
Bruijn graphs is to trade off degree for hop count. A de Bruijn graph will have

a peer for each binary number of b bits, whereby a peer and a key have identi-

fiers that are uniformly distributed in an n ¼ 2b identifier space, as illustrated in

Figure 5.7.

Figure 5.8 shows the lookup routing algorithm in Koorde peer m, whereby k

is the key, kshift is the key shifted by previous iterations (initial kshift ¼ k),
and i is the imaginary de Bruijn peer. Each peer m keeps track of two peers:

the first peer, j, consists of the predecessor of 2m (m’s first de Bruijn peer), and
successor contains the successor set of m on the ring. The predecessor for

the second de Bruijn peer (2mþ1) is d because the de Bruijn peers follow each

other directly on the ring. The nodes are represented using concatenation
mod 2b, that is, m o 0 ¼ 2m mod 2b and m o 1 ¼ 2mþ1 mod 2b. A peer m has a link

to peer (m o 0 ¼ 2m mod 2b) and another link to peer (m o 1 ¼ 2mþ1 mod 2b). That

is, a peer m links to the peers that are identified by shifting a new low-order bit

into m and dropping the high-order bit. The lookup routing algorithm128 hops

from imaginary peer i to imaginary peer (i o topBit(k)), shifting in k.
000

001

100 111

010 011

101 110

FIGURE 5.7 A de Bruijn graph with b ¼ 3.



function m.lookup(k, kshift,i )

// Koorde maintains O(log n) peers immediately following a peer m and
routing can be done by following live successor pointers to the
correct peer.

if (k 2 (m,successor]) then
return(successor)

else
if (i 2 (m,successor]) then return

(j.lookup(k,kshift<<1,i o topBit(kshift)))
else

return (successor.lookup(k,kshift,i))

FIGURE 5.8 The Koorde lookup query algorithm219.
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Rather than having peer m maintain only its immediate successor as in Chord’s

successor list maintenance protocol, Koorde maintains the O(log n) peers imme-

diately following it (for n peers in the overlay). In this way, at least one of the

peers in each successor list can stay alive with high probability and routing can

be possible by following live successor pointers to the correct peer. Koorde also

points at O (log n) peers on the ring immediately preceding 2m. Unlike successor
pointers, predecessor pointers may become incorrect by pointing at peers that

have initiated the Chord join protocol but have not completed the operation; this
will make lookup query operations incorrect.

Instead, peer m uses a lookup to find the immediate predecessor p of 2m � x,
where x ¼ O (log n/n), and O (log n) peers occupy the interval between 2m � x
and 2m. Even if half the peers fail with high probability, m will have a pointer to the

immediate predecessor of address 2m. The estimate of n is easily obtained by consid-

ering the distribution of a peer’s successors. Such an attempt to gain fault tolerance

and maintenance has eradicated the constant degree of Koorde. However, Koorde

can work with a base�O(log n) de Bruijn graph that has fault tolerance benefit
and the routing hops are optimal at O((log n/log log n).

Ulysses
Ulysses130 allows the routing to stabilize on peer joins and leaves aswell as ensuring

correct routing while stabilization is occurring. In a Ulysses network with k levels,

each peer represents a zone in the name space identified by a tuple (P,l), where

P is a row identifier and l is the level, 0 � l � k�1.

New Peer Joining
n Find a row. A new peer i will first randomly generate a key (a,l) (the search

key in Ulysses of k levels is mapped to this tuple using one or more uniform

hash functions; l corresponds to the level and a is the row identifier of m bits

long, where m is a constant such that k � 2m is large to assign unique keys for
all objects in the DHT) and sends a lookup query for this key through an
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existing peer X in the Ulysses overlay network. This operation will route

to reach the peer O with identifier (P, l), which is responsible for the key

(a,l). Then peer O splits its zone into two and assigns one half of the respon-

sibility to the new peer n. The peers n and O are buddies because they differ

only in their last bit of the identifiers.

n Update the routing tables. As described previously, the new zones of peers n

and O are subsets of the original zone of responsibility of the peer O. So their

routing tables are the subsets of peer O’s original routing table. The peer O

informs the new peer n about its original neighbors in its routing table. In turn,
the peers in the preceding level of l � 1 that include peer O as the neighbor,

are informed of this split of zones.
Peers Departing
n Graceful departures. A leaving peer with identifier (P,l) hands over its keys

to another peer at the same level. The zones of these two peers have to be

merged. However, it is possible with small probability that the zone of the leav-

ing peer’s original buddy has been split into multiple zones. This is illustrated in

Figure 5.9. The leaving peer A is split into multiple zones. The peer B with the

smallest zone is promoted to take over the leaving peer’s zone, and the peer C

merges with peer B’s zone. Similarly, the peers in the previous level l – 1 will

be informed of the departure.

n Ungraceful departures. The detection of ungraceful peer departures is done by

asynchronous mechanism; a peer detects that its successor has failed due to

unsuccessful lookup query operation. Once detected, it initiates the

housekeeping operations as described previously.
Cycloid
Cycloid131 is a constant-degree P2P overlay network that combines Pastry with a

Cube-Connected-Cycles (CCC) graph of d-dimensional cube, with replacement of

each vertex by a cycle of d peers. There are d.2d peers in a Cycloid system, and
Before After

B C DA
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C
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FIGURE 5.9 Merging of zones during peer departures221 # 2003 IEEE.
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each lookup takes O(d) hops with O(1) neighbors per peer. It uses consistent

hashing to map keys to peers, which have identifiers that are uniformly

distributed in a d.2d identifier space. Each peer is represented by a pair of indices

(k,ad�1ad�2. . .a0) where k is the cyclic index and (ad�1ad�2. . .a0) is a cubical

index.

New Peer Joining

A new peer X ¼ (l,bd�1bd�2. . .b0) joining the Cycloid network will first contact a

live peer in the system, A ¼ (k, ad�1ad�2. . .a0). Peer A’s joining message will be

routed to existing peer Z, whose identifier is numerically closest to the X’s

identifier. X’s neighbor sets are updated with Z’s neighbor sets (both inside and

outside neighbor sets):

n If X and Z are in the same cycle and Z is the X’s successor, Z’s predecessor and

Z are the left peer and right peer in the X’s inside neighbor set, respectively.

Otherwise, Z and Z’s successor are the left peer and the right peer.

n If X and Z are not in the same cycle, X’s outside neighbor set is initiated in accor-

dance with Z’s outside neighbor set. For the case when Z’s cycle is the succeed-

ing remote cycle of the X, Z’s left outside neighbor set peer and the primary peer

in Z’s cycle would be the left peer and the right peer in X’s outside neighbor set.

Otherwise, Z’s right outside neighbor set peer and the primary peer in Z’s cycle
would be the left peer and the right peer in X’s outside neighbor set.

To initialize the three neighbors in X’s routing table, it searches for a neighbor in

the local cycle in decreasing order of the peer cyclic index. Its neighboring

remote cycle is searched if the neighbor is not found. Once the peer joined the
system, the peers in its inside neighbor set and outside neighbor set (if it is the

primary peer of its local cycle) are notified of the join.

Peer Departing

When a peer leaves the Cycloid, it notifies the peers in its inside neighbor set.

Since a peer has outgoing links only and no incoming links, a leaving peer cannot

make notification to those peers who are their cubical neighbor or cyclic neigh-

bor. It is the responsibility of the system stabilization to update the cubical and

cyclic neighbors. The peers in the inside and outside neighbor sets update them-
selves after receiving the peer departure notification. Cycloid assumes that the

peers must make notification before leaving.
O(1)–Hop Routing

EpiChord
Similar to Kademlia, EpiChord132 uses p-way requests directed to peers nearest

the peer so that it can improve the success of lookups. Figure 5.10 shows the

detailed model of EpiChord’s request and probe mechanism. A peer maintains
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FIGURE 5.10 EpiChord pending request queue states and actions132 # 2007 IEEE.
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at least two active entries in each slice of its routing table when high churn
occurs. If the number of entries in a slice falls below two, the peer issues parallel

lookup messages to identifiers in the slice. The responses to these lookup queries

are used to add entries to that slice in the routing table.

p requests are initially sent and are placed in the pending queue. A Unicast

request is resent to that peer after a first or second timeout. On the third time-

out or if a peer responds with a NAK, the peer is removed from the pending

queue. If the pending queue is of size p�1, two new peers are sent with two-

way requests and are added to the pending queue. This increases its size to
pþ1. When an ACK is received, the lookup query terminates. The tradeoff of this

algorithm is that the amount of parallelism in practice is not simply p due to the

Unicast retransmissions and two-way messages used by EpiChord to NAK
responses. In addition, the proportion of Unicast retransmissions and two-way

messages are dependent on the churn rate and the level of accuracy in the rout-

ing table.
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D1HT
D1HT133,134 defines the active overlay maintenance algorithm EDRAwhereby it pro-

pagates all events (join/leave actions) throughout the system in logarithmic time.

For n number of peers in the system, each join/leave event is forwarded to log2(n)
successor peers at relative positions log2(0) to log2(x), where x ¼ [log2 n].
Propagated events are those directly received and those received from predecessors

since the last event message.

As defined in [133], the notations ofY is the time interval at which a peer p pro-

pagates events to its successors (psucc) in the ring and r ¼ [log2 n] is the maxi-
mum number of messages a peer sends in the time interval. Each message has a

time to live (TTL) and it is acknowledged. If there are no events to report, only mes-

sages with TTL ¼ 0 are sent. For message M(x) where x is the TTL value, only

events received in incoming messages with TTL � x are included, and peer p sends

M(x) to succ(p,2x). (For any i 2 N and p 2 D, the ith successor of peer p is given

by the function succ(p,i), where succ(p,0) ¼ p and succ(p,i) is the succes-

sor of succ(p,i�1) for i > 0, and i � n, succ(p,i) ¼ succ(p,i�n). Similarly,

the i
th predecessor of peer p is given by the function pred(p,i), where pred

(p,0) ¼ p and pred(p,i) is the predecessor of pred(p,i�1) for i > 0.132

Figure 5.11 shows incoming messages to a peer in an overlay of size n, and

Figure 5.12 shows the outgoing messages.

A joining peer is placed in quarantine for an interval Tq to reduce the impact

of churn. Quarantined peers route their queries through the nearest nonquaran-

tined peer.

n Explicit join interval. To fix the routing table errors due to the update propa-

gation delay when a peer p joins the overlay, a join interval Y�r is defined in

which the closest peer pRT, which is selected from the successor peer psucc’s

list of other peers, forwards events it receives after sending its routing table

to peer p. If this closest peer pRT leaves the ring before the peer join interval

is complete, peer p selects a new pRT as join proxy.

n Forwarding of unacknowledged events. In propagating an event, a reporting

peer pR might not get an acknowledgment from the destination peer pD that

it selected from its propagation path. This is due to the situation that the peer
p
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FIGURE 5.11 Incoming messages from predecessors of peer p with corresponding TTLs133

# 2007 IEEE.
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FIGURE 5.12 Outgoing messages from peer p to its successors, each containing the recent

events and corresponding TTLs133 # 2007 IEEE.
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pR might not have yet received a peer-leaving event for peer pD. Then peer pD’s
successors will also not receive this event message. To resolve this situation,
peer pR can proxy for peer pD by forwarding the event with TTL ¼ t�1 to

those peers that would receive the event directly from pD if it were still in

the ring. It can continue to proxy events during an interval Y�r, which is the

maximum time for pD to propagate to it during a peer-leaving event. Its routing

table should be updated by removing the entry for pD.

n Handling of duplicate events. The peer receiving the duplicate message can

ignore the event. Otherwise, the peer can send the event with the same TTL

to its predecessor and successor as a recovery mechanism. A peer seeing this

event (“recovery from duplicate message”) for the first time processes it for for-

warding as usual but not to its successor who sent the message. A high routing

table accuracy may still occur even because forwarding to immediate successor

and predecessor peers corrects single routing table errors. The routing table
accuracy can be dynamically evaluated by looking at the number of lookup

timeouts it receives. Lookup traffic can be used to exchange routing table

updates between peers.

n Concurrent adjacent events. When a new peer p joins the overlay, it contacts

both its successor peer psucc, which is responsible for reporting the new join

events, and its predecessor ppred. When the predecessor of p (ppred) is notified

of p’s existence by its own predecessors, it is required to notify p. Thus, if p is

not notified about its own peer-join event in period Y�r interval, it should ini-

tiate the reporting of its own peer-join event by itself.

n Maintenance concatenated in lookups. The EDRA is further augmented with

any events received in the last Y�r interval would be included in the DHT

requests and responses. When a peer received any message from any other peer

due tomaintenance, lookup, or the like, it would add that peer to its routing table.

n Routing table recovery using lookups. The extensions to EDRA as described

previously are preventive because any missed event not prevented by these

extensions will propagate as more routing table errors occurr over time. Similar

to EpiChord, background lookup traffic is added to recover from routing table

errors. However, this lookup traffic is randomly distributed in the overlay.
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STOCHASTIC MODELING OF PEER CHURN
It is still an active research area to provide good performance of P2P overlays in a

dynamic network environment, especially at high churn rates. Recent work in

[135] proposes a novel maintenance strategy based on the dual roles of short-range

and long-range connections where maintenance overhead in P2P DHT-based overlay

approaches the theoretical lower bound necessary to prevent partitioning of the P2P
overlay. The proposed stochastic long-range connectionmethod is to define a param-

eter for maintenance actions. The definition of this parameter involves the sequence

of long-range connections of a peer in the one-dimensional Kleinberg model as a

stochastic process in one-dimensional Euclidean metric space. Such a stochastic pro-

cess can be derived from a stationary Poisson process by an exponential transforma-

tion. It is shown that the communication overhead of long-range connection

maintenance per peer and per system half-life is O(log n), where n is the size of

the network. This maintenance overhead proposed in [122] was O(log2 n), which
is the lower bound for maintenance traffic to ensure connectivity of the overlay.

The Network Model

The network model used for the proposed stochastic maintenance is adapted

from [135] using the terminology and reference model of [136] and illustrated

in Figure 5.13. Peer identifiers are mapped onto a one-dimensional Euclidean
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FIGURE 5.13 The network model used for stochastic maintenance, Reprinted from [135],

# 2008, with permission from Elsevier.
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metric space wrapped around in a ring with bidirectional connections and bidi-

rectional routing in the network.

Each peer has a 2NS of fixed number of short-range connections to the NS ¼ 3
(in the figure) closest neighbors in both directions. It also has a variable number

of long-range connections in decreasing distance order at the left and right sides
of the peer (defined as NL þ NL

0 ). The short-range connections are constant,

whereas long-range connections satisfy the probabilistic requirements, whereby

the probability of having a long-range connection between two peers is inversely

proportional to their distance.
Stochastic Model for Long-Range Connections

The sequence of long-range connections in both directions as a Yi stochastic pro-

cess is shown in Figure 5.14.

Xi is a stationary Poisson process of rate l given by the sequence of arrival

times. The stochastic process Yi is derived from Xi by transforming each arrival

time xi into an arrival time yi. Thus it is possible to transform well-known proper-

ties of a stationary Poisson process to a long-range connection distribution. The

derived stochastic process Yi is defined in one-dimensional Euclidean metric

space. The Poisson process-based model allows definition of connection density
as the rate l of the original Poisson process and it determines the lookup perfor-

mance as well as in maintenance algorithms.

A last short-range connection, which is shown as an empty circle in the figure,

ends the stochastic process Yi with a distance dmin (a random variable depending

on the distribution of peer identifiers in the metric space) from the own ID of the

peer. This end point maps to a distance of –ln (dmin) in the Xi Poisson process.

The number of long-range connections (at one side of the ring) follows a Poisson

distribution:

P NL ¼ kð Þ ¼ �l1n d min
� �� �k

k!
el1nðdminÞ ¼ ð� l 1 n dmin

� ��k

k!
dl
min

The derived Yi stochastic process exhibits inverse power-law distance distribu-

tion necessary for logarithmical routing, which can be used to describe the

sequence of long-range connections.
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xi = Poisson (λt)

yi = e−xi

xNL
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FIGURE 5.14 Stochastic process corresponding to the sequence of long-range connections,

Reprinted from [135], # 2008, with permission from Elsevier.
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Maintenance of Short-Range Connections

The short-range connection maintenance is opportunistic. That is, each peer peri-

odically sends messages to a randomly chosen peer of its short-range peers. Since

the short-range relations are bidirectional, the messaging ensures failure detection

in bounded time. This method is similar to neighbor set maintenance in Bam-

boo122 and self-stabilizing maintenance algorithm in [136].
Maintenance of Long-Range Connections

The proposed algorithm creates initial long-range connections in according to the

desired power-law distribution with only O(1) maintenance overhead per con-

nection. Connections are created in decreasing distance order; from the furthest

identifier (ID) and approaching the ID of the peer in bidirectional. The fastest

(first) lookup hit (ID) matching the determined range is used. As shown in

Figure 5.15, di is the distance from the ith long-range peer and diþ1 is the distance
drawn to create the next long-range connection. A range [diþ1/c,diþ1.c]
is defined whereby c ¼ 1 þ e (constant parameter). If diþ1 > di, the range at di

is truncated so that the next long-range connection is always closer in the metric

space.

Creation of long-range connection has the advantage of self-adapting the num-

ber of long-range connections to the network size. The long-range connection

establishment is completed when there are no peers available in the given next-

closer range. During the final step of the peer-join process, the short-range con-
nection is established.

The sequence of long-range connections created during the peer-join process

is described by a Poisson process of rate l. New incoming connections can be

considered as the superposition of another Poisson process to the Poisson pro-

cess that describes initial long-range connections of the peer. Deletion of connec-

tions as a result of peers failing or leaving the network can be described as

random selection from a Poisson process. Such operations result in a Poisson

process of different rate. So, network dynamism does not affect the inverse
di

range for Li+1

Li

di+1

di+1 / c

c = 1 + ε 

c di+1

FIGURE 5.15 Range definition for initial long-range connections, Reprinted from [135],

# 2008, with permission from Elsevier.
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power-law nature of long-range connections. However, the parameter defining

the density of long-range connections will change as the network evolves.

The connection density corresponds to the l rate of the generator Poisson

process. The maintenance operation should attempt to keep the connection den-

sity within a given range. The rate of a Poisson process is estimated as the number
of arrivals per interval, and connection density can be estimated from the number

of connections and the length of process: l ¼ NL/ln (dmin). The upper and

lower bounds for connection density are defined as lmin < lopt < lmax, and the

connection density is always within this range. New connections are created until

l > lopt if the estimated connection density falls below lmin. If the estimated

connection density exceeds lmax, some connections are deleted until l < lopt.
Random deletion of arrivals from a Poisson process results in another Poisson

process of smaller rate.
Comparison with Existing DHT Overlay

As described, the transformation model135 provides theoretical foundations for
stochastic long-range connection maintenance. This is a good tool to analyze

and compare the choice of long-range connections in other DHT-based over-

lays. The long-range connections of one DHT peer in the original (lower line)

and the inverse transformed (upper line) metric space for each DHT overlay

are illustrated in Figure 5.16 (parameter b is the number of bit lengths in the rout-

ing table for Pastry-like ring topology, and k is the maximum bucket size for

Kademlia).

It is possible to define a long-range connection density parameter l for each
DHT overlay independent of the distance and network size. We can observe the

differences in the degree of determinism. Each connection is deterministic in

Chord, whereas Pastry is more flexible because each routing entry may consist

of any peer from a given range. Kademlia allows the choice of any peers (maxi-

mum number of k) from a given range. The proposed loose and stochastic long-

range connection maintenance mechanism in [135] achieves low maintenance

overhead in large networks with high churn rates without affecting routing per-

formance because long-range connections in the underlying network model do
not impose any of the previously described constraints.
FEDERATED OVERLAY TOPOLOGIES
With increasing pervasive deployments of various P2P overlay architectures,

federation is used to connect and interoperate among these P2P overlay archi-

tectures in differing administrative domains. This is done so that service adver-

tisement, discovery and binding to bootstrap services can be carried out in
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these P2P overlays. The challenge is thus to design scalable mechanisms to

bootstrap multiple P2P overlays providing differing services: advertise and dis-

cover services, binding to bootstrap service, contact peers and service code,
and so on.

There are three basic approaches to federating P2P overlay architectures:

n Universal overlay
n Hierarchical overlay
n Concentric nested rings of overlays
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Universal Overlay

A universal overlay can provide a scalable infrastructure to bootstrap multiple ser-

vice overlays137, bind users with code necessary to install the service on peers,

and perform service advertisement and discovery mechanisms so that a user is

allowed to deploy and find services of interest. That is, it is an overlay that all par-

ticipating peers in other separate overlays join. The peers in these other separate

overlays that are created dynamically are a subset of the peers in this universal
overlay architecture. In [138], Pastry is used as the structured universal P2P over-

lay, although other structured P2P overlays such as Tapestry could be utilized, as

long as the infrastructure is self-organizing, fault tolerant, and able to scale to a

large number of peers.

The universal overlay provides an indexing service that allows users to find

services of interest by performing Boolean queries; multicast service to distribute

software updates and coordination among members of a service overlay; persis-

tent store and distribution network that allows users to obtain the code needed
to participate; and finally, a contact service that allows new users to join a service

overlay. The operation defined in Pastry (or specified DHT-based P2P overlay) is

utilized to handle peers leaving the universal overlay.

A new joining peer needs to obtain a nodeID that is assigned by some certifi-

cation authority such as VeriSign to join the universal ring. In addition to the

nodeID, the certification authority signs a nodeID certificate that binds the

nodeID with a public key for a specific amount of time. The certification author-

ity charges the peers for the certificates issued so that it is difficult for an attacker
to control many virtual peers in the universal overlay. The peer can authenticate

itself to other peers in the overlay by the use of the private key that corresponds

to the public key. Then the new joining peer obtains the address of a contact peer

in the universal overlay. Such a contact peer can be chosen by some form of con-

trolled flooding method, or servers with well-known domain names are used.

To join a specific service overlay within the universal overlay, a peer first

needs to obtain the address of a contact peer in the service overlay. In each ser-

vice, a small list of contact peers is inserted in the universal overlay under the ser-
vice key. The peer looks up the service certificate in the universal overlay and

chooses at random one of the peers in the list to be its contact peer. The oldest

member of the list will be replaced by the joining peer to ensure that the contact

list remains fresh. For redundancy of the contact list, some copies of the contact

list can be cached in the universal overlay path to the peer that stores the service

key. This will attempt to prevent peer overloading.

Due to the randomization of the nodeID, there is a high chance that the con-

tact peer is not close to the joining peer. The algorithm described in Pastry can
solve such a problem; it uses the contact peer and traverses the service overlay

routing tables bottom up to find a good approximation to the service overlay peer

that is closest to the joining peer in the overlay. This new joining peer can be

used to start the joining algorithm.
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Hierarchical Overlays

Hierarchical overlay139,141,142 consists of two-tier overlays whereby the peers are

organized into disjoint groups. The overlay routing to the target group is done

through an intergroup overlay; then intragroup overlay is used to route to the tar-

get peer. The hierarchical overlay architecture of the Internet offers several

important advantages over the flat DHT-based P2P overlay:

n It reduces the average number of peer hops in a lookup query. Fewer hops per

lookup query means that less overhead messages. The higher-level overlay

topology consisting of stable superpeers will have more stability. This increased

stability allows the lookup query to achieve optimal hop performance, for

example, on average, ½logN for Chord, where N is the number of peers in
the Chord overlay.

n It reduces the query latency when the peers in the same group are topologi-

cally close. The number of groups will be smaller than the total number of
peers being query routed and the stability of the higher-level superpeers will

help cut down the query delay.

n It facilitates large-scale deployment by providing administrative autonomy and

transparency while enabling each participating group to choose its own overlay
protocol. Intragroup overlay routing is totally transparent to the higher-level

hierarchy. If there were any changes to the intragroup routing and lookup

query algorithms, the change is transparent to other groups and higher-level

hierarchy. That is, any churn events within a group are local to the group in

terms of changes, and routing tables outside the group are not affected.

In [139], a general framework is presented for hierarchical DHT overlays whereby

each group maintains its own overlay and uses its intragroup for overlay routing

of lookup queries. A higher-level overlay is defined among the groups. Within

each group, there is a subset of “superpeers”—analogous to gateway routers in

hierarchical IP-based networks—to route messages among groups. So, peers in

the same group are close in locality. The work in [139] proposed a scalable algo-
rithm for assigning peers to groups, identifying superpeers and overlay mainte-

nance. As shown in Figure 5.17, the hierarchical overlay routing of messages is

achieved through the higher-level overlay network to some superpeer and then

routed at the next level below through its “local” overlay network (within the

group) until the messages finally arrive at some peers at the lower level.

Within the intragroup level, the groups can use different overlays. Each peer

in the group could keep track of all the other peers in the group based on their

IDs and IP addresses. The group could also use CARP143 or consistent hashing144

to assign and locate keys within the group. Since each peer runs a local hash algo-

rithm to determine the peer within a group that is responsible for a key (g2), the
complexity of the intragroup lookup query in the target group is O(1), as illu-

strated in Figure 5.18. The superpeers could also track all the peers in the group
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if the group is not large. This is achieved by forwarding a lookup query to a local

superpeer; in turn, a peer can do a local lookup query in O(1) steps, as shown in

g1 in Figure 5.18. On the other hand, for large group, a DHT such as Chord, CAN,

Pastry, or Tapestry can be deployed within the group (g3 and g4 in Figure 5.17).

The number of steps in such a local lookup query will be O(log M), where M is

the number of peers in the group.

Hierarchical Group Management
In the two-tier hierarchical DHT, consider a new peer p joining the hierarchical

DHT overlay. The assumption made is that p is able to obtain the ID g of the group

it belongs to. The procedures are as follows:

n p contacts and asks another peer p0, which is a member of the P2P overlay net-

work, to look up p’s group using key g.
n On hierarchical lookup routing, p0 locates and returns the IP address of the

superpeer(s) of the group responsible for key g.
n If the group ID of the superpeer(s) is g, then p joins the group using regular

join mechanisms of the intragroup overlay protocols. p also notifies the super-

peer (s) of its resources such as bandwidth and CPU.
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n If the group ID is not g, a new group is created with ID g and p as the only
superpeer.

The first m peers to join a group g can become the superpeers of that group.

They are expected to be the most stable and powerful group peers. The super-

peers keep an ordered list of superpeer candidates that present good characteris-
tics; this list is periodically sent to the regular peers of the group. The longer a

peer remains connected with higher resources, the better a superpeer candidate

becomes. When a superpeer fails or leaves the overlay, the first normal peer in

the list becomes a superpeer and joins the top-level overlay. All the peers in its

group are informed of its arrival as well as the superpeers of the neighboring

groups. Stability is attained at the higher-level overlay using multiple superpeers;

most stable peers are promoted to become superpeers; and repair is done on the

infrequent departures of superpeers.

Concentric Nested Rings
HiPeer140 is a concentric multiring overlay topology that provides effective and

efficient resource discovery and distribution methods for a fault-tolerant P2P

resource-sharing environment. The concentric rings topology is navigated from

the middle (smallest) ring to the surface (largest) ring, as shown in the Figure 5.19.

The peers are represented by the identification of d-based integer of length D � 1,
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with D expanding from the innermost to outermost ring. The function ring(x) ¼
Dx is the ring identifier (RID) for which peer x resides on the concentric multiring

topology.

New Peer Joining
The outermost ring is considered the entry point to the network. New peer x

asks for an ID from a contact peer on the outermost ring. If the outermost ring

is full, a new outermost ring is created and peer x will become the member of
the list of contact peers on the new outermost ring. Otherwise, the new peer x

is attributed an ID in the middle of the next larger space on the outermost ring,

and this operation requires at most DHiPeer ¼ logd(N(d�1)þd)�1 peers (number

of N peers in the network of (degree,diameter)-tuple (d,D) topology) to forward

the join request message. A peer x joins the network, and the join operation
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divides the space between peers 110 and 000 in two spaces that are equal in dis-

tance, and new peer x is assigned ID 111. The new peer x notifies its neighbors,

distributes its resources, and constructs its routing tables. So the number of mes-

sages generated as a result is dþ3 (one message to determine the RID of the out-

ermost ring, one resource location message, and at most dþ1 messages to update
the routing table), which is at most D peers for forwarding.

Peers Departing

A peer x leaving the network notifies its ambassadors based on the WARAAN pro-

tocol145. It chooses a successor peer xout so that xout exists on the outermost ring

with RID Dmax. That is, it chooses a successor to inherit its ID on the ring because

the ring is always fully constructed. Peer x then sends its routing tables to its suc-

cessor for update and then it leaves the network. In addition, the successor aban-
dons its own resource location table and adopts the resource location table of

peer x. The following two cases apply for nonexistence of peer xout:

n If peer x is on the outermost ring with RID Dmax and it is one of the contact

peers, the closest neighbor xleft or xright becomes the successor. If the peer
x is any peer other than the contact peer, it simply notifies its neighbors.

n If peer x is on the inner ring with RID Dmax�1 and the peer with ID xout on the

outermost ring does not yet exist in the network, any peer xout that is closest is

chosen to move to the inner ring.

The successor becomes the new peer x, which differs from the old peer x in the

IP address and the provided resources. Once the new peer with ID x is on the

new ring, the peer publishes its resources to ambassadors on the same ring and

on the next inner ring and updates the routing entries of its de Bruijn neighbors.

Thus, each peer leaving the network generates at least dþ2 messages.
SUMMARY
This chapter summarized the characteristics and behaviors of peer churn dynam-

ics deployed in structured overlays and federated overlay topologies. It is clear

that current structured overlays exhibit less than desirable performance at a high

rate of peer churn. However, much of the structured overlay research has been

directed toward designing tradeoffs in overlay maintenance algorithms to handle

the effects of high rates of peer churn and provide overlay stability.
FOR FURTHER READING
Churn dynamics in P2P overlays is discussed in [146], which characterizes and

compares aspects of peer dynamics in three classes of P2P system: an unstruc-

tured overlay (Gnutella), a torrent (BitTorrent), and a structured overlay (Kad).
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They identify several measurement pitfalls such as biased peer selection and false

negatives, leading to measurement error:

n Overall dynamics are similar across the three systems.
n A large population of active peers are stable, whereas the rest of the small num-

ber of peers turn over quickly.
n The peer session lengths are correlated and not exponential.



CHAPTER
6
Peer-to-Peer in Practice
The goal of building large-scale P2P systems is challenging from an implementa-

tion perspective. Here we survey some of the key lessons that come from experi-

ence with existing overlays as well as general knowledge about network

programming and protocol design for distributed systems. Details of protocols

for Gnutella, BitTorrent, and structured overlays are discussed, followed by solu-

tions to the crucial problem of NAT traversal. Practical techniques are presented

for a peer to determine its capability and for bootstrapping a peer, needed for
peers to self-organize and join an overlay. The chapter concludes with a review

of P2P networking support in Microsoft Windows.
P2P BUILDING BLOCKS
In previous chapters we focused on the concepts, algorithms, and abstractions of

P2P networks. Here we are concerned with the design of a peer as a system and

the associated implementation issues. What are the key elements or modules of a

peer? Are there common features that different approaches share? What are the

hard problems in developing a robust and deployable system? What components

and interfaces should a peer provide to application developers?
In widely used software systems, principles and structures have emerged over

time for the key functional areas. Examples include operating systems as resource

managers, multistage compilers, network protocol stacks, graphics pipelines, and

component architectures for middleware. For peers, let’s first consider a minimalis-

tic view in which the application supported by the P2P overlay is content sharing

and there is no security enforcement. We divide the functions into three areas:

n Overlay routing and messaging
n Search and content storage
n Configuration and peer role selection

In addition, the generic peer provides APIs for the messaging and search func-

tions. In the overlay routing and messaging component, each peer maintains

135
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some connection state to neighboring peers in the overlay; maintaining this state

could include neighbor discovery and other overlay state maintenance. It has a

bootstrap mechanism for locating other peers by which it can join the overlay.

The steps for joining and leaving the overlay are enabled using a join/leave proto-

col. The application layer can exchange messages with other peers in the overlay
using the overlay messaging API, and messages received from other peers can be

forwarded toward their destination using the message-forwarding function (see

Figure 6.1).

Shared content is stored locally for access by other peers as well as the

application interface on this peer. The content must be organized for searching,

such as providing one or more search indices and a query interface. In addition,

the storage area must be managed so that space is allocated to higher-priority

objects when space is limited and old unused objects are purged when no longer
needed.

The third functional area concerns how the peer self-organizes both its local

resources and its role in the overlay. The peer determines the available system

and network resources at startup and may monitor them periodically for changes,

in case the user changes the peer configuration or other applications change their

utilization. The peer self-selects its role(s) in the overlay based on its capability

assessment. Peer roles such as superpeer and relay depend on capabilities such

as system and network resources, stability of the peer as might be indicated by
past churn rate, and public address in the underlying network.

Figure 6.1 can be refined, for example for structured overlays, as shown in

Figure 6.2. Here the search API is based on the DHT functions of put and get.
In addition, the routing layer in this case uses key-based routing.

From this basic architecture, a variety of extensions are possible (see Figure 6.3).

Existing protocols for session management and media transport can be integrated
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into the overlay for P2P streaming applications (Figure 6.3, top). Such protocols

in use today in IP networks include Session Initiation Protocol (SIP) and Real-

Time Protocol (RTP). VoP2P applications and protocols are discussed further

in Chapter 12.

The peer architecture can also be extended for use as a service-oriented plat-
form (Figure 6.3, bottom). Local services can be advertised for use by other peers,

and each peer can search for services offered by other peers. The service discov-

ery and advertisement can use existing protocols such as UPnP, Bluetooth, and

SLP. It can also use the overlay search API, as discussed in Chapter 11. Once a ser-

vice is discovered, it can be invoked using a protocol such as Simple Object

Access Protocol (SOAP).
NETWORK PROGRAMMING
The basic P2P concept is attractive for its simplicity, but what issues face develo-

pers of P2P applications and deployments of P2P overlays on real networks? The

implementation issues can be considered in various dimensions, such as network

programming (discussed in this section) and topics such as overlay protocol design,

NAT traversal, and application programming interfaces, discussed in subsequent

sections.
Network programming in P2P concerns issues common to other distributed

applications. Peers communicate using network protocols that have well-known

performance and reliability characteristics and tradeoffs. The underlying network

can exhibit large variations in delay due to network traffic, and packets could be

lost in transit. Available end-to-end bandwidth also fluctuates.

Over the Internet, packets can be sent between peers using either unreliable or

reliable transport. Reliable packet delivery uses end-to-end (E2E) acknowledgments

and flow-control mechanisms. Reliable packet delivery is desirable but comes with
more overhead. Because these mechanisms affect throughput and E2E delay, P2P

applications may create multiple parallel connections between peers to get more

bandwidth. Considered in a large-scale context with millions of peers, such techni-

ques may increase link saturation and complicate congestion control in the net-

work. Peers may also use other peers as relays to reduce E2E delay and increase

throughput. Relays are discussed in Chapter 12.

If the peer protocol uses unreliable packet delivery for sending messages

between peers, it might never know that a message was delivered. If confirmation
is needed, a typical design is for the peer receiving the message to send an

acknowledgement message immediately after receiving it. If the initiating peer does

not receive an acknowledgement within a specified time limit, it can resend the

message after each timeout. After a certain number of retries fail, the initiating peer

can assume that the other peer is no longer available and may remove it from its

connection list. The sending peer needs to keep a copy of the message until it is

acknowledged and needs a retry counter and a timer for receiving an
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acknowledgment. The receiving peer should be prepared to receive duplicate mes-

sages that might on occasion be due to a misrouted message or if the acknowledg-

ment was not received by the initiating peer. The access network in many cases is

asymmetric, usually with more capacity downstream than upstream. This is a par-

ticularly important constraint on the ability of peers to contribute network capacity
to the overlay. Such capacity is needed by other peers for relaying media streams,

participating in torrents, and responding to queries. The asymmetry means that

such peers will have significantly more capacity to receive content than to serve

it to other peers. In common DSL and cable modem installations, this disparity

can be a factor of four or more.

In addition, many users connect to the Internet through a router or gateway

that performs network address translation (NAT) and may have a firewall. This par-

ticularly affects P2P applications because peers must support both inbound and
outbound connections with other peers. Both NAT and firewall functions interfere

with an external peer’s ability to reach a peer with a translated addressed or filtered

packets. Due to the wide variety of NAT implementations, there is no single solu-

tion to creating inbound connections to a NATed peer. Many solutions involve

probing the kind of NAT present in the local network and using an external peer

with a public address to act as a bridge to other peers beyond the NAT. We discuss

some common approaches later in this chapter.

It should be pointed out that NAT and firewall functions are network administra-
tion choices. NATs are used to permit a number of networked computers to share a

single public IP address. Firewalls are a security function to prevent unwanted

incoming traffic. Thus the ability of P2P applications to circumvent NATs and fire-

walls may be viewed as violations of local network administration policy.
OVERLAY PROTOCOL DESIGN
General Protocol Issues

A protocol is a set of messages, the rules for exchanging the messages between

endpoints, and the semantics for the interpretation of the messages. The impor-

tance of having a published protocol with well-defined syntax and meaning is that

independent implementations of the peer software can interoperate.

Each message includes a message type that identifies its meaning to the recipi-

ent. There may be attributes to affect the operation of the message. Typically these
attributes are placed in the message header. Rules include message sequencing,

timing, and error handling. Network protocols are organized by layers, and an over-

lay is an application layer protocol. A protocol has a syntax and encoding. Encod-

ings may be binary or in human readable formats such as XML.

Protocols are sometimes separated into control and data transfer functions.

The frequency and size distribution of these different packet sizes can vary, and

by separating them, the protocol can optimize their transport and delivery. In a
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P2P overlay, control messages include overlay routing table maintenance and mea-

surement of network distances. Data transfers messages include application layer

multicasting and DHT operations.

For IPv4, UDP packets can carry up to 65,507 bytes in the payload or data

field, which is much larger than most overlay messages require. Thus a single
UDP packet could carry multiple overlay messages, improving the efficiency of

the network. For example, a number of structured overlays exchange recent rout-

ing table changes with DHT request and response messages. This bundling of mul-

tiple overlay messages in a single packet is referred to as piggybacking.
Unstructured Overlay: Gnutella

In Gnutella, peers are referred to as servents, which is a combination of the
words server and client. Later versions of Gnutella introduced ultrapeers, which

are high-capacity and stable peers. Each ultrapeer maintains connections to a set

of other ultrapeers. The Gnutella protocol150 consists of a set of basic messages

(Table 6.1) and an optional set of extensions.

Each Gnutella message has the following fields:

n Message ID. A 16-byte field contain a globally unique message ID for (1) corre-

lating response messages with the original query, (2) routing query hits from

remote peers back over the original connection, and (3) detecting duplicate

or misrouted messages.
n Payload type. A 1-byte field containing the message type.
n Time to Live (TTL). A 1-byte field that is decremented by each peer when it

receives the message until the TTL reaches 0, at which point the message is
no longer forwarded. Typically TTL is no larger than 3.149

n Hops. A 1-byte field incremented by each peer receiving the message and that

indicates the number of hops the message has traveled so far.
n Payload length. A 4-byte field containing the number of bytes in the remainder

of the message.
n Payload. A variable-length field, the contents of which are message dependent.

After a QueryHit is received, selected files can be downloaded out of network.

That is, a direct connection between the source and target peers is established to

perform the data transfer. The protocol for this direct connection is typically HTTP.

Figure 6.4 shows a simplified Gnutella messaging sequence for a set of peers

P1 to P6. The messaging is divided into three groups: connecting a new peer to
the network, exchanging connectivity information using Ping and Pong, and

query routing.

First, P1 connects to the Gnutella network by exchanging messages to peer

P2. How peer P1 initially locates peer P2 is the bootstrap problem discussed later

in this chapter. During this phase, the peers exchange information about which

version of the protocol they support and what extensions they implement.

The extensions are described in capability headers. Peer P2 could reject the



Table 6.1 Basic Message Types for Gnutella v.0.6

Message
Type

Meaning

Ping Discover other hosts that are in the Gnutella network and basic information

about connecting to them.

If TTL¼1 and Hops¼0 or 1, treat the request as a direct probe of the receiving

host.

If TTL¼2 and Hops¼0, treat the request as a “crawler” ping that is collecting

information about the neighbors of this host.

Pong Reply to a ping.

Provides the IP address and part number of the host and extensions

supported by the peer.

It may include pong responses cached from other peers.

Cached entries are peers that are likely to be alive and are spread across the

network; for example, by varied connections and hop-count values, these

pongs are cached.

Query Search for a file.

Specifies the minimum transfer speed of the peer and the search criteria.

The search criteria is text, such as a string of keywords.

Search criteria of “ ” means return an index of all files shared by the peer.

A peer forwards incoming queries to all its connected peers.

QueryHit Response to a query.

A peer returns query hit responses to previously forwarded queries back along

the connection from which the query was received.

Contains the number of hits in the result set and, for each hit, a list of [file

index, file size, file name, and list of extensions].

Push Download a request for firewalled peers.

Bye Tell the remote host that the connection is being closed.
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connection request, for example, if it does not have sufficient resources or is

going offline. But in this case, peer P2 indicates, similar to HTTP messaging, a

200 OK status.

Now that peer P1 is connected to the Gnutella overlay, it may probe the net-

work to find other neighbors to connect to. P1 issues a crawler Ping to P2 to

obtain information about other neighbors. P2 responds with a Pong containing
connectivity information about itself and its two neighbors P3 and P4.

Later, using a flooding query, P1 issues a Query with TTL ¼ 3 to P2. P2

responds with a QueryHit and forwards the Query to its neighbors P3 and P4

after decrementing TTL. P3 and P4 in turn return QueryHit responses to P2,

and P4 forwards the Query to its neighbor P5. Since TTL ¼ 0 at P5, the Query
is not propagated any further. P5’s QueryHit is returned to P4, which forwards

it back along the path that it came, namely P2 and then P1.
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During the initial handshake, when a peer connects to another peer in the

Gnutella network, each peer exchanges a list of protocol extensions that it sup-

ports. The common extensions are listed in Table 6.2. In Table 6.2, headers such

as User-Agent, Accept-Encoding, and Content-Encoding are reused from

the HTTP 1.1 specification.151 In addition, the peers will exchange a list of ven-

dor-specific messages that are supported. For more information about vendor-spe-

cific messages, see the handshake discussion in [149].
Current versions of Gnutella implement dynamic querying,149 described in

Chapter 3 as expanding ring search. In dynamic querying, the query is succes-

sively resent with increasing TTL values until the query is satisfied. For example,

an ultrapeer initially sends the query to its leaf peers with TTL ¼ 1. If the leaf

peers don’t have the file of interest or if the hit count is too low, the requesting

ultrapeer sends the query to its ultrapeer neighbors, a step called a probe query.

Each ultrapeer receiving the query will search its local files and its leaf peers. If

the hit response is too low within a specified time period, the initiating ultrapeer
enters a third step, called controlled broadcasting, in which the TTL is increased



Table 6.2 Gnutella Capability Headers240

Header Example Value Description

User-Agent LimeWire/4.10.9 The vendor and version number of the

application software

X-Locale-Pref en The preferred language of the client,

as in en for English

X-Requeries false If false, client indicates it won’t issue
the same query twice

X-Version 4.9 Software version for automatic

software updating

Listen-IP 217.254.98.153:6346 IP address and port number of the

responding peer

Remote-IP 68.37.233.44 IP address that the request came from,

in case the requesting peer doesn’t

have it due to the presence of a firewall

Accept-Encoding deflate If deflate, the responding peer can

receive compressed data

Content-Encoding deflate If deflate, the requesting peer can

send compressed data

X-Ultrapeer True If true, responding peer is an

ultrapeer; otherwise it is a leaf

X-Try-Ultrapeers 217.254.98.153:6346 A list of other ultrapeers

X-Degree 32 The number of other ultrapeers this

ultrapeer connects to at any time

X-Query-Routing 0.1 Indicates support for the Gnutella Query

Routing Protocol (QRP) version 0.1

X-Ultrapeer-
Query-Routing

0.1 Indicates support for the Gnutella Query

Routing Protocol (QRP) version 0.1

X-Dynamic-
Querying

0.1 Indicates support for dynamic

querying version 0.1

X-Ext-Probes 0.1 Indicates ability to forward query

probe messages used in dynamic

queries version 0.1

Vendor-Message 0.2 Vendor-specific messages are

supported

GGEP 0.5 The Gnutella Generic Extension

Protocol (GGEP) version 0.5 is

supported

Pong-Caching 0.1 Peer indicates that it automatically

forwards its pong cache

X-Max-TTL 3 Messages with TTL values greater than

specified will rejected
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to 2 or 3 and the query is sent to one or a few ultrapeer neighbors. The larger TTL

value causes the query to be sent deeper into the Gnutella network. Sending only

to one or a few ultrapeer neighbors limits the amount of query traffic compared

to flooding. The TTL value and number of neighbors depend on whether the

results of the previous probe query indicated that the file is popular or rare.
Since these repeated query messages use the same message ID, an ultrapeer

supporting dynamic querying can’t discard messages coming with the same

message ID as seen previously. This capability is enabled if the ultrapeer supports

the probe query extension and sees a subsequent query message with a larger

TTL value.
BitTorrent

BitTorrent152 is a protocol designed for distributing large files in pieces using

mutual distribution of the pieces between a set of peers called a swarm. If the

swarm is sufficiently large, this offloads the Web server that is the primary source

of the content. Generally peers join a swarm to download a specific file and leave

the swarm shortly after the file download completes.

The file to be downloaded is available at a Web server called the seed, which

also provides a torrent file corresponding to the content file. The torrent file iden-

tifies the individual fixed-size pieces of the large content file and specifies a host
that monitors the peers, called the tracker. Peers that want to access the pieces of

the content file contact the tracker to determine other peers that have already

joined the swarm. Thereafter, peers directly communicate with one another using

the peer list provided by the tracker, without requiring the tracker to participate

further. In some designs, the tracking is done using a DHT. A trackerless DHT

design using the Kademlia algorithm is specified in 153].

A peer seeking to download a file first obtains the torrent file and a URL to the

tracker. The tracker returns a list of peers randomly selected from the swarm that
are currently downloading the file. Each peer requests pieces to download in ran-

dom order from its neighbor peers. Each time a peer has successfully retrieved a

piece of the file, the downloading peer announces the download to the other

peers in the swarm to which it is connected.

The goal of each BitTorrent peer is to maximize its piece download rate in a

reciprocal manner. Several policies are implemented in the protocol to achieve

fairness, provide incentives for mutual exchange, avoid overloading, and find bet-

ter peers with which to exchange pieces. Each peer should avoid being over-
loaded by requests for piece transfer. For this reason and for good TCP

performance, each peer limits the number of simultaneous active connections,

typically four. These active connections are placed by the peer in the unchoked

state, while the other neighbor connections are placed in the choked state. Fre-

quent changes in neighbors’ choked state, known as fibrillation, are limited to

specific time intervals, currently 10-second intervals. Exchanges with neighbors
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should be fair, that is, each peer should reciprocate by supplying pieces to peers

that provide downloads to it. Finally, each peer should try other peers periodi-

cally to see if the download rate is better than the current active set.

To achieve the fairness and performance goals, each peer follows several stra-

tegies.154 First, it favors a rarest-first prioritization of pieces to download. It
knows which pieces have already been downloaded by its neighbor peers in

the swarm. By selecting pieces that have been infrequently downloaded, it

increases the likelihood of other peers wanting to exchange pieces with it. Sec-

ond, it favors peers that have higher capacity based on previous data transfer rates

with each neighbor peer. Third, it opportunistically tries other peers periodically

to see if better transfer rates can be obtained. This opportunistic unchoking

changes peers every 30 seconds.

BitTorrent uses a rate-based tit-for-tat (TFT) strategy in which the download peer
chooses other peers based on the capacity of that peer to download the piece of inter-

est. Each download peer has two flags per connectionwith other peers in the swarm:

choked/unchoked and interested/uninterested. An unchoked peer is one in which

the download peer considers suitable to send pieces to, based on previous download

rates. By sending pieces, the peer increases the chances of receiving pieces from

those peers receiving the pieces. Those peers that don’t reciprocate with sufficient

pieces during a TFTround are subsequently choked. A peer indicates it is either inter-

ested or uninterested in receiving exchanges from a neighbor peer in the swarm.
When data is being transferred, download peers queue several piece requests

at once to get good transport performance, a technique called pipelining.

The BitTorrent peer protocol has the following message types:

n Choke. The initial state of a peer, which signifies that it is not sending data
to the neighbor peer.

n Unchoke. The neighbor peer is to receive pieces from this peer.
n Interested. The peer is willing to receive pieces from this neighbor.
n Not interested. The peer is not willing to receive pieces from this

neighbor.
n Have. The piece that this peer has most recently downloaded and verified.
n Bitfield. A bitfield that has a 1 bit in each position, indicating pieces

already sent by this peer.
n Request. Identifies a piece being requested for download.
n Piece. Identifies a piece being sent by a neighbor peer.
n Cancel. A flow control mechanism to cancel previously requested pieces,

typically used near the completion of a file download.

Peers that have a complete copy of the content file and continue to serve other

peers are called seeds. Peers that are downloading the file are called leechers.

An example of the population of seeds and leechers is shown in Figure 6.5, which

plots the tracker log of the torrent for the Linux RedHat 9 distribution. The data

were collected over a nine-month period in 2003. Demand peaks during the first

five days, a type of flash crowd effect.
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FIGURE 6.5 Trace of swarm population in a torrent: (left) over a five-month period and

(right) the first five days.155 # 2004 Springer-Verlag, with kind permission of Springer Science

and Business Media.
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Structured Overlays

Most file-sharing systems used unstructured overlays, but the eDonkey system led

to the development of two file-sharing overlays based on Kademlia. The original
eDonkey system used servers to provide file indexing. Later this was replaced with

a structured P2P protocol called Overnet. Overnet used the Kademlia multihop

overlay algorithm discussed in Chapter 4. Overnet is no longer operating; an unoffi-

cial description of the Overnet protocol is found in [160]. Separately, the eMule

application software for the eDonkey network also developed a Kademlia-based

overlay network called Kad. The protocol used by eMule is defined in [161].

Currently the Kad network support in eMule is in test phase.

Several experimental systems have created protocols to support a variety of
structured overlays. For example, both Overlay Weaver162,163 and OverSim164,165

support a variety of multihop structured overlays in a common messaging layer.

In this section we discuss the experimental P2PP proposal defined in [166],

which is currently being considered as a component of the P2P-SIP specification

discussed in Chapter 12. Table 6.3 shows message types for a universal P2P mes-

sage protocol for structured overlays.

Each peer has an overlay address, typically in an address space of 128 bits or

more. To avoid two peers selecting the same address, the address space should
be much larger than the number of peers participating in the overlay at any

one time, and each peer should randomly select its address. An effective way to

accomplish this is to use a cryptographic function on a unique value. Since this

function will also be used to generate keys in the DHT, it should be efficient to

compute. A common implementation choice is the SHA-1167 encryption algo-

rithm, since it already implemented on many platforms to support SSL and TLS

security protocols.

Several protocol techniques have been studied in the OpenDHT testbed for
improving performance of multihop DHTs to counteract transient conditions at



Table 6.3 Example Structured P2P Message Types166

Message
Category

Message Type Meaning

Startup Enroll Enables the user to become a member of an overlay

Authenticate Authenticates the user and creates a binding of the

user and/or peer ID to the peer’s public certificate

Bootstrap Peer locates other peers via which it can join the

overlay

Maintenance Join An authenticated peer joins the overlay by connecting

to one or more other peers already in the overlay

Leave Peers departing the overlay notify their neighbors

KeepAlive Peers signal their heartbeat to neighboring peers

LookupPeer Finds information about a peer for the routing table

ExchangeTable Exchanges some part of the routing table with another

peer

Replicate Replicates resource objects on other peers for

redundancy

Transfer Transfers ownership of resource objects to another

peer, typically after a join or a peer departure

Date storage

and retrieval

PublishObject Publishes or refreshes a resource object for other

peers to access

LookupObject Searches for a resource-object

RemoveObject Removes the resource object

Connection

management

Tunnel Encapsulates an application layer protocol message

for transfer over the P2P overlay

Connect Initiates a NAT traversal

Invite Promotes a client or ordinary peer to superpeer status

Query Determines the services or resource objects provided

by a peer

Overlay

migration

UpdateSoftware Obtains and transitions to a new version of peer

software

MigrateProtocol Transitions to a new version of the protocol
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peers that can cause long delays in response times.168 Since peers are shared with

other applications, there may be unpredictable changes in workload that affect

the peer’s processing time. In addition, requests routed through a series of peers

may encounter congestion. These techniques include:
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n Proximity awareness (discussed in Chapter 10)
n Delay-aware routing (discussed in Chapter 11)
n Iterative routing
n Parallel requests

In delay-aware routing, each peer retains the latency of previous communica-

tions with its neighbors. New requests are routed toward those neighbors with

minimal expected latency. Delay-aware routing can incorporate other factors.

First, the progress of the request in the overlay address space can be considered

relative to the latency, so that the neighbor that offers the maximum overlay dis-
tance per latency will be preferred. This is consistent with the goal of maximiz-

ing the progress of the request toward the destination at each hop while

accounting for different latency characteristics for the alternative paths. Second,

delay-aware routing can be selectively used such that expected latencies below

the median of the overlay simply route to maximize the overlay distance

covered in the next hop; otherwise the hop is also selected according to the

best delay.

In iterative routing, first used in Kademlia, the response at each hop is sent
back to the originating peer. The originating peer can then select the peer that

will be selected for the next hop. The response at each hop will include the set

of neighbors for the next hop and their latency. Iterative routing is an alternative

to recursive routing, in which the peer at each hop selects its neighboring peer

and directly forwards the request to its neighbor. Iterative routing has more mes-

sage overhead than recursive routing but can more easily be combined with the

next technique, request parallelism. Accordion, described in Chapter 13, is an

overlay that combines parallelism and recursive routing.
In parallel requests, the request is sent to multiple peers at the same time. The

first response that is received then triggers the next set of parallel requests to its

neighbors, and so on. This reduces the impact on nodes that are heavily loaded

or may have recently left the overlay, at the cost of greater message overhead. DHTs

using request parallelism include Kademlia, EpiChord, and Accordion.
NETWORK ADDRESS TRANSLATION AND P2P OVERLAYS
How NAT Effects P2P Connectivity

A common networking element called a network address translator (NAT) causes

significant problems for P2P applications because it, in combination with the

network’s firewall, typically prevents incoming application connections from

reaching their destination host. Enabling peers to circumvent NATs requires some
networking acrobatics, referred to as NAT traversal. These techniques, particu-

larly important to VoP2P, which involves two-way connections, but are generally

applicable to any P2P overlay which spans multiple networks.
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A typical use of a NAT in a home or small business network with multiple com-

puters is to allow these computers to share a single public IP address for all con-

nections to the Internet. Otherwise each computer would need a separate public

IP address, which must be obtained from an ISP. Instead, with a NAT, each com-

puter has a separate private IP address. As packets leave the local network to a
destination address on the Internet, the NAT translates the private source IP

address and, depending on the type of NAT, the TCP/UDP port of outgoing pack-

ets to a single public IP address and usually a different port. In most protocols this

translation is transparent to either of the endpoints. Incoming packets are trans-

lated by the NAT to the appropriate private address and port and forwarded by

the NAT to that computer. In many cases, the NAT is integrated with the edge

router by which the network connects to the ISP network.

The specification of IPv6 with 128-bit addresses to replace the 32-bit addresses
of IPv4 was expected to eliminate the need for NATs. But the slower-than-expected

conversion of the Internet to IPv6 indicates that NATs will likely be a common fix-

ture on the Internet for some time to come. Currently it is estimated that upward of

70% of hosts are behind NATS.172 The wide use of NATs complicates the operation

of client-to-client protocols such as those used in peer-to-peer applications, since a

computer with a private address cannot be directly reached by any computer out-

side that private network. Figure 6.6 compares an outbound and inbound connec-

tion via a NAT. Four computers have private addresses in a small network and
reside behind a NAT. When one computer application connects to a Web server

on the Internet, the packet contains a private source address and a public destina-

tion address. The NAT translates the private source address to its own public

address and forwards the packet to the public destination address.

However, when a P2P application running on a computer elsewhere on the

Internet wants to connect to a P2P application running on one of the four com-

puters behind the NAT, several problems arise. First, the private address of the
NAT Internet

Server

P2P Application

Private IP Addresses Public IP Addresses

FIGURE 6.6 Effect of NAT on client-to-client connections.
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FIGURE 6.7 P2P applications in separate private networks.
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target computer can’t be used to route the packet through the Internet. Second, if

the packet is sent to the public address of the NAT, the NAT can’t translate it to

the destination computer’s private address, since on inbound connection setups

there is no way to distinguish which local computer is intended as the destina-

tion. On the outbound connection to the server, the NAT remembers the end-

points of the connection so that when the server sends packets in response to
the request, the NAT can forward these packets to the proper endpoint. But on

inbound connections, the NAT doesn’t have the local endpoint address. In addi-

tion, most NATs are operating with a firewall, which typically blocks incoming

connections for security reasons.

This problem is compounded when each endpoint is behind a NAT, as shown

in Figure 6.7. Now both endpoints have private addresses and cannot directly

address each other.
NAT Traversal

One way to enable computers behind NATs to receive incoming connections is to

explicitly configure the NAT so that an external source address is mapped to a

specific private address and port. This approach has the disadvantage that it

can be difficult to administer for users who operate their own home or small busi-

ness networks. For peer-to-peer applications, this is impractical because of the

large number of peers that participate in the overlay and the difficulty in knowing
which peers will be involved in connections to a given peer. It might be possible

for the P2P application itself to dynamically configure the NAT. For example, the

UPnP Forum’s Internet Gateway Device control protocol,267 or something like

the SIMCO266 experimental protocol might be used. However, few NATs support

such protocols, and there are security issues in permitting applications to control

NATs, since network intruders might use the application to open the network to

other attacks.
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FIGURE 6.8 NAT traversal using an intermediate server.
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Consequently, creative application designers have devised ways for their appli-

cations to establish client-to-client connections when one or both of the clients

are behind NATs. The techniques are referred to as NAT traversal. Frequently,

NAT traversal involves an intermediate server with a well-known public IP address,

as shown in Figure 6.8.

One way to use the intermediate server for NAT traversal is for the server to
act as an application relay, forwarding packets between the two endpoints. Since

the server has a public IP address, each private client can make a direct connec-

tion to it. For large numbers of peers, this doesn’t scale, because the load on the

server grows according to the number of connections it supports.

Alternately, the public server can use its connectivity between the two end-

points to create a second direct connection between the endpoints. This second,

direct connection is used for the actual application packet flow between the end-

points. Even with this improvement, a single server would not scale sufficiently
to be used in a large peer-to-peer overlay. In the next subsection we discuss some

of the details of the NAT traversal approach, using the Internet Connective Estab-

lishment (ICE) protocol178 as a case study. Later we discuss some issues for using

an ICE-like approach in a peer-to-peer overlay.
NAT Traversal with ICE

ICE is intended to enable session-oriented protocols to establish end-to-end con-

nections between endpoints that might be behind NATs. Two important assump-

tions in the ICE design are that endpoints can’t determine their own network

topology and that there is a signaling channel already set up between the

endpoints. The first assumption means that ICE relies on external servers to deter-
mine whether it is behind a NAT and, if so, what its public address is. Following
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the second assumption, ICE uses the signaling channel to convey the candidate

addresses that are available for each endpoint.

There are two phases to ICE’s operation. In the first phase, each endpoint per-

forms the same steps. In the second phase, one of the endpoints controls the

selection of the connection path from the validated choices obtained by the first
phase. Phase one includes these steps (see Figure 6.9): (1) collect the candidate

addresses, (2) prioritize the candidates, (3) send the candidates and the priority

information to the other endpoint using the signaling path, and (4) validate the

candidates received from the endpoint in priority order by four-way handshake.

Since more than one pair of candidates may be validated, in the second phase

the controlling endpoint selects the nominated candidate and informs the con-

trolled endpoint of the selection.

Figure 6.9 shows the possible addresses that a connection may use to reach an
endpoint. There are three cases: (1) the direct network interface, (2) the public

address and port of the outermost NAT, and (3) the address and port of a public

server that implements the TURN protocol.271 During the candidate collection

step, each endpoint sends a query packet to its designated server. From this

packet, the server can determine the endpoint’s public address and port for the

outermost NAT between the endpoint and the server. The server is able to do this

because it receives the packet after its source address has been translated by the

NAT, if one is in the path. The server then passes this address as well as an
address-port allocation on the server itself back to the endpoint.

The public address of the NAT can be used in a NAT traversal technique

known as hole punching. The TURN server address can be used for relaying traf-

fic. For UDP traffic, hole punching is preferred because it is a more direct path,

but it depends on the type of NAT.

For session-oriented connections in which endpoints exchange many packets

over an extended period of time, the overhead of ICE is a marginal cost compared

to the session duration.
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FIGURE 6.9 Candidate address collection in ICE for NAT traversal.



Peer Capability Determination 153
NAT Traversal in a P2P Overlay

In a large overlay, peers can be spread over many private networks behind NATs

as well as throughout the Internet. For brevity, we’ll refer to peers behind NATs as

NATed peers. As shown in the previous discussion, a NAT traversal mechanism is

needed for any host to be able to participate in the overlay protocol as a full peer.

An alternative design is to designate peers that are NATed as clients of the

overlay. In this case, only those peers with public addresses are part of the over-
lay. Clients can issue requests to the overlay by sending them to one of the public

peers. This approach is called the superpeer model. The success of this approach

in general depends on the availability of sufficient numbers of peers that want to

act as resource servers for a potentially large population of client peers.

As discussed earlier in the book, peers in structured overlays maintain routing

tables for forwarding messages between peers. These routing tables map overlay

addresses to routable IP addresses for the given peer. Considering the three types of

addresses used by ICE, generally only Type 2 (the NAT public address) or Type 3
(a public relay supporting the TURN protocol) would be of use for overlays spanning

the Internet and multiple private networks.

Relayed connections (Type 3) could be used to make NATed peers full-fledged

members of the overlay. However, either a large collection of TURN servers would

be needed or those peers with public addresses would be required to offer TURN-

like services to the NATed peers. The relayed NAT traversal model for NATed peers

thus exhibits the load distribution properties of the superpeer architecture, with

additional complexity for supporting a NAT traversal protocol such as ICE.
Hole punching can be used for many NATs if Type 2 addresses are known. How-

ever, a large number of NATs don’t support hole punching,171 and there are limits on

the number of separate incoming connections theNAT can support. Themessage-rout-

ing mechanism and routing table maintenance mechanisms of most structured over-

lays would need to incorporate dynamic NAT traversal mechanisms. This could be a

significant cost, offsetting the benefits of load sharing across a larger set of peers.
PEER CAPABILITY DETERMINATION
Overview

As part of determining its role in the overlay, each peer evaluates the capacity of

the local system and network resources needed to perform the role. The peer

capability is the available resources at a peer relevant to its role in a peer-to-peer

overlay, specified as a set of capacities and system attributes. For conventional

operating systems, there are well-defined system APIs and local management

agents that an application can access to determine the state of most potential

resources. We can divide these into static and dynamic capabilities. Static capabil-
ities include CPU type and speed, installed memory, and network interface speed.

Dynamic capabilities include the current memory, network, and CPU utilization.
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Most hosts are used for other applications in addition to the P2P application.

The “good citizen” rule means that the peer cooperates with other applications

in sharing the system resources and won’t attempt to allocate all available

resources to itself. Peer applications may provide an interface for the user to con-

figure how much system resource should be used by the P2P application. Further,
a peer should be able to limit incoming message flow and system usage by other

peers. This requires that the overlay protocol includes mechanisms for throttling

and redirecting message flow and that each peer has a means to measure the sys-

tem and network resource utilization due to other peers’ requests.

After startup, at any time the peer should have a snapshot of its current cap-

abilities and may maintain some historic values for determining longer-term

averages. Such averages can be used to determine, for example, whether a sudden

change in capacity is an anomaly. Given the capability snapshot, we define the
peer capability assessment as an algorithmic decision as a function of peer capa-

bility as to whether a peer satisfies the criteria for a specific role such as super-

node status. There can be different assessments for different roles.

It may be convenient to exchange capabilities with other peers. When a peer

is searching for a resource or service, it could prefer to access the resource or ser-

vice at a more capable peer. This requires a format for encoding capabilities and

their values.
Network Capacity

A peer has a network interface that has a maximum bandwidth capacity for send-

ing and receiving packets of information from other nodes in the network. The

bandwidth capacity of the network interface is generally not a good estimator

of the actual available end-to-end bandwidth that a peer can achieve in communi-

cating with another peer anywhere in the network. First, the actual access net-
work the peer is connected to may have much lower bandwidth. For example,

existing Fast Ethernet network interfaces support 100 Mbps and higher data rates,

whereas most DSL and cable modem broadband access networks have data rates

that are asymmetric and typically less than 5 Mbps. Second, other packet traffic in

the network reduces the available bandwidth and, if the network is heavily con-

gested, may cause packets to be lost or dropped.

One technique for estimating bandwidth between two endpoints is called a

packet train. In a packet train, a sender node sends a series of fixed-length packets
at the maximum rate it can to the destination node. When the destination receives

the first packet, it starts a timer. When the last packet in the packet train is received

at the destination, the total payload of the series of packets divided by the elapsed

time from first to last packet is the available bandwidth between the two end-

points. The packet train estimates bandwidth in one direction only. If measurement

is needed in both directions, the source and destination must reverse roles and do a

separate packet train measurement in the opposite direction. In addition, since
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network conditions change from time to time, the endpoints can periodically

repeat the bandwidth measurement to maintain an accurate estimate.

In some cases it may matter whether the bandwidth estimation is performed

in-band versus out of band. An in-band measurement is performed by sending

the packet train over the same network connection that the application data fol-
lows. A packet sent in-band is more likely to follow the network route that the

actual application data packets follow, thus giving a more reliable measurement.

However, in-band measurement requires that the endpoints flagged the measure-

ment packets so that they are not confused as application data.
Peer Lifetime

Peer roles such as superpeer and relay generally prefer peers that are likely to be
connected to the overlay for higher-than-average time periods because the depar-

ture of such peers has a greater impact on more peers.

Some studies of actual overlays have found that node lifetime is heavy tailed,

meaning that peers whose lifetime exceeds the mean peer lifetime are likely to

stay connected to the overlay for a much longer time. When a peer first joins

the overlay, it can start a timer to measure its lifetime. When the timer reaches

a certain time value, the peer can use that as an indicator that its lifetime is likely

to persist. The peer can also keep a history of previous session durations to deter-
mine whether the recent history shows a pattern of longer-than-average sessions.

Further, it can also examine the system uptime to determine how frequently the

host is restarted or brought offline. System uptime history is accessible on con-

ventional operating systems.
BOOTSTRAPPING AND PARTITIONS
Finding a Rendezvous Peer

Bootstrapping is the mechanism by which a newly joining peer identifies a peer

already in the overlay to which it can issue the join request. Since it is not yet part

of the overlay, it can’t use the search mechanisms of the overlay itself to locate a

peer with which to connect. The alternatives include:

n Bootstrap server
n Broadcast or multicast discovery
n Bootstrap overlay
n Cached entries from previous sessions

Let’s call a peer that receives the join request a rendezvous peer. The rendezvous

peer may not have the capacity to accept another peer as a neighbor. If it does

not, it can respondwith a rejection, which includes a referral list of other rendezvous

peers. Ideally, the bootstrap method should distribute the join request load across a

large set of rendezvous peers so that rendezvous peers don’t become overloaded and
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so that rejections are minimized. In addition, the list of rendezvous peers should be

fresh so that join requests don’t experience timeouts. Finally, depending on the over-

lay, it may be desirable that the rendezvous peer be close to the joining peer.

In the bootstrap server approach, one or more servers with well-known

addresses are configured to provide a list of rendezvous peers. If all joining peers
first contact a bootstrap server, it is easy for the bootstrap server to maintain a list

of rendezvous peers and to tailor that list so that successive referrals are distributed

across the overlay. The bootstrap server removes peers from its list when such

peers leave the overlay or fail to provide a keep-alive message. A disadvantage with

the bootstrap server approach is that it requires that one or more servers be avail-

able for the overlay to operate. An advantage is that it is less susceptible to the

formation of overlay islands or partitions than a distributed scheme.

A joining peer can issue a broadcast or multicast discovery request to discover
a rendezvous peer. Rendezvous peers listen on a well-known broadcast or multi-

cast address and respond by sending information to the requesting peer regarding

details of making a connection to the rendezvous peer. Alternately, each rendez-

vous peer can periodically broadcast an advertisement containing this informa-

tion, and joining peers can listen for such advertisements. Broadcasts flood the

network and are not suitable for large area discovery or advertisement. Conse-

quently, if a rendezvous peer and the joining peer are not near each other in

the network, broadcast discovery will fail. Group multicast protocols are not uni-
versally supported on the Internet, so multicast discovery may not be reliable.

Peers can cache a list of rendezvous peers from previous sessions in the over-

lay. If the list is sufficiently large, it increases the probability of locating an active

rendezvous. Though caching doesn’t solve the problem of how a first time peer

locates a rendezvous point, it can substantially reduce the load on other mechan-

isms, more so as the overlay’s churn rate grows.

A universal overlay could be operated in which peers in every other overlay

are members.183 Rendezvous peers in each overlay store their connection details
in the universal overlay. Joining peers search the universal overlay for rendezvous

peers in the overlay of interest. The entries in the universal overlay need to be

periodically refreshed to avoid stale entries. If the universal overlay is a DHT,

the indexing method for discovering rendezvous peers should distribute the

request load to avoid overloading individual peers.
Merging Partitions

An overlay partition is the separation of two or more sets of peers into separate over-

lays. Partitions can occur due to sudden failure of connections between the two sets

of peers, due to a network failure, suddenmassive churn, or a denial-of-service attack

on the overlay itself. A partition could also be formed during overlay creation if, for

example, respective rendezvous peers are in separate regions of the network and

cross-connections between peers in separate regions are not created. A partition is

undesirable since the collective resources of the full set of peers cannot be achieved.
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To merge two overlays requires that the partition must first be detected and

then that peers in each partition obtain connection information for their counter-

parts. One technique is to force each peer in one partition to rejoin the other par-

tition by sending join requests to rendezvous peers in the continuing overlay.

Sometime after joining the new partition, each peer from the dropped partition
would put its shared objects into the overlay. This approach could create a mas-

sive amount of routing table changes in the continuing partition. A side effect is

that each join leads to data movement as peers in the continuing overlay adjust

their index storage to new neighbors. If the joining peers from the dropped par-

tition immediately reindex their data objects in the continuing overlay, these

objects will likely contribute to further data movement during the merge period.

The volume of messaging could be mitigated by controlling the rate at which

peers from the dropped partition can join to the continuing overlay. Such rate
control will mean that some peers are penalized with significant delays in being

able to access the continuing overlay.
P2P NETWORKING SUPPORT IN MICROSOFT WINDOWS
Starting in Windows XP, Microsoft has added capabilities to the operating system

to support P2P applications.182 These new capabilities include peer identity,
distributed peer name resolution, connectivity with other peers, formation of

secure peer groups, and search.
Peer Identity

The structure of the Peer Name Resolution Protocol ID (PNRP ID) shown in

Figure 6.10 enables each peer to create multiple IDs for itself, each ID being

unique and securely authenticated using the peer’s public key. Each PNRP ID
Peer Public Key

SHA-1 Hash Any Name (up to 150 chars)

authority.classifier

SHA-1 Hash

Service Location

128 bits 128 bits

P2P ID

PNRP ID

FIGURE 6.10 Peer identity construction.
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can be associated with a separate application, using the classifier component of

the P2P ID. If a peer has more than location in a network area, these can be dis-

tinguished using different values for the service location field.
Peer Name Resolution Protocol

Using the Peer Name Resolution Protocol (PNRP), any PNRP ID can be resolved

to its IPv6 address and a self-signed digital certificate called the Certified Peer

Address (CPA). The CPA itself contains IP address, port numbers, and protocol

IDs for communicating with the peer. PNRP is a decentralized protocol that

doesn’t require use of the server-based Distributed Name Service (DNS) used on

the Internet to resolve hostnames to IP addresses.

Each peer maintains a cache of PNRP IDs. Each cache entry includes the IP
address of the peer and the CPA corresponding to the PNRP ID. When a peer

wants to use a service on another peer for which it has the PNRP ID but no IP

address, it uses the PNR protocol to resolve the ID into an IP address. PNRP is

an iterative protocol that selects the closest ID in its cache. It sends a request

to peer with the closest ID. The requested peer looks in its cache to find either

the requested ID or an ID closer than its own. In either case, it returns the ID

to the requesting peer; otherwise it returns a negative result. The requesting peer

continues searching if the ID was not found, by sending the request to the closest
ID returned by the previous peer or, if none, by sending the request to the next

closest ID in its own cache.

PNRP ID caches are organized hierarchically with a limit of log N levels, each

level containing no more than 20 entries, where N is the number of peers in the

network. The lowest level contains entries nearest to this peer’s ID. To ensure

that PNRP converges, each time a peer adds an entry to the lowest level of

its cache, it floods a copy of the entry to all the peers already in the last level

of the cache. Cache entries are periodically refreshed, and stale entries are
removed.

The PNRP resolution sequence, combined with the hierarchical cache struc-

ture, makes the protocol similar to lookups performed in multihop DHTs using

iterative routing. Further information about other features of PNRP including

cache organization, cache initialization, and APIs is available at [181].
Peer Overlay

The peer overlay in the Microsoft design is called a graph, and the function of man-

aging the peer’s participation in the overlay is called graphing (see Figure 6.11).

This figure also shows the other key pieces of the Microsoft peer functions, includ-

ing Grouping for managing peer groups, Identity Manager for managing secure

peer identities, and the Name Service Provider (NSP), which in this context is

the interface to the PNRP.
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Data are shared and replicated between peers by flooding updates across the
graph. Thus the current Microsoft P2P model for data sharing can be described as

an unstructured overlay with flooding.

Each peer has a data store in which to maintain shared data. Each data item

has a globally unique ID (GUID), a version number, and a timestamp. When data

are changed, they are flooded across the graph to all other connected peers to

keep all peers’ data stores in sync.

Each graph is identified by the lowest peer ID that is part of the graph. If the

graph becomes partitioned, it can be detected by determining whether the low-
est peer ID has changed.

When joining the graph, a joining peer determines the peer to connect to

using PNRP or DNS to locate the peer. If the peer has sufficient capacity to

accept a new peer connection, it will accept the connection. Otherwise, it pro-

vides a referral list of other peers in the graph, which may accept the join

request. The joining peer selects a peer randomly from the referral list and

sends a join request to it. Each peer periodically manages its connections with

other peers to eliminate those with low utility in providing unique or timely
information.
Grouping

Within a graph, any subset of peers may form a secure relationship, called a

group. Management of groups is handled by the Grouping function (see

Figure 6.11). The group is a mechanism to enforce private and secure communi-

cation and data sharing between peers in the group. Each group has a creator and
a unique ID. Peers join the group by invitation. The definition of the group
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includes permissions for which peers have access rights to modify data objects

shared within the group.

The security features of a group can be tailored by an application, including:

n Connection authentication, confidentiality, and integrity
n Encryption of messages for message/record confidentiality
n Validation of messages between peers

In the default implementation, groups and group members are identified using a

secure peer ID. Each peer ID is backed by a private key, which only the peer

holds. The peer signs its CPA using its private key, which any other peer can ver-

ify using the peer’s public key. The same method is used to name groups. When a

group is created, the creator also generates a new public and private key pair

for the group. It also produces a Group Root Certificate (GRC), which is signed
using the group private key. The GRC is used to validate the membership of

peers in the group by acting as the root of the certificate chain for each member.

The group ID is registered using PNRP. The group owner also establishes group

security policies.

Each peer that is a member of the group is given a Group Membership Certifi-

cate (GMC) when it is invited to join the group by the group owner. The GMC is

an X.509 digital certificate signed by the group’s private key. The GMC contains

the peer name identifying the member in the Subject Alternate Name property
of the certificate. The peer name is a secure peer name validated by the peer’s

CPA. GMCs may be given an expiration time.

The new group member connects to the group using PNRP to resolve the

group ID and obtain the address of a group member. It then attempts to establish

a secure, mutually authenticated TLS connection with the current group member.

Mutual trust is based on the GMCs that each peer holds and that can be validated

using the GRC. After joining, the new group member receives the existing group

data records from the peer to which it is connected. It can subsequently connect
to other group members using the graph management methods described earlier.

The Group Security Service Provider (SSP; see Figure 6.11) is used to establish

secure connections between group members.
Identity Management

Each peer has a unique identity in the graph and uses self-signed digital certifi-

cates conforming to X.509 to authenticate itself to other peers. The use of self-
signed certificates means that each peer acts as its own certification authority

(CA). This allows the graph to operate independently of access to an external

hierarchy of CAs, but it has the limitation that the identity of the peer is not vali-

dated by any external agency.

The Identity Manager (Figure 6.11) performs the creation and management of

peer identities.
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Search

In the current design, peers can search their local data stores using keyword

search with Boolean operators. Both content search and metadata search are sup-

ported. Groups automatically replicate all shared records to all group members.

Search queries are not currently sent to other group members.
SUMMARY
Challenges in describing the practice of peer-to-peer implementation are the ad hoc

state of some implementations, lack of detailed documentation, and proprietary

closed systems. Important issues common to many systems can nevertheless be

identified, including NAT traversal, bootstrapping, dynamic resource assessment,

and protocol design. Some items such as routing table organization have been omit-

ted from discussion because these details seem too specific to particular algorithms.
The emergence of platform support, such as P2P networking services in

Microsoft’s Windows XP and Vista, may lead to regularized middleware-based

P2P applications in the future.
FOR FURTHER READING
Application programming interfaces for DHTs have been described in [147],
[148], [162], and [168].

The incentive mechanism in BitTorrent has been studied in [156], [157],

[158], and [159].

Strauss et al.185 provide survey tools for available bandwidth measurement and

report on a comparison of various tools over a large number of Internet paths.

To support rapid merging and splitting of overlays, Jelasity et al.184 propose a

bootstrapping service. The bootstrapping service is built on a sampling service

that maintains a random sampling of reachable nodes. During a reformation of
the overlay, all participating peers exchange a list of peers from the sampled set

to recreate the overlay.

Windows P2P networking support relies on IPv6 and uses Intra-Site Automatic

Tunnel Addressing Protocol (ISATAP)186 and 6to4187 to provide IPv6 interopera-

bility in IPv4 environments. NAT traversal support is based on Teredo.188
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Search 7

Search is an intrinsic function of most P2P overlays, and the overlay geometry and

routing protocol is often designed to make search efficient. There are many types of

search mechanism, from keyword and simple pattern matching to information

retrieval and content-based retrieval. This chapter looks at the intrinsic search capabil-

ity available in different P2P architectures, including search in unstructured overlays

andhash-based indexing inDHTs. Various types of search queries, including keyword,

range queries, and semantic search, are also discussed. A look at the state of the art of
content-based retrieval and pattern matching in P2P overlays concludes the chapter.
OVERVIEW
Efficient search is essential in many aspects of today’s digital entertainment and
enterprise and personal applications. Search, according to Webster’s Dictio-

nary,189 means “to look into or over carefully or thoroughly in an effort to find

or discover something.” The quality of a searching scheme is governed by the

recall rate, precision, and speed to locate the desired object or data. These

metrics have been long used in information retrieval, where recall rate is the frac-

tion of documents that are relevant to the query that are actually retrieved and

precision is the fraction of objects retrieved that are relevant to the query. Thus,

an efficient searching scheme needs to take storage, indexing, query, and retrieval
into consideration. In other words, how and where objects are stored and the

way the objects are indexed, queries are formulated and matched, accurate

queries are matched, and fast objects are retrieved can have substantial impact

on the efficiency and effectiveness of a system’s data searching capability.

P2P networks use the computation, storage, and bandwidth resources of peer

nodes. Consequently, information retrieval in a P2P networkmust take into account

the network model as well as the characteristics of the information being acquired,

stored, and transmitted. Ideally, a P2P search algorithm should achieve high recall
and high precision query results while supporting complex queries, low cost, high

robustness and reliability, and fast query response. Many studies on improving

163
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routing efficiency to increase the speed of query returns, reducing routing main-

tenance cost, and improving fault-tolerance capabilities can be found in the

research literature. Notably, most existing P2P systems support simple key- or

ID-based object lookup. This is especially true for structured P2P networks.

Unstructured P2P networks can handle more complex queries, such as key-
word-based search. Semantic search, where queries are expressed in natural lan-

guage instead of simple keywords, poses significant challenges, especially in

structured P2P networks. In this chapter, we look at some existing indexing and

query schemes to understand the requirements, approaches, and challenges in

designing P2P search schemes. Data storage schemes, routing scalability, and reli-

ability, although having significant impact on searching efficiency, are discussed in

other chapters of this book, so those will not be covered in this chapter.
CENTRALIZED VS. LOCALIZED VS. DISTRIBUTED INDEXING
Most existing P2P indexing schemes can be categorized into local, centralized,

distributed, or hybrid indexing types. Figure 7.1 illustrates centralized, local,

and distributed types of indexing systems. Sample hybrid indexing configurations

are shown in Figure 7.2.

Centralized Indexing

With a centralized index (see Figure 7.1A), the index is kept on a centralized

server. Object lookup is done by searching over the index on the central server

to obtain the location of the target object. Napster,190 the father of today’s P2P

content distribution system, is a classical example of centralized indexing. In
Peers

Peers

Peers Peers

A B C

Centralized
Authority

index object

FIGURE 7.1 Illustration of (A) centralized index, (B) local index, and (C) distributed indexing.
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Napster, peers share MP3 files stored locally on their hard drives. Text-based con-

tent description, such as the title of a song, is then generated, indexed, and stored

by the Napster server. Each peer in the Napster network uses the Napster client

software to connect to the centralized Napster server. Peers connected to the

Napster server can submit keyword-based queries for a particular audio file. A list
of matching files along with the description and location of the file is sent to the

peer from the server. The peer then tries to connect to the peer with the desired

audio file and transfers the target content in a P2P fashion. iMesh191 is another

example of a centralized indexing P2P system with the capability to serve any

type of file.

The most noticeable drawbacks of a fully centralized indexing system include

vulnerability to attacks on the server and the possibility of a bottleneck at the

server. Research in centralized P2P indexing has been limited since Napster was
shut down and due to the advantages of distributed search discussed next.
Localized Indexing

In a local index-based system (see Figure 7.1B), each peer keeps the directory of

its own data objects locally. The early Gnutella192 design is a typical example of

local index-based P2P system. Local object indexing can be used to support com-

plex query search. When a peer generates a query, it conveys the query to peers
in the network to locate the desired object, most often through flooding or ran-

dom walk, as discussed in Chapter 3. Forwarding of query messages is stopped

when the desired object is found or when the Time-to-Live (TTL) value expires.

Compared to centralized indexing schemes, localized indexing can create

more network load since queries potentially have to be sent to many peers in

the overlay. But since query processing is distributed across many peers in paral-

lel, there is inherent scalability. If any peer node is faulty, it affects the objects

stored locally but not the overall search mechanism of the network. Thus loca-
lized indexing offers advantages over centralized schemes in terms of system scal-

ability and reliability. It has led to the development of many Gnutella-based

systems, including Bearshare,193 Shareaza,194 and Limewire,195 since the protocol

was first released in 2000.

Theoretically, with suitable query modeling and searching algorithm, any kind

of complex query can be supported in this kind of system. However, purely loca-

lized P2P indexing systems suffer from the high cost often associated with query

flooding and low object retrieval efficiency. FastTrack tackles the problem via a
hybrid P2P architecture. Peers are divided into two classes: superpeers and ordi-

nary peers. Indices may be kept on each peer locally. Peers with significant

computational power and larger bandwidth serve as superpeers, which are

connected together to create an overlay network that acts as a hub processing

all query requests received from ordinary nodes within the network. When a peer

issues a query, it submits the query to the superpeer; the query message is then

propagated to other superpeers, which then deliver it to the connected ordinary
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peers. Like Gnutella, message propagation is terminated once the target object is

found or a predefined TTL is reached. Once the object is found, it is transferred

directly from the target peer to the querying peer.
Distributed Indexing

Distributed index (see Figure 7.1C), on the other hand, distributes the index over

all peers. Pointers to a single object may reside in multiple indices located in dif-

ferent peer nodes, most often in neighborhood peer nodes. Freenet196 is one of

the earliest P2P systems in this category. It uses content hash keys to identify files.

Queries are forwarded to neighborhood peers based on a peer routing table until

the target object is found or the TTL threshold is reached. One disadvantage

posed by Freenet is its long startup time at peer joining. Subsequently, Mache197

proposed to place additional index entries on successful queries. Freenet offers

only key-based indexes, but FASD198 suggests to cache lists of weighted keywords

and to use Term Frequency Inverse Document Frequency (TFIDF)199 measures

along with inverted indexes200 to offer keyword-based searching capability in

distributed indexing systems. It is worth mentioning here that an inverted index

is a popular data structure used in databases and information retrieval. It maps a

search key such as a word to a list enumerating documents containing the key.

The list may also comprise the locations of occurrence within each document.
Inverted indexing allows efficient implementation of Boolean, extended Boolean,

proximity, relevance, and many other types of search algorithms. It is one of the

most popular index mechanisms used in document retrieval. Noticeably, an

inverted index is not limited to distributed indexing for P2P systems.

The Foreseer P2P system also employs distributed indices.201 Cai et al. claim

their approach improves efficiency in decentralized unstructured P2P systems

using two orthogonal overlays, which they term neighbor and friend overlays.

Foreseer is based on the idea that everyone has neighbors and friends. People
tend to get to know their neighbors over time as they become more settled

within their environment and make friends through social interactions. Taking

advantage of this observation, Foreseer constructs its two orthogonal overlay-

based system accordingly. In query search, neighbor peers help reduce response

time and lower resource consumption; friend peers offer better temporal locality.

Today, distributed indexing is one of the most popular P2P indexing schemes

seen in the literature. Many search algorithms that we discuss later in this chapter

use a distributed index.
Hybrid Indexing

Hybrid indexing intends to take advantage of the query efficiency of centralized

indexing and the scalability of localized and distributed indexing. For instance,

Figure 7.2C presents an example of hybrid indexing under a hybrid P2P overlay.

In this case, superpeers (supernodes) maintain the indices in a distributed
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manner. A query from an ordinary peer is sent to its superpeer to retrieve the

location of the desired object. The superpeer forwards the query to other super-

peers if it does not find the desired object in its own index. Information about the

desired object is sent back to the ordinary peer via its superpeer. Thereafter, the

query issuer may directly contact the peer with the desired object.
HASHING-BASED INDEXING AND LOOKUPS
DHT-based P2P systems are one of the best known types of P2P systems in which

searching processes are more finely controlled. With strong theoretical founda-

tions, DHT-based P2P systems offer efficient key- or ID-based exact match look-

ups: given a key- or an ID-based query, the system can guarantee the return of
results if they exist. In a DHT-based P2P system, each data object and each peer

is uniquely identified using a numerical key or an ID h that is generated via a

one-way hash function H() of a unique description f of the object or peer ob:

hi ¼ H f obið Þð Þ
The hash of objects and peers are within the same identifier space, with each

peer responsible for all keys in a certain portion of the identifier space. DHT-

based P2P systems can be classified into hierarchical and flat categories.202 Flat

DHT map a flat address space to a variety of geometries, including ring, hyper-
cube, mesh, and de Bruijin graph, as disccussed in Chapter 4. Chord,203,204

CAN,205 Pastry,206 and Tapestry,207 for instance, are four example systems of this

kind. Hierarchical DHTs organize peers into different groups or sets. Each group

forms its own overlay and together they construct a hierarchical overlay based on

DHT. Hierarchical overlays are discussed in Chapter 5.
Searching in a Flat DHT

Chord employs a ring topology. A consistent hashing function, such as SHA-1, is

used to generate peer and object IDs known as keys. The peer ID may be created

using the peer IP address and port; the object ID can be generated from its text

description. Every object key k is assigned to the peer whose ID is larger than

or equal to the hash value of k. In Chord, peer IDs increase clockwise. Chord uses

a hashing function designed to distribute object keys evenly throughout the ring

topology. Every peer keeps a routing table with the information about its succes-

sor, with queries passed from successor to successor. When the query hash value
is greater than or equal to the hash value of the peer ID, the peer can map the

query to an object key in its responsibility. To overcome the need to traverse

every peer, a peer can attempt to find the predecessor using a finger table.

CAN is another distributed system that maps keys onto values, self-organizes,

and routes queries using the DHT concept. CAN forms a P2P overlay network that

stores chunks of a DHT (object IDs) known as zones. The protocol is based on a
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virtual d-dimensional Cartesian coordinate space. This space is dynamically parti-

tioned among all the peers in the system. Every peer owns its own zone within

the global coordinate space. Object IDs, hash values of descriptions of the

objects, are mapped into the partitioned space. A peer is responsible for all object

IDs resides in its zone. A CAN peer maintains a routing table that holds its neigh-
bor’s IP address and its coordinate zone. A peer routes a query message toward its

destination using a simple greedy forwarding to the neighbor peer that is closest

to the destination coordinates.

Pastry andTapestry both use Plaxton-like prefix routing. Pastry peers are identified

in the network space using a 128-bit identifier, known as the nodeId. The nodeId
indicates a peer’s position in the circular nodeId space. The nodeIds themselves

are assigned randomly when the peer first connects to the Pastry network. Many

mechanisms can be used to derive the nodeId, including a peer’s public key or IP
address-based hashing. Peers within Pastry maintain their own routing tables and a

neighborhood set that contains information about the peers closest to the local peer.

The routing table holds the set of peers with numerically closest but larger nodeIds
and numerically smaller nodeIds, relative to the present peer’s nodeId. A prefix-rout-

ing algorithm is used to forward query messages until the target object is found.

All three schemes discussed here use greedy routing to move the query clo-

ser to the destination. Compared to these algorithms,208 de Bruijn graphs209

can achieve better routing efficiency since they can achieve an asymptotically
optimal diameter that impacts query delay and aggregated lookup load.
Searching in Hierarchical DHTs

Hierarchical DHTs organize peers into different sets or groups,most often into two to

three hierarchies. Kelips divides the peers intok virtual affinity groupswith group IDs

of [0, k-1]. To search for an object, the querying peer A in group G hashes the file to

the files belonging to groupG’. IfG’ is the same asG, the query is resolved by check-
ing the local intragroup data index. Otherwise, A forwards the query to the topologi-

cally closest contact in group G’ until the target object is located.

A more popular hierarchical DHT scheme classifies peers into superpeers and

ordinary peers based on the peers’ processing power, bandwidth, or other

resources or capabilities. Object lookup starts with the superpeer SA connected

to the querying peer A. If SA is responsible for key K, SA locates and returns

the query results to A. Otherwise SA forwards the query to other superpeers

according to a specific routing algorithm until the target object is located.
KaZaA,210 for example, employs the two-tier hierarchical structure with the

superpeers indexing the files in their managed groups.
Discussion

With guaranteed search results and high search speed along with its high scalabil-

ity, DHT-based P2P protocols are said to provide considerable benefits over early

centralized and fully decentralized P2P protocols. The tradeoff is the routing table
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maintenance cost because the network topology is continually changing. There-

fore, managing a consistent DHT requires considerable effort. In an attempt to

leverage the benefits of DHT but also minimize some of its inherent limitations,

the JXTA211 specification has tried to create a balance by creating a hybrid system

that uses a loosely consistent DHT.212 The JXTA overlay network acts as a virtual
hash table containing the index of all the published objects that they call advertise-

ments in JXTA.213 Peers are classified into two categories: ordinary peers, called

edge peers in JXTA, and superpeers, called rendezvous peers in JXTA. Shared

resource distributed index (SRDI) is used to create and maintain a conceptual index

of resources in the network through a set of specified XML attributes. The

distributed index maintained resembles a hash table, with the indexed attributes

as hash keys and the hash values mapping back to the source peer containing

the actual advertisement. Queries can then be made anywhere in the rendezvous
network based on these attributes. In this way, SRDI can answer advertisement

queries in the network by locating the peer that has the required advertisement.

An edge peer can query the hash table at any time by supplying a set of attri-

butes—the hash keys in the table. The query is resolved by the network (actually,

the rendezvous superpeer network) by hashing the key to the required value (that

is, the peer containing the requested advertisement). That is, the rendezvous peers

form a rendezvous network that maintains a DHT. Because the set of rendezvous

peers cooperating to implement the DHT may come and go (albeit less frequently
than edge peers) in a P2P network, the DHT cannot be maintained in a perfectly

consistent fashion at all times. When a rendezvous goes away, the chunk of index

that it is maintained by it becomes unavailable for a period of time (until the

responsible peers publish it again). This loosely consistent DHT helps deal with

the transient nature of peers in a P2P network.

Recall that Chord, Pastry, and CAN rely on more costly mechanisms to keep the

network view consistent. Although JXTA can reduce the maintenance cost via a

less costly mechanism that ensures the network view is only loosely consistent,
the inconsistency may be permanent and hence cause problems at query retrieval.

A second most noted weakness of DHT-based systems is that this type of sys-

tem usually cannot support keyword or complex queries. In most applications,

obviously, keyword-based searches and complex queries are more useful than

key- or ID-based exact match searches. Later in this chapter we look at some

schemes that tackle this problem.
SEARCHING IN UNSTRUCTURED OVERLAYS
Flooding-Based Search

Flooding-based search was a popular approach in early unstructured P2P net-

works. In this approach, the querying peer sends the query request to all or a

subset of its neighbors. Each neighbor that receives the query request processes
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the request and returns the result if a match is found. If no match is found, the

neighbor forwards the query request to its neighbors, and so on. The process

continues until a fixed TTL threshold is reached. Basically, a flooding-based search

floods the query request through the P2P network, with the querying peer being

the center of the flood. Clearly, this type of search mechanism is high in cost and
inefficient due to the massive amount of query messaging being transmitted for a

single query.

Gnutella used breadth-first search (BFS) and fixed TTL to limit the number of

hops each query may have, in an attempt to reduce query bandwidth cost. The

downside of it, though, is the reduction of the probability of a target object being

found. Thus, many improved searching schemes for unstructured P2P networks

were proposed. These include iterative deepening, guided search, random walk,

bloom filter-based search, and adaptive probabilistic search, to name a few. In
the following, we look at these approaches to further understand the challenges

of content searching in unstructured P2P networks.
Iterative Deepening

To improve the recall rate in a flooding-based search, Yang and Garcia-Molina214

proposed iterative deepening, whereby a growing ring is used to iteratively deepen

the query flooding range until the target object is found. If a query is satisfied within
a first iteration, the query is stopped. Otherwise, a second query message is issued

to a large ring, that is, it reaches more nodes in the network. Noticeably, iterative

deepening does not reduce the number of duplicated messages.
Random Walk-Based Search

Random walk is another popular scheme without duplication of query messages.

The querying node forwards (walks) the query message (walker) to one randomly
selected neighbor, which randomly selects its neighbor to forward the query mes-

sage. The walk goes on until the target object is located. Certainly random walk

reduces the number of duplicated messages, with a penalty of long search delays.

This can be a significant problem in many real-world applications. To reduce

searching delays, k-walker,215 where the querying node forwards the query mes-

sage to k randomly selected neighbors instead of one neighbor generating k walk-

ers is proposed. Since the number of nodes reached by k random walkers in

h hops is the same as in one random walk over kh hops, a k times reduction in
query delay can be expected. Other variations of random walk also exist.202
Guided Search

Guided search rests on the idea that “guidance” on where the query message

should be forwarded can improve query efficiency. In routing index-based guided

search,216 each peer maintains a routing index that gives “direction” toward
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objects. On receiving a query, the “goodness” of its neighbor is evaluated using

the routing index to determine where the query should be forwarded. To keep

track of the “goodness” of neighbors, a node needs to keep track of statistics,

such as the number of query results returned through the neighbor, on all its

neighbors.
With a similar idea, Yang and Garcia-Molina214 used a directed BFS scheme to

reduce the routing cost of BFS. A subset, instead of all neighbors of a peer,

receives the query messages. Each node maintains a set of statistics of its neigh-

bors to estimate the “goodness” of them. Neighbors are selected based on their

“goodness” for query forwarding.

A more intelligent guided search217 uses keyword vector, query similarity func-

tion, peer ranking, and profile to guide the query forwarding. It’s based on the

assumption that peers that answered certain queries are likely to answer similar
queries with higher probability. At object search, the querying peer first evaluates

the past performance of all its neighbors to find those neighbors that have

answered similar queries. The query message is forwarded to only those with a

high ranking value at evaluation. The query message is then forwarded similarly

until a predefined TTL is reached or the target object is found. To answer query

requests, each peer needs to store a profile that keeps track of queries it

answered. The efficiency of this kind of approach is largely dependent on the

accuracy of the query similarity function.
Adaptive probabilistic search (APS)218 extends the k-walker random walk

scheme using probabilistic forwarding. Probability values are computed once a

query request is received at a peer node based on the results of previous queries

and are updated thereafter. Query messages are forwarded to the neighbor with

highest probability value along the path of each k walker. Although the band-

width cost of APS is the same as its predecessor, k-walker random walk, it offers

a better recall rate.

Another guided search scheme takes advantage of a hierarchical structure to
improve search efficiency. Similar to the hierarchical DHT-based scheme, the

dominating set-based scheme219 also classifies peer nodes into two categories.

A selected set of nodes forms a connected dominating set (CDS) overlay.

A one-hop ranking value is calculated at each CDS peer using the sum of the

number of objects on the peer node and the number of objects on the peer’s

neighbor with the most objects. Query requests are forwarded to the connected

CDS peers with the highest one-hop ranking or an ordinary node if it has the

most objects among all neighbors of the source peer until the object is found
or until the query reaches an ordinary peer.
Hybrid-Based Approaches

Most existing searching mechanisms for unstructured P2P networks suffer from

high cost or high delay. To offer query scalability and adaptability with more

efficiency, some have proposed schemes that take advantage of both the
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efficiency of the structured P2P system and the richer query capability of an

unstructured P2P system. For instance, Loo et al. introduce a hybrid-based

P2P search system whereby unstructured search is used to find largely repli-

cated objects and structured search is employed when searching for rare

objects. Castro et al. proposed Structella,235 a hybrid structured and unstruc-
tured system with Gnutella built on top of Pastry. These systems present an

interesting approach in an attempt to support efficient searching capabilities

to a wide range of queries.
KEYWORD SEARCH
Earlier we mentioned a second drawback of early DHT-based P2P systems: their
inability to support keyword or more complex searches. Yang et al.232 offer key-

word search capability in the DHT-based P2P networking approaches via Proof

that utilizes advances in information retrieval research. The Proof system com-

prises a crawler, a database, an index generator, and a distributed P2P system.

The P2P system has N peers and uses a consistent hash function to assign an iden-

tifier to each peer, whereas the index generator produces an inverted index and a

summary inverted list (SIL), which are periodically distributed in the P2P system.

Each SIL entry for a keyword contains the document ID, a page rank value similar
to that used by Google, and two other values for query processing and evaluation.

Given a keyword-based query, the querying peer requests all other peers that are

responsible for the inverted lists of query keywords to report the length of its SIL.

The query is then forwarded from the peer with the shortest SIL to that with the

longest one. A Bloom filter is then used to evaluate the query in Proof. Yang et al.

argue that Proof has a number of advantages: It reduces cost since the query

chooses the shortest inverted list; and Bloom filter precision makes the Bloom

membership query more accurate.
Other keyword-based searching schemes exist in different types of P2P systems.

For example, earlier we mentioned FASD198 as one approach that offers keyword-

based searching capability in distributed indexing system. FASD caches lists of

weighted keywords and uses Term Frequency Inverse Document Frequency

(TFIDF)199 measures along with inverted indexes200 to offer keyword-based

searching capability in distributed indexing systems.
RANGE QUERIES
In general, a range query is a query that describes a region (range) in space and

asks for a subset of object points that belong to the region. In content search

applications, for example, a user may pose an inexact query that gives a range

in space. The simplest approach to the range search algorithm is to partition

the range query into n independent queries and retrieve corresponding points
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in the region one by one. However, this works only if the number of independent

queries is reasonably small. In centralized P2P indexing systems, a range query

may be implemented using a top-down tree. The query starts at the root of the

index tree and traverses recursively down every subtree for which the bounding

region intersects the query range. Other methods to resolve range queries in clas-
sical database problems can also be easily imported. In localized or distributed

P2P indexing systems, though, the problem is amplified. Today, range query is a

challenging problem in the P2P search domain. Many open research issues exist.

In the following, we look at several sample schemes found in the literature.
Non-DHT-Based Approaches

Mercury223 suggests that we group peers into logical routing hubs. Each routing
hub is responsible for one attribute, and any peer can be part of multiple logical

hubs. Peers within a hub are arranged into a circular overlay of nodes. Objects are

placed on the ring, with each node responsible for a range of values for the par-

ticular attribute. An object in Mercury is stored in all hubs for which it has an

associated attribute. Queries, a conjunction of predicates with varying degrees

of selectivity, are passed to the hubs corresponding to the attributes that are que-

ried. In this hub, a query is routed to the first value appearing in the range, and

then the contiguity of range values is used to spread the query along the circle,
as needed. To minimize cost and avoid wildcard predicates being flooded to every

node, it is important to send the query only to the hub that is most selective. In

Mercury, query selectivity is resolved using a classical canonical solution that

employs approximate histograms of the number of records per bucket. Mercury

uses random sampling to estimate the density of nodes in different parts of the

routing hub and hence the average load. The querying peer sends off a sample

request message with a small TTL. Every node along the path selects a random

neighbor link and forwards it. When the TTL expires, the last node reached sends
back a sample. Each node within a hub gathers the histogram of the distribution

of nodes using random sampling. Histograms of other hubs may be pulled

through the interhub links. These histograms are then used to determine the

selectivity of a subscription for each hub.
Range Queries in DHTs

Though non-DHT-based schemes seem to be natural choices to support range
queries, range queries in DHT-based P2P systems are also studied because DHT-

based indexing is popular in the P2P world. The first question we might ask is,

Can DHT-based indexing support range queries? Intuitively, DHTs are constrained

to single-key, exact-match queries. The randomized property of DHT indexing

works against the range query. Recall that most DHT-based schemes rely on

numerical keys to index and query objects in the P2P network. Object searching

is accomplished using key distance and routing toward the peer that has the
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closest key to the querying object key. This implies the possibility of range-

based hashing to offer range query capability. If the hashing algorithm can offer

range-attuned numerical keys to objects in the database, range query could be

supported. One straightforward approach is to use partition-based indexing in

which an index over the stored data partition ranges is built. However, partition
location in a distributed indexing-based P2P system with range selection is very

hard to solve exactly.224 Gupta et al.225 tackle the problem using locality sensi-

tive hashing (LSH) to hash similar data partitions to nearby identifiers and simi-

lar ranges to the same peer with high probability. Gupta uses the LSH scheme

given by min-wise independent permutations. Given a domain D, consider a ran-
dom permutation p of D. Assume that the elements of D are totally ordered.

Given a range set Q � D, the hash function hp is defined as:

hp Qð Þ ¼ min fp Qð Þg
which satisfies

prp hp Qð Þ ¼ hp Rð Þ½ � ¼ jQ \ Rj
jQ [ Rj :

The disadvantage of the scheme lies in its low scalability when the number of par-

titions grows significantly large.

Andrzejak and Xu226 proposed Space Filling Curve over CAN construction to deal

with range queries in DHTs. In their system, nearby ranges are mapped to nearby

CAN zones. If a range is split into two subranges, the zone of the primary range is par-

titioned into two zones of subranges. For a range query whose lower and upper

bounds are l and u, the query is first routed to the peer that owns the middle point
(lþu)/2. The query is then recursively propagated to neighbor peers until all the

zones that intersect the query are visited. This is just like a localized flooding, which

is simple to implement and works without changes if single attribute values are

sought. Andrzejak andXuproposed three flooding algorithms: brute force, controlled

flooding, and directed controlled flooding. However, other flooding algorithms can

also be used here.
Skip Graphs

A skip graph-based approach is another direction that has caught noticeable atten-

tion among researchers. SkipIndex227 is one of the schemes that offers solutions to

range queries in P2P networks. SkipIndex includes the following key mechanisms:

1. The system partitions the search space into a hierarchical tree and organizes
the leaf partitions using a skip graph-based distributed data structure. Even

though the underlying skip graph supports only one-dimensional keys, SkipIn-

dex supports high dimensional range and similarity queries while requiring

only a logarithmic number of peer pointers and a logarithmic number of over-

lay hops.
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2. The system provides an approximate query mechanism, where the user gets

to specify the desired level of search accuracy and the system intelligently con-

trols the number of nodes interrogated to satisfy the error-bound.

3. Diverse data sets with differing dimensionalities and distributions can be

stored in the distributed infrastructure at the same time.

4. The system allows the high-dimensional feature space to be partitioned dynami-

cally among participating index nodes in a load-balanced manner. It uses a CAN-

like construction with a one-dimensional key associated with each region. This

key captures the hierarchical manner in which the region was created. The keys

are then used to store the leaf regions in a searchable skip graph.

The skip graph is used to support insertion and lookup based on a one-

dimensional key. Range queries are supported with a range-limited “multicast”

operation. Range queries are multicast to all the nodes whose regions intersect

the query range. SkipIndex guarantees a logarithmic bound on the number of

multicast steps for such queries. Recall that in a centralized P2P indexing system,

a range query may be implemented using a top-down tree with the query starting
at the root and traversing recursively down every subtree. SkipIndex deals with

range query in a similar manner, with the variation that each node maintains only

a partial view of the region tree to achieve distributed indexing. To locate a region

containing a data point, the query is routed through the skip graph in a way such

that the distance to the target region, measured in terms of the total order, is

probabilistically halved in every routing step. With appealing results on small

P2P networks, this scheme awaits testing of its reliability and scalability over large

P2P networks.
SEMANTIC QUERIES
According to Zhu,222 semantic search is a content-based, full-text search, whereby

queries are expressed in natural language instead of simple keyword matches.

Existing work on semantic search particularly focuses on extending information

retrieval algorithms such as Vector Space Model (VSM) and Latent Semantic

Indexing (LSI)228 into the P2P domain. In the following, we look at the algorithms
introduced in [222] as examples to understand the requirements and challenges

of semantic queries in P2P systems.
Semantic Search in Structured Overlays

Here we look at two algorithms introduced in [222]. The first one is pSearch.229

It introduces the concept of semantic overlay on top of a DHT (i.e., CAN) to

implement semantic search. The semantic overlay is a logical network in which

documents are organized under their semantic vectors such that the distance
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(e.g., routing hops) between two documents is proportional to their dissimilarity

in semantic vectors.

Two basic operations are involved in pSearch: indexing and searching. When-

ever a document D enters the system, pSearch performs the indexing operations

as follows:

1. Use LSI to derive D’s semantic vector Vd.
2. Use a rolling index to generate a number p of DHT keys (ki, i¼ 0,. . .,p� 1)

from Vd.

3. Index D into the underlying DHT using these DHT keys.

Whenever a query Q is issued, pSearch performs the search operations as follows:

1. Use LSI to derive Q’s semantic vector Vq.

2. Use a rolling index to generate a number p of DHT keys (ki, i ¼ 0,. . .,
p � 1) from Vq.

3. Route Q to the destination nodes that are responsible for these DHT keys.

4. On reaching the destination, Q is either flooded to nodes within a radius r
or forwarded to nodes using content-directed search.

5. All nodes that receive the query do a local search using LSI and return the

matched documents to the query originator node.

The second algorithm, developed by Zhu, is an LSH-based semantic search system
built on top of DHTs.231 To support semantics-based access, it adds two major

components to an existing P2P system: (1) a registry of semantic extractors and

(2) a semantic indexing and locating utility.

The functionality of semantic indexing is to index each object automatically

according to its semantic vector (SV) whenever an object is created or modified.

The functionality of semantic locating is to find similar documents for a given query.

The index table is fully distributed. When an object is created or modified, its

SV is extracted. The system then hashes the SV to an integer number called
semID. The DHT uses this semID as a key to put an index entry (a pointer to

the original object) into the P2P system. Note that the original locations of docu-

ments are not affected. Given a query, the system generates a semID based on the

query’s semantic vector. The semantic locating utility then uses the semID to

locate the indices of similar documents stored in the P2P systems.

The key here is to make sure that two semantically close documents (which

have similar semantic vectors) will be hashed to the same semID so that the

underlying DHT can locate the indices. However, this is not possible in many tra-
ditional hashing functions that try to be uniformly random. As a result, two docu-

ments that are similar but slightly different (e.g., different versions of the same

document) will generate different hashing results. Their system, on the contrary,

relies on a very special class of hashing function called locality sensitive hashing

(LSH). If two documents are similar, it is likely that they will generate the same

hashing result. Moreover, the higher the similarity between the two files, the

higher the probability that the hashing results are the same.
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While LSH is proposed for semantic P2P search, its value in keyword-based

search and range query deserves evaluation. However, LSH cannot guarantee

that two similar documents will always have the same hashing result.

To increase the probability, they use a group of n LSH functions to generate n
semIDs (n is a small number, about 5 to 20). If the probability of generating a
matching result from a single LSH function is p, the probability of generating at least
one matching result from n LSH functions will be 1 � (1 � p)n The locating utility
then uses the resulting n semIDs to search the DHT. Their initial results indicate that
with n set to about 10 to 20, their system can find almost 100% of semantically close
documents. As a result, their system is very efficient: Instead of sending the query to
tens of thousands of nodes in the system, they need to send it to only n nodes.

Evidently, supporting semantic search with high efficiency and accuracy in

structured P2P is nontrivial. Continued study on this domain is expected.
Semantic Search in Unstructured Overlays

In this section we look at one scheme, ESS,230 discussed in [222]. The design goal

of ESS is to improve the quality of search (e.g., high recall) while minimizing the
associated cost (e.g., the number of nodes visited for a query). The ESS design

philosophy is to improve search efficiency and effectiveness while retaining the

simple, robust, and fully decentralized nature of Gnutella.

In ESS, each node has a node vector, a compact summary of its content. Each

node can have two types of links (connections), namely random links and

semantic links. Random links connect irrelevant nodes, whereas semantic links

organize relevant nodes into semantic groups. The topology adaptation algorithm

is first performed to connect a node to the rest of the network through either ran-
dom links or semantic links, or both. The goal of the topology adaptation is to

ensure that (1) relevant nodes are organized into the same semantic groups

through semantic links, and (2) high-capacity nodes have high degree and low-

capacity nodes are within short reach of higher-capacity nodes.

Given a query, ESS’s search protocol first quickly locates a relevant semantic

group for the query, relying on selective one-hop node vector replication as well

as its capacity-aware mechanism. Then ESS floods the query within the semantic

group to retrieve relevant documents. ESS will continue this search process until
sufficient responses are found. The intuition behind the flooding within a seman-

tic group is that semantically associated nodes tend to be relevant to the same

query.

Unstructured P2P systems are capable to support arbitrarily complex queries

by nature. In unstructured P2P systems, node churn causes little problem. The

main problem facing semantic search systems built on top of unstructured P2P

networks is, still, the search inefficiency problem: A query might probe a very

large fraction of nodes to be answered.
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ADVANCED TOPICS
Distributed Pattern Matching System (DPMS)

To address the flexibility and efficiency challenges, Ahmed233 proposes their

Distributed Pattern Matching System (DPMS). DPMS is based on Bloom filter-

based pattern matching distributed throughout the P2P network. Given a search
pattern Q, DPMS tries to find peers containing some pattern P that matches Q, that
is, the 1 bits of Q for a subset of the 1 bits found in P. DPMS peers can act as either

a leaf peer or an indexing peer, where the former resides at the bottom level of

the indexing hierarchy. This type of peer advertises its indices representing the

content the peer wants to share. Indexing peers store indices received from other

peers; these peers may be leaf peers or indexing peers.

Peers join various levels within the hierarchy and can act both as leaf peers

and indexing peers. Within this hierarchy, indexing peers disseminate index infor-
mation using repeated aggregation and replication. Replication is used for disse-

minating patterns from leaf peers to a large number of indexing peers. To

overcome increased traffic load, DPMS combines replication with lossy aggrega-

tion. Advertisements provided by different peers are aggregated and propagated

to peers in the next level along the aggregation tree. Based on repeated lossy

aggregation, the information content of the aggregates is reduced as you move

toward the top of the indexing hierarchy. This helps balance the system and

improve fault tolerance. Furthermore, peers can route queries toward a target
without having any global knowledge of the overlay topology. It also helps mini-

mize query-forwarding traffic.
DiffSearch

The difficulty with protocols such as Gnutella and FastTrack is that they rely on

flooding or random walk for content search, with messages propagated to every

peer. This results in increased costs and network traffic. Wang et al.234 aim to alle-
viate these limitation using their proposed Differential Search (DiffSearch) algo-

rithm. DiffSearch improves search efficiency of unstructured P2P networks by

giving higher querying priority to peers with high query/reply capabilities,

known as ultrapeers. Ultrapeers form an overlay and serve visiting peers known

as leaf peers. The indices of leaf peers are uploaded to ultrapeers, allowing all

shared content to be searched within the first round. Based on tests using Gnu-

tella, Wang et al. argue that 1% of peers answer the main portion of queries. Con-

sequently, by routing queries to these peers, it is possible to save up to 90% of
query traffic. Using counters to track files that answer queries, which they call

effective files, a matrix is created that allows ultrapeers to be self-aware by count-

ing the number of shared files that have been visited. If the number of shared files

exceeds a threshold, a peer can promote itself to ultrapeer status. This results in

an overlay in which members have higher priority depending on where they
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reside in the hierarchy. To further decrease traffic, DiffSearch hitchhikes query/

response messages to perform network management tasks, for example, allowing

ultrapeers to advertise themselves to leaf peers, and vice versa.
Content-Based Search

Most existing P2P systems provide very limited content search capabilities.

Content-based search237 is desirable for querying multimedia data when text

annotations and metadata cannot offer the level of detail the target query desires.

For multimedia data that contain text, audio, and video streams, multimodal

search that relies on linguistic, acoustic, and visual information can be applied

to find content more effectively. MIRACLE238 is an ongoing research project at

AT&T Labs aimed at creating automated content-based media processing algo-
rithms and systems to collect, organize, index, mine, and repurpose video and

multimedia information. This video search engine combines existing metadata

with content-based information that is automatically extracted from the audio

and video components. The MIRACLE search engine currently operates on an

archive of more than 32,000 hours of video that have been collected and automat-

ically indexed over a 10-year period. The Informedia II239 digital video library at

CMU is another pioneering multimedia database system that consists of more

than 1,500 hours of video. Informedia combines speech recognition, image
understanding, and natural-language processing technologies to automatically

transcribe, segment, index, and summarize the linear video.

Content-based multimedia indexing and search also attract significant attention

from standards organizations. MPEG-7, formally named Multimedia Content

Description Interface, is a standard sponsored by the International Organization

for Standardization (ISO) for describing multimedia content. TRECVID is sponsored

by the National Institute of Standards and Technology (NIST) to stimulate research

in automatic segmentation, indexing, and content-based retrieval of digital video.
Applying content-based search in P2P systems has important application value,

yet is also challenging. PeerSearch240 supports content and semantic search in P2P

networks. It extends existing information retrieval methods, the vector space

model (VSM) and latent semantic indexing (LSI), to work with the efficient routing

mechanisms in a content-addressable network (CAN). In PeerSearch, semantic vec-

tors are used as the key to store the document index in CAN such that the indices

stored nearby in CAN are close in semantics. That is, instead of semantic-free keys,

PeerSearch uses semantic keys to index objects to offer semantic and content-based
search capability. Other approaches241 explore content-based resource selection

and document retrieval algorithms in P2P networks.

A content-based P2P music retrieval system is described in [242]. In this sys-

tem, each audio document is converted into a stream of characteristic sequences,

a vector. Each vector represents a short segment of music data. All vectors are

indexed using the LSH scheme such that similar (in terms of human perception)

vectors can be hashed into the same hash value with high probability. To improve
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the search efficiency in a P2P environment, a two-phase search protocol is

employed. First, the query peer broadcasts a small subset of query vectors to all

potential peers; then peers with a higher chance of a hit will conduct the more

rigorous search.

The multimedia semantic gap and the large data rate of content-based query-
ing pose significant challenges for content-based P2P search.
SUMMARY
We enumerated a handful of schemes on P2P search in this chapter. They repre-

sent only a subset of the numerous schemes proposed in the research literature.

This brief exercise nevertheless offers implications on the need of application-
driven and more efficient and effective schemes for P2P search today. For exam-

ple, it might be necessary for a P2P system to support a set of rich queries that

ranges from simple semantic free ID lookups to keyword search or Structured

Query Language (SQL) like queries. To date, the ability to effectively and effi-

ciently retrieve information for a given application with approximate, incom-

plete, or vague information queries remains a challenging problem in P2P

networking.
FOR FURTHER READING
Many P2P search-related technical papers can be found in the literature. The fol-

lowing three survey papers are among the most comprehensive articles on the

topic:

n Survey of research on robust peer-to-peer networks: Search methods by Risson

and Moorse221

n Searching techniques in peer-to-peer networks by Li and Wu202

n Semantic search in peer-to-peer systems by Zhu and Hu222

Interested readers are encouraged to refer to these three articles for more infor-

mation on P2P content search.
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Peer-to-Peer Content Delivery
P2P technologies offer a new approach to content delivery networks that com-

bines improved system scalability with low implementation cost. P2P content

delivery is thus an important technique for commercial systems such as IPTV. In

this chapter we look at the design issues of P2P content delivery networks,

including topology, delivery path selection, push versus pull, and control strategy

for content flow. In addition, various approaches for content caching are dis-

cussed and some example systems are used to illustrate the approaches. The
chapter concludes with a discussion of hybrid P2P-CDN designs.
CONTENT DELIVERY
In the past few years, we have witnessed an astonishing increase in the number

as well as the functionality of content delivery systems. A Google search of con-

tent delivery system results in 69,400 results. From Internet music to Internet
video, broadcast video to Video-on-Demand (VoD), premium content to user-gen-

erated content, and Internet TV to mobile TV, various content delivery services

are offered throughout the networked world.

This new and exciting content-rich networked world is rooted in the availabil-

ity of low-cost broadband networks and advanced computing, communications,

and media compression technologies. These put forward new and

exciting opportunities for both consumers and content providers in terms of mul-

timedia content access and distribution. Today Internet end users are consuming
digital media at an abundant and continuously escalating level. To offer services

that can accommodate the large and growing number of audiences and traffic

levels, content providers have tried to deploy networks and systems that can pro-

vide increased scalability, reliability, and quality of services. The Content Delivery

Network (CDN) is one of the solutions born in the late 1990s. Basically, CDN is an

overlay network that employs technologies, such as caching, load balancing,

scheduling, and request routing, to push replicated content close to the network

edge. A properly funded content publisher/server can easily reach a reasonably

183
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large number of customers via a commercial CDN. However, those who cannot

afford the cost are often limited in the type of content they can serve and its capa-

bility to reach a desirable number of audiences. In the history of the Internet, mir-

roring has played a significant role in helping those publishers to reach more

audiences. Organizations with good network connectivity have long known to
offer mirror services for static content. And yet, the size of audiences largely

depends on the number of volunteer mirror sites. The scalability is very limited.

To reduce the cost of content delivery, today many companies are seeking or

are offering peer-to-peer-based solutions in both personal and enterprise applica-

tions. In the following, we look at some popular approaches and technology

directions relating to P2P content delivery.
Classification of P2P Content Delivery Schemes

Various Delivery Methods
Content delivery, based on the way the content is transported and consumed, can
be categorized into downloading and streaming modes. Streaming refers to the

delivery method whereby content is played at the client side while it is being

transported. Downloading, on the other hand, requires that the entire content

be received at the client side before it can be played out. Compared to the stream-

ing mode, downloading is less restrictive and relatively easier to implement. Just

as in client/server-based systems, P2P content delivery can also be classified into

downloading and streaming modes. Gnutella,243 Kazaa,244 BitTorrent,245 and

eDonkey,246 for example, are all popular P2P file-sharing systems that support
downloading. Most existing P2P file-sharing systems use block-based download-

ing delivery. That is, each content file is partitioned into blocks. The delivery

and reception of the blocks are not sequential, making it impractical to play back

before all the blocks of the content file reach the client side. An obvious advan-

tage of downloading-based content delivery is that the quality of content playback

is independent of the network bandwidth. Although it could take a long time,

even hours, to download a video file today, the playback quality can always be

guaranteed if the download is successful.
Streaming offers a new way for consumers to enjoy content playback without

waiting for the entire content being downloaded, with a possible sacrifice in

terms of playback quality. Even though a client-side buffer is used to preload a cer-

tain number of content segments before the content is played back, the available

bandwidth and network dynamics can often limit the terminal device’s capability

to fetch enough data to offer the desired the quality of experience. Rate control

and error control mechanisms are thus extremely important in streaming media

services. Akin to traditional client/server-based streaming services, P2P streaming
services247,248,249,250,251,252 also share the same requirements. Further discussions

on P2P streaming can be found in Chapter 9. Interested readers can also refer to

the case study presented later in this chapter.
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Streaming
Streaming can be further classified into delay-bounded and nondelay-restricted clas-

ses. In a delay-bounded application such as gaming and conferencing, an upper

bound on the maximum delay has to be satisfied to offer suitable quality of service

and user experience. The upper bound can be relaxed to a certain extent in a non-

delay-restricted application, such as Internet TV. Even though most delay-bounded

applications today only require support for small-scale P2P systems, they still

impose significant challenges.

Depending on when the content is generated, streaming can also be further
categorized into live and on-demand streaming. Live streaming identifies services

for which the content is being streamed while it is being created, whereas on-

demand streaming characterizes services being streamed as prestored content

on the server or serving peer.

A protocol and sender/receiver size-based classification puts streaming further

into (one-to-one) unicasting, one-to-many multicasting, and many-to-many multi-

casting. Definitions and techniques for each of these content delivery types are

delineated in Chapter 9.
Topology Constraints
Data can be delivered via flooding, random walk, or a topology-defined specific

route in a P2P overlay network. That is, the data delivery route maybe determin-

istic in one P2P overlay and nondeterministic in another. This is dependent on

the topology of the P2P overlay network. Recall that Chapters 3 and 4 addressed

the fundamentals of unstructured and structured P2P overlays. In a majority of

P2P networks, flooding or random walk is deployed in unstructured P2P over-
lays, whereas a unique key is assigned to data items and peers for content deliv-

ery in structured P2P overlays. A structured graph maps each key to the peer

that stores the data block or content. Since structured overlays depend on

a globally maintained protocol for content delivery, it is commonly believed that

the maintenance cost is much higher than that of unstructured overlay. Further-

more, as was discussed in Chapter 3, unstructured P2P overlays are more

resilient to peer join and departure dynamics. Thus, flooding and random

walk-based content delivery methods have higher fault tolerance capability
under churn. The major disadvantage of such kinds of schemes is the lower

probability of guaranteed successful delivery. Another drawback is the large

amount of signaling traffic caused by message or content flooding. To overcome

the limitations of both structured and unstructured overlays, a hybrid system253

was proposed. In such systems, flooding or random walk is used for content

searching, whereas a structured graph is used for deterministic data placement.

Since unstructured topology offers complex querying support and the churn

resilience capability and structured topology guarantees a content object can
be found if it exists, the hybrid system is intuitively more scalable and more

content friendly.
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Categories of Data Topology and Delivery Path
Tree and mesh are two widely studied data topologies in P2P networks. In a tree-

based content delivery system, data are delivered along a distribution tree that is

rooted at the source peer that stores the data. It is not difficult to see that this data

topology cannot take full advantage of the network resources and the system can

easily become unbalanced because the bandwidth of the leaf peers is not utilized.

Moreover, the system is vulnerable to peer churn since any intermediate peer

departure will disconnect all descendents of the peer from the content delivery

tree. To overcome this limitation, a multiple tree-based data topology252 was
invented. Content may be partitioned into multiple strips, each distributed over

a different tree. That is, the leaf peers of one tree are made intermediate peers

of another tree to construct a better-balanced system that could potentially take

advantage of all the resources in the P2P network. Once the P2P overlay is deter-

mined, the data topology is decided, and thus the path, from the sender to the

receiver, through which each block of the content will travel, is fixed. Obviously,

when the number of substrips is not very small, the algorithm complexity to

calculate such a balanced network and to construct a near perfect multitree
distribution system is very high.

Though adaptation in tree-based delivery is done globally, another approach

takes advantage of local adaptation to lower cost and implementation complexity.

That is called mesh-based content delivery. Content blocks flow through the net-

work with a mesh topology that is more resilient to peer churn and network

dynamics. This is because real-time status information may be acquired at each

peer and used to decide the delivery path of the content block on the fly. That

is, in mesh-based content delivery systems, delivery decisions are made locally
at each peer. These characteristics are very welcome in real-world applications,

and subsequently mesh-based systems are widely deployed in many popular

P2P applications today. BitTorrent,245 PPLive,249 and UUSee,250 for example, are

all mesh-based systems.

Various Delivery Initiators
Depending on who initiates the content delivery, it can also be grouped into push-

based and pull-based types of delivery model. When the sender initiates the con-
tent delivery, it is called push delivery. In contrast, pull delivery indicates that

the content transport is started by the receiver. A system that employs both push

and pull for content delivery is called a hybrid push-pull or a joint push-pull. Later

in this chapter we discuss each of these delivery methods in more detail.

Characteristics of Content Flow Control Strategy
Here are two additional questions to ask in designing a P2P content delivery

system:

n Which peer should the current peer select to pull or push the content?
n Which content block should be delivered next?
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The answers to these questions largely affect the performance of the content deliv-

ery system. Resource availability, efficiency, fairness, and fault-tolerant capability

should all be taken into consideration. Tit-for-Tat, used by BitTorrent and described

in Chapter 6, is a fairness-based peer selection strategy. This strategy can effectively

prevent free riders. A resource availability-based strategy has a better result when
quality of service is one of the performance measurement metrics. The answer to

the second question is comparably less complex. Most popular content block flow

control strategies include random order-based, sequential order-based, and popular-

ity-based strategies, which are all straightforward to implement.
Design Criteria

Cost, implementation complexity, efficiency, robustness, scalability, quality of service

and experience are some of the key design criteria for P2P content delivery services.

For instance, in a videoconferencing service, the system has to meet the delay-bound

constraint to offer an acceptable customer experience. In an Internet video service,
system scalability is directly associated with system capability. System capability to

copewith churn and network dynamics is imperative in any P2P content delivery sys-

tem. An efficient system that can take advantage of the P2P network resources in a fair

and balanced way can have a strong impact on system scalability and performance.
P2P CACHING
Caching is a well-known strategy in many networked applications. The

capability to:

n Reduce origin server load and bandwidth requirement
n Reduce network bandwidth usage
n Reduce client-side latency

leads to improved scalability and performance with lower cost. For example,

caching is used by ISPs to accelerate Web content delivery. Proxy caches may

be placed between the server and the clients (see Figure 8.1A). A client’s request

for content is first directed to a proxy cache. At a cache miss, the proxy contacts
the server to satisfy the client’s request. Caching helps move the content closer

to the edge of the network, reducing both server and network bandwidth

requirement.

Popular caching schemes include just-in-time ( JiT) caching and precaching

(PreC). In JiT, the cache pulls the content from the server with the content sent

to the cache and the requesting client simultaneously immediately after a request

is received from the client. In PreC, content is cached before a request is received

at the proxy. For dynamic content, how to maintain the freshness of caching
copies of the content is a common issue.
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Caching is also used in combination with server replication in classical CDNs

to improve system scalability and reduce access latency. A multilevel replication-

plus-caching mechanism is shown in Figure 8.1B. Similar to the caching scheme,

the effectiveness of a replica-based scheme is limited by the number of available

caches and replicas and the dynamism of content. These bring up scalability, reli-
ability, cost, and other issues.

Today Internet traffic is often dominated by P2P traffic. Unlike Web objects,

P2P content is often significantly larger in size and more dynamic in nature. These

challenge the application of traditional Web caching schemes for P2P file-sharing

applications. Here we look at how P2P caching can facilitate content delivery.

Unlike traditional CDN systems, where active content replication is used to

improve system capability and performance, content replication takes place pas-

sively in P2P-based systems where peers request and copy content from one
another. Caching in P2P networks refers to the case of caching copies of the content

in peers as the content passes through them to reach other peers in the P2P net-

work. For instance, at an initial request, when peer Pi in Figure 8.2 succeeds in

locating a content C, C is transmitted through multiple peers P2, P3, . . . , until it

reaches Pj. Copies of C may be cached in the intermediate peers P2, P3, . . . , along
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the transmission pass. In a future request issued by other peers, such as Pj, the avail-
ability of content C with respect to requester Pj is increased while the latency to

retrieve content C and send back to Pj may be reduced.

In Figure 8.3, a set of peers are self-organized into an overlay P2P network. Each

peer Pi has a local cache. In this P2P network, one media content data stream Cd,
such as a video data stream, is often partitioned into small data blocks B(Cd) ¼
{b1, b2, b3, . . . . . .. bN}. A peer Pi participating in the P2P network may cache some

or all of the data blocks, that is, a subset of the content data blocks Bi ¼ {bi
1, bi

2,
bi

3, . . . . . ..} � B(Cd). The P2P network implements certain mechanism to publish
its locally cached contents and other necessary information. When Pj, which is

connected to Pi, requests content blocks b
k, Pi may answer the request locally if it

has the required data block. It propagates the request to its neighbors otherwise.

Using Figure 8.3 as an example, peer P4 wants to get content blocks b1, b2, and b3.

It is connected to P5 (solid line denotes connections between peers). Assuming P5
already has b1 in its local cache, but not b2 and b3, it sends a request for b2 and b3

to its neighbors P1 and P7.P7 has b
2 in its local cache, whereas P1 has b

2 and b3 in

its local cache. Once receiving the request, P1 and P7 compute an estimated cost
for retrieving and transmitting the results toP5.Meanwhile,b2 andb3maybe transmit-

ted directly to P4 with a suitable P2P network connectivity scheme and protocol.

The estimated cost may be used to determine whether P1 or P7 or both will be offer-

ing block b2. This again may depend on the system connectivity scheme and proto-

col. In this system, the P2P network acts as a combined virtual cache. All peers

offer resources (here, the resource offered is memory) in collaboration to achieve

lower cost and latency for content delivery.
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Caching and replication in structured P2P254,255,256,257 can be tricky. Some of

the structured P2P systems discussed in Chapter 4 associate objects to the object

identifier that is also the key to discovering the location of the object. Effective

caching and replication of objects require additional mechanisms. In Tapestry,257

replica roots identified with random keys that are generated using a replication
function are used for object replication. A similar idea is used in CAN255 as well.
Design Issues

Care has to be taken in designing a P2P caching scheme. Hit/miss rates, cache

replacement strategies, fault tolerance capability, impact on bandwidth require-

ment, and the like should all be taken into consideration.

Data Consistency and Synchronization
One immediate issue that arises with P2P caching is associated with its fully

distributed nature. By replicating content at many peers in the system, data consis-

tency and synchronization issues need to be handled properly. Assume that P7 in

Figure 8.2 is requesting content C from P5. If C in Figure 8.2 is modified at P1 and

becomes C’while the cached copies C on other peers are not updated, the acquired

copy at P7 is outdated. To get an updated copy, C’,P7 has to reissue a request for C’.
If a proper scheme is available, P7may eventually get C’, though,with addedmessage
flow and thus an increased bandwidth requirement. If nopropermechanism is imple-

mented, it is possible that P7 will not even be able to get the updated copy C’.
Synchronization through flooding is an intuitive approach that could offer high

fidelity. A version number, for example, can be used to indicate a content change of

a file. At a specific time or on the modification of the original copy of the content,

the original owner broadcasts an update notification message that is propagated

through the P2P network. The broadcast may be stopped when the message hits

all peers or a predefined TTL is reached. Once receiving the updating message, a
peer checks its cache and invalidates the content block or file if the version number

of the content block in the cache does not match the one in the updating message.

Variations of the scheme can also be used in a flooding-based data synchronization.

Noticeably, the drawback of such kinds of schemes is the additional communication

cost. Updating message flooding can significantly increase bandwidth requirement.

This is especially a problem for dynamic contents.

On the contrary, synchronization on demand, whereby synchronization

occurs at the request of a replica or caching peer, has much less bandwidth over-
head. Yet it might offer only a weak guarantee. Assuming that peers with cached

content will connect the owner or originator of the content to determine

whether a replica is fresh, an algorithm that determines when and how to query

the owner has to be defined. Care has to be taken in designing the algorithm to

avoid over- or underquerying. An adaptive approach whereby the time and fre-

quency of query are adjusted based on the dynamism, updating history, and so

on can reduce the probability of too frequent or too infrequent queries.
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To further enhance replication and caching consistence, joint push and pull

schemes can be used. Gtk-Gnutella258 is one example that utilizes such a mecha-

nism. Push-based broadcasting is done just like in a push based scheme. In addi-

tion, peers occasionally query the owner for update information. The algorithm is

designed in a way that TTL, peer churn, and peer neighborhood size are taken
into consideration to determine when a peer will pull.

Increasing the Hit Rate
To amplify the hit rate, some classical caching schemes can be employed. For

example, prefetching, whereby peers keep downloading content data blocks to

anticipate future peer requests, can reduce the average number of peers refer-

enced for certain requests. It could also reduce the average hops for content

downloading. However, when all peers in the P2P network continuously perform

prefetching, a significant amount of bandwidth needs to be budgeted for it. This
tradeoff has to be considered in designing a P2P caching scheme.

Other factors can also affect the cache hit rate and thus the P2P caching

scheme design. For instance, in any P2P network, churn could affect system per-

formance significantly. In the system depicted in Figure 8.3, when P1 is faulty or

offline, P5 will not be able to get the requested content block b3 from P1. A cache

miss occurs. A new request may have to be issued for b3. Or it may eventually get

b3 from P6 via P8. In either case, additional latency is introduced. In P2P caching,

obviously, churn could drastically increase the cache miss rate.

Active Caching
In the system discussed earlier, peers support partial caching and are active in the

sense that they can actively request missing content blocks from their neighbors.

A passive P2P cache in which the peer cache cannot originate download requests

will need a full P2P caching scheme or alternative protocol support. Otherwise,

the cache miss rate could escalate dramatically.

Dynamic Replication
When replicas are placed dynamically using certain placement strategies, it is

called dynamic replication.

Cache Replacement Policies
The cache often has limited size. When the cache becomes full, some objects or

content blocks must be removed to make room for new ones. A system has to

take many factors into consideration for cache replacement. This is referred to

as a cache replacement policy. Cache replacement policies for Web caching have

been studied extensively.259,260,261,262,263,264,265,266 In general:

n Size of the cached object
n Time of the last reference made to the cached object
n Frequency of the requests made to the object
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n Time of last modification
n Cost to fetch the object from its original server

are all important factors in designing a cache replacement policy. Randomized

strategy, function-based strategy, frequency-based strategy, object size-based strat-

egy, and freshness-based strategy are some of the popular strategies used in prac-

tice. A least recently used (LRU) cache replacement policy, where the least fresh

object is removed, is a typical freshness-based mechanism. A minimum size

(MinS) cache replacement policy takes object size into consideration. The smal-

lest object is removed first. Opposite MinS is another straightforward object size-
based strategy, namely a maximum size policy (MaxS) whereby the largest object

is considered for elimination first. A least frequently accessed (LFA) policy looks

at the frequency of the objects being requested to determine the order of

removal. That is, those objects that are being accessed frequently will be kept,

whereas those that are not will be considered for deletion first. More sophisti-

cated schemes will take into consideration several of these attributes. A cost func-

tion can be used to construct the priority list.

Similar to Web caching, P2P caching needs to consider replacement policy as
well. In P2P caching, in addition to those factors considered in Web caching

design, peer (i.e., cache) availability, churn rate, range issues, and the like are

additional issues that cannot be ignored. When a peer Pi is disconnected from

the P2P network, its cache is detached as well. The objects (content blocks)

cached in Pi’s cache disappear from the network along with Pi. In a function-

based cache replacement strategy, the replacement function will have to offer

mechanisms that deal with the churn rate and the object distribution among

neighborhood peers to minimize lost performance due to churn.

Other Issues
How to design a P2P caching scheme that does not instigate unsustainable band-

width cost is also an important issue. The number of requests issued to neighbor

peers for a particular content block and the frequency of cache replacement, for

instance, can affect the number of messages and network traffic pattern. To avoid

flooding the network with request messages, specifying a threshold, such as a

maximum hop number or TTL, is a simple approach.

Interested readers are also directed to Chapters 3, 4, and 5 on issues related to
P2P overlay design. Many issues discussed in those chapters should be taken into

consideration when designing a P2P caching scheme.
Example P2P Caching Systems

PeerOLAP
The PeerOLAP267 architecture for supporting online analytical processing queries

with a large number of low-end clients takes advantage of P2P caching to reduce

system cost. Peers are connected through an arbitrary P2P network, with each
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containing a cache with the most useful results. It employs three cache control

policies that impose different levels of cooperation among the peers. If a query

cannot be answered locally (i.e., by using the cache contents of the computer

where it is issued), it is propagated through the network until a peer that has

cached the answer is found. An answer may also be constructed by partial results
from many peers.

FastTrack Cache Replacement
Wierzbicki et al. studied FastTrack268 and Kazaa244 cache replacement policies in

[269] and [270]. Their evaluation of the cache replacement policies that were

successful for Web traffic indicates the need for new policies specialized for

P2P networks.

Let’s look at Kazaa, a popular P2P file-sharing network utilizing the FastTrack
protocol. In this hybrid P2P system, supernodes serve as referral nodes for files.

Supernodes register the list of cached files on those ordinary nodes with which

the supernode is connected. An ordinary node A connected to supernode S1
communicates with S1 to issue requests. S1 uses its local database and collabo-

rates with other supernodes to compile a list of other ordinary nodes that store

the file and sends this list back to A. A then communicates directly with those

ordinary nodes that are on the list to request the content blocks/files they desire.

Delivery of the content blocks/files occurs thereafter. At last, A informs S1 of new
availability of the file it just acquired once the entire file is obtained.

Wierzbicki et al.269,270 analyzed Kazaa traffic and found that the percentage of

recurrently popular files is stable at about 30%, whereas the percentage of files

that are popular in all observation periods stabilizes at about 15%. Splitting a sin-

gle file download into multiple, independent file-range downloads is a central fea-

ture of the FastTrack protocol and thus the Kazaa protocol. In Kazaa, a file stored

in a cache may consist of several ranges with gaps in between. To design a more

FastTrack-friendly cache replacement policy, Wierzbicki defines three additional
attributes, specifically maximum size, transmitted bytes, and scaled access time.

Maximum size denotes the maximum size of an object. Transmitted bytes deline-

ates the number of bytes of an object that has been sent to peers. Scaled access time

weighs the last access time with the portion of the object that has been requested.

The study shows that the best performance in terms of byte hit rate was obtained

using a policy that employs the transmitted bytes attribute. Wierzbicki et al. call

the policy least-sent byte. The policy considers churn information. Intuitively, since

files are split into ranges, if a cache stores almost the entire file, it has a better
chance of serving a range request for that file. That is, the larger the percentage

of a file that is stored in the cache, the more chance a cache hit will be achieved.

Consequently, minimum relative size (MinRS) instead of the minimum size policy

is more suitable for FastTrack/Kazaa. With this cache replacement policy, those

have the smallest cached size relative to the entire file size are taken away first. Sim-

ilarly, since a cache needs to have the entire requested range to serve the request,

cache entries that are large will have a better chance of serving a request, that is,
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with a higher hit rate. This implies that policies that remove large cache entries are

likely to perform poorly in Kazaa, and vice versa.

Wierzbicki et al. found in their simulation that high byte hit rates can be

obtained by caching, since the set of popular objects contains a subset of all-time

favorites that remain popular over a long period of time. Thus a suggestion to tar-
get on this data set using specialized cache replacement policies as a future

research direction is given. Furthermore, “range requests are short and can ask

for any portion of the file. Additionally, user aborts tend to increase the number

of small requests.”269 And yet traditional cache replacement policies do not

exploit these characteristics. This further indicates the need for P2P-specific

cache replacement policies. Understanding the behavior and dynamics of the

P2P network, including peer behavior pattern, traffic pattern, file and object

travel pattern, and various statistics, is helpful for caching design (certainly as
well as for the P2P file-sharing system design).

Wierzbicki’s study also suggests possible performance improvement in Fast-

Track via some protocol extension. Comparing full hits with partial hits, they fur-

ther found that partial hits could improve byte hit rate. This suggests a possible

extension of the FastTrack protocol to add a partial hit notification message.

When an ordinary node is notified of a partial hit, it could initiate a new request

for the missing parts of the range.

Summary

P2P caching is one of the solutions to address P2P content delivery and the prob-

lem of P2P network traffic growth caused by the increasing amount of content

being delivered over P2P networks. It utilizes peer caches in the P2P network
to cache and serve P2P content. The P2P network thus acts as a large distributed

cache, which amplifies the benefits of traditional client-side caching. However,

P2P networks retain different characteristics. Specialized caching schemes that

take advantage of the characteristics of each P2P network are expected to offer

better performance gain.
CONTENT PULL AND CONTENT PUSH
Pull and push are two different content deliverymodels in a network (see Figure 8.4).

Push refers to the model whereby the sender initiates the delivery and the receiver

passively accepts the traffic. In contrast, in the pullmodel, the receivers can initiate
and regulate if and when they want to receive traffic.

In a peer-to-peer content delivery network, a push model (as illustrated in

Figure 8.4B), sometimes also called the sender-driven delivery model, grants

the sender the capability to push content data to selected peer or peers, whereas

the receiver gets to control the content data flow in the pull model (as shown in

Figure 8.4A) by pulling content data blocks from its peer(s). Receiver-driven

delivery model is another name for the pull model, as you can easily understand.
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In a third model, both sender and receiver may take the initiative to deliver the

content. This is called a hybrid or joint sender/receiver delivery model (see
Figure 8.4C).

The tree-based P2P delivery, where peers push content to their children along

the tree, is one good example and a popular type of push delivery. The key advan-

tages of this push-style approach include simplicity and statelessness. In mesh-

based overlays, the push mode is slightly different. The sender has to consult or

negotiate with the receiver to push a content block to the receiver. The receiver

may also reject the delivery. This ping-pong process could cause delivery delays.

In either case, though, the advantage of efficient utilization of the uploading band-
width of the sender is obvious.

Unlike a push-based approach, in which the sender is responsible for the con-

tent data delivery, a pull approach places the burden on the receiving peers. Pull

is a popular delivery method in mesh-based system like BitTorrent. Often, a

receiving peer needs to gather certain information, such as content block avail-

ability and resource availability, from its neighbors and then determine from

which neighbor it will pull the content.

Joint push-pull mechanisms, also called hybrid push-pull mechanisms, intend
to take advantage of the pros from both sides to achieve the best performance

and cost-optimized content delivery. GridMedia,271 for example, uses pull at first

join and push in subsequent redelivery to neighbor peers.
Case Study

Push-Pull Gossiping
Khambatti272 introduces push-pull gossiping to facilitate a more efficient gossip-

ing operation. Peers are categorized into influential and ordinary peers. Gossiping
is achieved via a push phase followed by a pull phase. In the push phase, the con-

tent for delivery is multicast to the influential peers. Ordinary peers then retrieve

the content via a pull phase.
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Prior P2P gossiping approaches have sent messages through all or selected

neighbors and up to a certain depth. Unlike these approaches, the push-pull tech-

nique introduced here involves a discovery phase to gather data on peers. There-

after, the push phase of P2P gossiping involves a multicast of that information to

specially selected peers (called seers) based on the discovered data. As long as the
discovered data are available and recent, the push phase can be repeated with

new information numerous times. Whenever required, a peer will retrieve the

information from a nearby seer via a pull phase. Unlike conventional P2P gossip-

ing approaches, the push-pull gossiping approach can achieve better perfor-

mance in terms of average hops for content delivery. In a small P2P network of

5000 to 10,000 peers tested in [272], a two-hop performance with more than

80% of its members is achieved when 5% or more peers in the network are influ-

ential peers.
A similar strategy is also introduced in the P-grid system to improve system

updating efficiency.273

CoolStreaming
Coolstreaming,274 a live streaming application system built on top of a data-driven

P2P network called DONet, is one of the first pull-based P2P streaming systems

that was tested in actual deployment. The design of DONet focuses on three

key criteria: implementation simplicity, content delivery efficiency, and robust-
ness. It achieves its implementation goal via a smart scheduling algorithm that

deals with the bandwidth differences of peers, a membership manager that helps

the peer maintain a partial view of other overlay nodes, and a partnership man-

ager that establishes and maintains the partnership with other peers.

In CoolStreaming a video stream is divided into segments of uniform length

(see Figure 8.5). A buffer map is implemented at each peer to represent the avail-

ability of the segments in the buffer of the peer. Each peer periodically exchanges

its buffer map with all its partners and schedules the segment to be fetched from
its partner accordingly. Scheduling takes into account the playback deadline for

each segment and streaming bandwidth of each partner. Since peers periodically

exchange buffer maps, detection of neighbor (partner peer) failure becomes easy.

Furthermore, it uses gossiping to announce graceful departure of itself or the

detection of a partner failure. By allowing active establishment of partnership,

the system is better stabilized at peer churn. CoolStreaming fully exploits the ben-

efits of a mesh-based P2P overlay and pull-based content delivery for live video

streaming.
CoolStreaming introduces a parameter called a continuity index to measure

the quality of experience, that is, the continuity of video stream playback at each

peer. A continuity index measures the rate of segments that arrives in time for

playback. Over a test of 10 to 100 nodes with each peer having two to six part-

ners, a continuity index of approximately 90% to 98% with up to 15% improve-

ment over a tree-based overlay was observed. On average, a >1 hop reduction

over tree-based overlay was also experienced.
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HYBRID CDN AND P2P ARCHITECTURES
The low cost, scalability, and fault tolerant characteristics make P2P networks
more and more attractive for media content delivery today. Yet current P2P tech-

nologies still suffer from many disadvantages in supporting high-quality content

distribution. For example, the high data rate of video traffic and the bursty arrival

and departure of end users are causing significant problems on ISP links. Popular

P2P video streaming services such as PPLive and UUSee are also experiencing

long startup delay and channel-switching delay of seconds to minutes. Addition-

ally, unpopular programs, those with few peers watching simultaneously, are

often poor in quality. Skevik275 further found in their simulation that the perfor-
mance of P2P-based systems can be considerably affected by the presence of

firewalls, which reduce the load distribution gain of P2P streaming nearly to

the level of client/server-based systems.
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Overview

To overcome the limitations of P2P-based streaming systems, approaches based

on hybrid CDN-P2P architecture were proposed. A generic hybrid CDN-P2P net-

work is illustrated in Figure 8.6. The basic idea is to overcome the limitations of

P2P streaming systems with replicas and proxy-caching mechanisms.
Case Study

In [275] and [276], a CDN-P2P hybrid streaming protocolwas proposed. It comprises

four logical levels in the system structure. Figure 8.7 shows the idea. The client appli-

cation at the peer communicateswith the local host cache at the client side to request

or send out content. The local host cache, placed outside the client firewall, corre-

spondswith the server-side content proxy to retrieve content data. It also shares data

with other local host caches in the network. The local host cache is responsible for

timely retrieval of data blocks and for monitoring communications with other peers
aswell. The server-side proxy cache talks to the master server, which has the original

copyof the content. It also serves content tomany local host caches on the client side.

The system retains caching at both the client side and the ISP level, making it possible

to exploit the advantages of CDNs. The system places the server-side proxy outside
master
server

proxy

proxy

Generic CDN P2P network

replica
server

replica
server

replica
server

proxy

proxy

FIGURE 8.6 Hybrid CDN, a conceptual illustration.
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the server’s firewall. This ensures that external peers have a host to connect to,
eliminating the firewall problem in a pure P2P system.

By implementing the P2P operations at the local host cache, system manage-

ment is simplified at the client side. The local host cache has the capability to

serve content even when the client application is not in use by the peer. Since

the local host caches can share data directly at the lowest level of the content dis-

tribution tree, the load and overhead on the server-side proxy can be substantially

reduced. The use of a CDN structure at the server side offers network administra-

tion capability that ensures the communication between local hosts is efficient
and possibly secure. More important, the use of a proxy in this system eliminates

the unavailability problem caused by firewalls in a pure P2P system.

One issue to be addressed here is how to manage multiple server-side replicas/

caches. Communications security and efficiency between different server-side

replicas/caches must be addressed.

Another hybrid CDN-P2P streaming system described in [277], [278], and

[279] takes a different approach. Figure 8.8 reviews the fundamental ideas of this
P2PP2PCDN

Time

CDN P2PP2P

Stage 0 Stage 1 Stage 2

CDN only CDN + P2P P2P only

Content first release time

<no few peers>    <significant number of peers/system stablized><limited number of peers>

Handoff time

FIGURE 8.8 Stages of the content distribution process in [277].
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system. When the media content is first released, it is published in the CDN

server. Since there are no peers at this time, the CDN server relies on the CDN

only to deliver the content to requesting clients (Stage 0 of Figure 8.8). After a

streaming session, the CDN server registers the client that has just received the

streaming service. Information regarding the client capability, resources, and so
on is also recorded. The client is transformed into a supplying peer of the content

distribution system after the registering process.

Now the system becomes a CDN/P2P coexisting content distribution system

with the CDN sharing the streaming load with the supplying peers (Stage 1 of

Figure 8.8). After a while, the P2P streaming capacity for the specific media con-

tent becomes big enough. The CDN steps out of the picture at this point (Stage

2 of Figure 8.8). CDN-based streaming for this particular content will no longer

be provided, releasing the CDN server capacity to support other media content
streaming. When the number of peers drops under a threshold, the CDN may be

directed to rejoin the distribution of this specific media content (back to Stage

1). This way, the problem of low quality delivery of unpopular content of a pure

P2P-based system is resolved. Notice, though, that this time-based hybrid system

alone does not offer solutions to the ISP stress, firewall, and channel-switching

delay problems. Other mechanisms are needed to tackle those problems. Com-

bining the two solutions discussed in this section is a possibility, though care

has to be taken in managing the system to avoid high complexity and manage-
ment cost.
SUMMARY
One of the key challenges of content distribution is delivering increasingly

distributed and large amounts of complex data to an increasingly expanding Inter-

net population. P2P technologies are valuable for improving system scalability
with low implementation cost. Today network and telecommunication compa-

nies are looking into the possibility of integrating P2P technologies into their

commercial content distribution systems, such as IPTV and Internet video appli-

cation systems. IPTV and Internet video heavily rely on video-streaming technolo-

gies. To date, video streaming, one of the most popular means for content

distribution, still suffers from several drawbacks when built on top of a fully

distributed P2P overlay. These include high stress on the ISP links, dependency

on high-bandwidth peers, uneven quality distribution, lack of content security
mechanisms and authentication capability, and long startup delay and channel

switching delay. To take advantage of the P2P network’s scalability and low imple-

mentation cost properties, the industry is looking into hybrid solutions that are

expected to reduce ISP stress and improve security as well as performance. It is

clear, though, that one way or the other, the industry is determined to offer

high-quality video-streaming services, including IPTV and Internet video services

on a wide scale in the very near future.
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FOR FURTHER READING
In the beginning of this chapter, generic caching and replication mechanisms for

content delivery were briefly introduced. For additional information and

advanced caching and replication mechanisms, interested readers can refer to

the following publications. Several books on content delivery net-

works281,282,283,284 are available. Together they provide a comprehensive cover-
age on content delivery network architecture, modeling, caching, load

balancing, management, and security issues. Furthermore, Venkatesh285 reviews

the consistency mechanisms for caching and replication-based content delivery

systems; Saroiu286 reviews and compares four content delivery systems: HTTP

Web traffic, the Akamai content delivery network, the Kazaa P2P file-sharing sys-

tem, and the Gnutella P2P file-sharing system; Dilley287 describes the well-known

Akamai content delivery network system and its deployment mechanisms;

Vkali288 reviews CDN architecture and popular CDN service providers; and so on.
The following papers provide comprehensive reviews on P2P content

delivery:

n J. Li, on peer-to-peer (P2P) content delivery289

n S. Androutsellis-Theotokis and D. Spinellis, a survey of peer-to-peer content

distribution technologies290

Security and privacy are crucial aspects to consider in designing any content

delivery system. Chapter 14 of this book is dedicated to P2P security. Interested
readers are encouraged to refer to Chapter 14 for related discussion.

Several books listed in the reference sections and discussed in this chapter

also serve as good references to further understanding content delivery technolo-

gies,281,282,283,284 caching techniques,266 and streaming media.291,292



CHAPTER
9
Peercasting and Overlay
Multicasting
Streaming content over the Internet to a user desktop is a mainstream application

today, and using a P2P overlay to peercast streaming content is an important use of

P2P technology.When groups of users receive a stream at the same time, it is possible

to usemulticast techniques to improve efficiency of delivery. Multicast service imple-

mented at the overlay network layer is called overlay multicast. This chapter com-

pares native multicast with overlay multicast and reviews the key elements of

overlay multicast, including multicast tree formation, group management, and tree
management. Techniques for improving overlay multicast performance are dis-

cussed, followed by a case study.
INTRODUCTION
The Television Paradigm Shift

In the last 50 years, TV has hadmajor impact on our cultural and daily lives. Todaywe

are witnessing a major shift in the distribution model of TV programs. The conven-

tional scheduled one-to-many broadcasting distribution model that we have been

trained to expect is being transformed into a many-to-many, user-centered, “I create,”

“I find,” “I select,” “I schedule,” “I interact,” and “We redistribute” paradigm with

potential end-user accessibility to an infinite pool of contents from an endless pool

of producers. Real-time TV programs, on-demand video, and rich-media contents
are just several types that can be easily accessible through any video terminal, irre-

spective of the size of the screen, the processing power of the terminal device, or

the type of network connection. In this paradigm shift, peer-to-peer networking,

along with many other technologies, is playing an important role. Noticeably, TV is

not the first and certainly not the last “target” of peercasting applications.
Popular Peercasting Applications

P2P Internet radio, P2P music streaming, and P2P-based Internet TV (also called

P2PTV) are perhaps the most popular peercasting applications we see today.

203
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P2P radio refers to software applications designed to distribute audio streams

in real time via a P2P network. P2P radio offers the Internet population the ability

to broadcast music and other audio contents to millions of audiences without

expensive servers. Any peer with a regular PC or even a low-power handheld

device could potentially open up her own radio station and broadcast her own
music or audio shows to other peers in the P2P network. At the same time, any

peer in the P2P network could listen to audio shows broadcast from millions of

other P2P radio stations (other peers). Unlike P2P music file sharing, P2P radio

allows peers to listen to streamed music stored on or currently broadcast from

other peers without downloading the entire music file to their local devices.

Now let’s take another quick look at TV again. With over 1 million aggregated

users daily,293 PPLive, an Internet-based P2PTV service developed by Huazhong

University of Science and Technology in Wuhan, China, has gained tremendous
popularity since late 2005, and it is not alone. UUSee,294 SopCast,295 QQLive,296

PPStream,297 Feidian,298 and TVAnts299 are among the many popular P2P Video-

on-Demand (VoD) and P2P live video-streaming software applications. Without

an expensive server, those and other P2PTV systems could potentially make any

TV channel and any video content globally available.

Figure 9.1 shows two PPLive screen shots with a bit rate of 350 kbps (see

Figure 9.1B). Although the channel change time (CCT) can be seconds to tens

of seconds long and the resolution is low, PPLive still has millions of customers
who use it to watch movies and TV programs. Why? Obviously, free multimedia

is always welcomed by many customers. Additionally, the availability of a wide

range of content that is not easily accessible through other means is another

important reason that many funs are lured to PPLive and its many competitors.

P2P Internet radio and P2PTV are not the only peercasting applications today.

Messaging via peercasting and P2P gaming, for example, also has large potential

markets. Other potential applications include distance learning, real-time per-

sonal video and audio sharing, workspace collaboration, and so on.
The rest of the chapter is organized as follows: Related terminologies and video

streaming are introduced in the next two sections. The two subsequent sections

focus on the discussion of technologies and issues for overlay multicast. We’ll use

P2P video casting as an example, unless otherwise specified. Pros and cons of over-

lay multicast compared to IP multicast, design considerations, and advanced tech-

nologies are addressed. A sample case study is given at the end of the chapter.
TERMINOLOGY
n Unicast. A means of point-to-point communication. In unicast, data is delivered

from a sender node to one specific receiver node. That is, if a node wants to

send the same information to many destinations using a unicast transport ser-

vice, it must perform a replicated unicast and send N copies of the data to each

destination in turn. Today unicast is still the predominant form of transmission

on the Internet.
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n Broadcast. An old term that is traditionally associated with radio and television. It

generally represents an indiscriminate transmission that can be received by anyone

who has the correct equipment. Today broadcast is used in IP networkswhen data

are transmitted from one sender node being “heard” by all other nodes in a specific

network, such as within a local area network (LAN). That is, it is a point-to-multi-
point transmission, with the information being sent to all connected receivers.

n Multicast.
300 Multicast was originally a product of IP networks. Some applica-

tions, such as Internet television, Internet gaming, and IP teleconferencing

applications, require data to be delivered from one or multiple senders to mul-
tiple receivers. A service whereby data are delivered from one or multiple

sender nodes to multiple designated receiver nodes is called multipoint com-

munication or multicast, and applications that involve a multicast delivery ser-

vice are called multicast applications. On the Internet there are two types of

addresses: unicast and multicast. A host or node on the Internet normally has

only one unicast address but can be a member of many multicast groups.

n IPmulticast. IPmulticast implementsmulticast service at the IP routing level, with

each individual packet transmitted from the source, duplicated at routers, and then

delivered to multiple receivers simultaneously. It is also called native multicast.

n Overlay network (ON).
301 An application layer virtual or logical network in

which endpoints are addressable and that provides connectivity, routing, and

messaging between endpoints. Overlay networks are frequently used as a sub-

strate for deploying new network services or for providing a routing topology

not available from the underlying physical network. Many peer-to-peer systems

are overlay networks that run on top of the Internet.

n Overlay multicast (OM).
302,303 Overlay multicast implements multicast service at

the overlay network layer. Hosts participating in amulticast session form an overlay

network and only utilize unicasts among pairs of hosts for data dissemination. The
hosts in overlay multicast exclusively handle group management, routing, and tree

construction, without any support from Internet routers. This is also commonly

known as application layer multicast (ALM) or end system multicast (ESM).

n Peercast. A means of multicasting, broadcasting, or unicasting a data stream via
a peer-to-peer network. Peercasting is most often used for P2P broadcasting

and P2P multicasting.

Figure 9.2 compares unicast with broadcast and multicast; Figure 9.3 illustrates IP
multicast versus overlay multicast.
P2P STREAMING
Streaming refers to a delivery method whereby a content data stream is delivered

from a server to a client or clients in a continuous fashion and consumed in real

time by client applications. For example, in video-streaming applications, the
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client can start displaying video as soon as enough data have been received. In a

packet-switched network, the server breaks the media into packets and time-

stamps them. The timestamped packets are reassembled at the client side while

they are being received. Streaming differs from file downloading in that the media

are consumed while they arrive. This is indeed one of the most important goals

for which a media-streaming system is designed.

Media streaming generally can be classified into live and on-demand cate-
gories. On-demand streaming delivers to the clients media content already saved

on the server; live streaming sends the media content to the client while it is

being captured at the server. One-to-one, one-to-many, and many-to-many are pos-

sible configurations in different P2P streaming applications. For instance, a user

might stream a recorded video to a single friend (one-to-one) or to multiple

friends simultaneously (one-to-many). In a videoconferencing service, many-to-

many streaming is likely needed. To facilitate these different kinds of streaming
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services, unicast, broadcast, and multicast protocols are developed. To offer live

and on-demand media-streaming services at low server cost, P2P-based broadcast

and multicast mechanisms that take advantage of overlay multicasting are

invented and deployed. In the following sections we look at how overlay multi-

cast can facilitate low-cost media-streaming services and potentially offer suitable
quality of experience to a large set of audiences.
MULTICAST APPLICATIONS AND P2P OVERLAY MULTICAST
Multicast Applications

To transmit a video, live or stored, from a sender to a receiver, we can use unicast,

broadcast, or multicast. The benefit of multicast compared to unicast and broad-

cast transmission for multimedia applications is network efficiency. According to

the Chuang-Sirbu Multicast Scaling Law,304 the link cost can be significantly

reduced with multicast, and the message reduction is proportional to the group
size. This efficiency is particularly important for devices connected to limited

bandwidth access networks. Consequently, multicast protocols are a key enabler

of important applications envisioned in the future networked consumer electron-

ics device world.

Table 9.1 summarizes the characteristics of several emerging applications that

can benefit from efficient multicast services. It shows that various group commu-

nication applications may require different kinds of support in various dimen-

sions. These applications impose significant technical challenges.
IP Multicast vs. Overlay Multicast

IP multicast and overlay multicast (OM) are the two primary existing multicast
approaches (see Figure 9.3). Protocol-Independent Multicast (PIM), Distance Vec-

tor Multicast Routing Protocol (DVRMP), and Core-Based Trees (CBT) Multicast

Routing are several standardized IP multicast protocols called host-group multi-

cast protocols (HGMPs). In a HGMP, one group address per multicast group is cre-

ated, and each router stores the state for each active group address. In addition,

control protocols are implemented to manage group membership. Compared

with overlay multicast, IP multicast can realize higher performance and transmis-

sion efficiency. However, due to a variety of factors, including cost of deploy-
ment, interdomain deployment issues, and the need for pricing models, to date

IP multicast has not been deployed by many service providers, especially in wide

area networks.

Overlay multicast (OM), on the other hand, is much easier to deploy since it

does not rely on router deployment. In OM, an overlay network is built on top

of available network services. Peers self-organize into distributed networks that

are overlayed on top of the IP networks. The multicast group members



Table 9.1 Characteristics of Several Multicast Applications

Application Sender
Group
Size

Membership
Change Rate

Data
Rate

Time
Bounded

Type

Voiceconferencing Multiple Small Low High Highly Live

Videoconferencing Multiple Small Low Very

high

Highly Live

Multiparty games Multiple Small Usually low Low to

high

Low delay

acceptable but

synchronized

reception time

is important

Live

Personal video/

audio broadcast

(small group

multicast)

Single/

multiple

Small Low High to

very

high

Some delay

acceptable

Live or

on-demand

Whiteboard

(distance learning/

meeting)

Single/

multiple

Small to

medium

Low Low Some delay

acceptable

Live

News (text

and image)

broadcasting

Single Large High Low Some delay

acceptable

Live or

on-demand

IPTV/Internet TV/

Internet video

Single/

multiple

Large High Very

high

Some delay

acceptable

Live or

on-demand

Internet radio Single/

multiple

Large High Low to

medium

Some delay

acceptable

Live or

on-demand

Collaborated/

multiparty real-

time document

revision in

workspace

Single/

multiple

Small Low Very low

to low

Some delay

acceptable

Live

Multicast/

broadcast

messaging

(stocks, weather,

emergency alert)

Single/

multiple

Small to

large

Low Very low

to low

Low delay

acceptable

Live
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(i.e., peers) are connected via the overlay network. Multicast functions, such as

group management, multicast routing, and data replication, are performed at the

overlay network layer by forming a unicast tree or mesh at the application layer.

Figure 9.4A303 illustrates a basic multicast service architecture using structured
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overlay networks. In general, the overlay multicast application layer sits on top of a

structured or an unstructured overlay network layer that rests on top of the network

layer. Multicast groups are formed among the peers in the overlay network, that is,

built on top of the overlay infrastructure in the application layer.

Some OM systems form an overlay only among the group members that partic-
ipate in the multicast session. At the overlay network layer, some basic peer com-

munication functionalities are provided. For instance, peer discovery, message-

routing algorithm, overlay network reliability, and overlay security are often

implemented at the overlay network layer, whereas multicast is achieved through

message forwarding among the members of the multicast groups using unicast

across the underlying network or Internet. The generality of the overlay also

makes it possible for a single overlay to be shared by many different multicast ses-

sions. This has the advantage of sharing the cost of overlay construction and main-
tenance among many different applications.

Let’s use PPLive as an example again. Figure 9.4B shows an abstract view of the

PPLive architecture. The videocasting application sits on top of a hybrid overlay net-

work layer in PPLive. The supernodes form a ring. Each supernode is in charge of one

channel in a live streaming application. Peers watching the channel are connected to

the superpeer in charge of it in a second P2P layer. In an on-demand application, geo-

graphically based space partitioning is done. Each supernode is responsible for a sub-

space in this case. Peers within a subspace are connected to the supernode in charge
of the subspace. Centralized servers take care of peer registration, video listing, and

peer bridging services. One P2P group is formed for each video/TV channel. P2P

groups may use different overlay multicasting algorithms for content routing as well

as groupmanagement. Noticeably, although PPLive is popular for its live TVand video

streaming services, its platform can be used for the streaming and downloading appli-

cations of many types of media content.

One noteworthy moment for PPLive has to do with the most popular show in

China, the annual Spring Festival Gala on Chinese New Year. On January 28,
2006, as stated by PPLive,293 it supported over 200,000 concurrent users at bit

rate of 400 to 800 kbps for the four-hour program. This corresponds to an aggre-

gate bit rate of approximately 100 Gbps. This is something not yet achievable

with currently available IP multicast-based IPTV systems. According to Hei

et al.,306 PPLive operates as follows: A user launches PPLive client on her com-

puter, which is connected to a channel server via broadband Internet. A set of

metadata information that includes a list of several hundred channels is first

received. The user can browse through the channel list, look at the rating and
information on current popularity, genre, and so on and select the one he’s inter-

ested in watching. At this time, the PPLive client communicates with a tracker of

that channel and gets a list of peers currently watching the channel.

Next, the PPLive client is connected to a set of peers. Data exchange happens

thereafter. The retrieved chunks are stored in a buffer and are fed through a local

HTTP pipe to the stream player. Several seconds to minutes later, the video

stream starts to play, with all viewers of the channel watching the video at
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approximately the same point. The experience of PPLive at the 2006 Chinese

Spring Festival Gala demonstrates that large-scale IPTV service is perhaps achiev-

able through P2P networks, even though today P2P OM is still facing many chal-

lenges. The long startup delay and channel change time, the low performance on

unpopular channels, the lag between different peers watching the same channel,
and the added stress on ISPs are just some of the many issues researchers are

investigating. In other words, although P2P OM eliminates the dependency of uni-

versal deployment for multicast applications, it comes with a penalty on transmis-

sion efficiency and performance degradation.

Easy deployment and a lower server bandwidth requirement are the two

most notable advantages of OM. The key drawback is that it is not as efficient

as IP-based multicast. It typically requires a large amount of control overhead

to maintain group membership to monitor network conditions by sending
expensive probing messages. These cause delay and bandwidth penalties. Fur-

thermore, it provides less stability for multicast trees. Thus, when multicast

groups are large, efficiently managing the multicast group, propagating mes-

sages, and minimizing bandwidth cost pose many challenges. Table 9.2 sum-

marizes the pros and cons of overlay multicast and IP multicast under seven

different metrics.
Hybrid Multicast

To reduce the performance penalty of OM, Zhang et al.307 proposed a hybrid

multicast framework called Universal Multicast (UM). The basic idea is to fully

utilize native IP multicast wherever available and automatically construct an

overall multicast session via unicast tunnels between regions of the network

supporting native IP multicast, called islands. Isolated IP multicast islands in

LANs, especially in enterprise networks and campus networks, exist, even

though universal deployment has been slow. To take advantage of the IP
Table 9.2 IP Multicast versus Overlay Multicast

Metric IP Multicast Overlay Multicast

Efficiency High Low

Stress on ISP Low High

Server bandwidth requirement High Low

Control overhead Low High

Robustness High Medium

Lag between customers Low Can be high

Deployment cost High Low
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multicast performance gain, these available IP multicast islands can be utilized

to build an UM wherever possible.

To provide ubiquitous multicast delivery services, unicast tunnels between

IP multicast islands are built. Multicast messages are transmitted via native IP mul-

ticast protocols within the islands and encapsulated in unicast packets to transmit
through the tunnels from one island to another. Since native group management

protocols don’t extend beyond the islands, a mechanism to coordinate the mem-

bership across the islands is needed. For hybrid multicast, typically at least two

types of protocols are needed: an intra-island and an inter-island group manage-

ment protocol. P2P OM protocols can be utilized as the inter-island multicast pro-

tocol; the Internet Group Management Protocol (IGMP) may be used for the intra-

island subgroup multicast. An alternative or even complementary approach to

using multicast tunneling is to use an overlay to adaptively combine native multi-
cast regions with overlay multicast.

Peers that are members of a multicast group that are in a common native mul-

ticast region can map their multicast paths to the native multicast protocol. He

and Ammar308 have analyzed a hybrid architecture combining host-group multi-

cast with multidestination multicast. Combining these elements, we can see a

hybrid multicast architecture that uses native multi-destination routing for small

groups for overlay performance enhancement, native host-group routing for

larger groups, and overlay multicast to combine native islands into single group
sessions.

To leverage performance and cost, today the information technology (IT)

industry and the telecommunications industry are also looking into the feasibility

of hybrid peer-to-peer system for Internet video and IPTV services. Some popular

approaches include content popularity weighted and managed overlay-based

approaches. In a content popularity weighted approach, popular content is off-

loaded from the server and the low-cost peer-to-peer overlay is used to improve

system scalability. The long tail content, on the other hand, is served primarily
by the content server to ensure reliability and QoS. Managed overlay takes control

of content delivery via server or content delivery networks (CDNs). The servers

act like the supernodes in hybrid P2P networks. Consumers (peers) supply band-

width and storage when needed.
Proxy-Based Overlay Multicast

Another type of multicast approach utilizes infrastructure nodes as proxy nodes
to reduce the performance penalty of OM. For example, RMX,309 Bayeax,310 Over-

cast,311 and RON312 use this type of multicast. It is sometimes called fixed nodes-

based overlay multicast
313 as well. In this type of multicast, some strategic nodes

are placed around the Internet. These nodes autonomously form overlay multicast

trees to provide multicast service. Although it ensures multicast tree stability,

this approach offers little flexibility and the fixed nodes can easily become

bottlenecks.
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OM DESIGN CONSIDERATIONS
Performance Metrics

Yu and Buford303 summarized some commonly adopted metrics. The three core

metrics are:

n Link stress. Number of identical packets sent over a link.
n Stretch (relative delay penalty). The ratio of delay between the packet sent

over the overlay to that directly sent over the unicast path.
n Control overhead. The amount of overhead for control message exchange
in terms of number of control messages processed and bandwidth overhead.

Though these three metrics are the most frequently used303 to characterize OM

system performance and impact on the network, other metrics have also been

used to further understand an OM system’s application value:

n Startup latency. Time to start playback of media stream from time of join

request.
n Join latency. Time to receive first multicast packet from time of join request.
n Error recovery latency at packet loss. Time to recover the erroneous packet

from the time of error discovery.
n Reconnection latency at node failure. Time to be connected to a new par-

ent node from the time of node failure detection.
n (Average) loss (hit) rate per node. The ratio of number of packets lost

(received) per session to the number of packets that should be received

per session.
n Max number of multicast groups. Maximum number of multicast groups
running simultaneously.

n Multicast group scalability. Capability to scale to a group size of N.

Different metrics may be used in different applications to characterize an applica-

tion-specific property or system capability so as to assess an OM system’s applica-
tion value and usability. In voice- and videoconferencing, for instance, low latency

and system reliability may be more important than scalability. This is easy to

understand. Unlike some other multicast applications, the number of peers in

voice- and videoconferencing is often much smaller. However, the time-bounded

requirement is much more stringent.
OM Groups and OM Sessions

Many proposed multicast schemes in the literature can be applied on top of dif-
ferent overlay substrates. Scribe,314 for instance, can be deployed not only on Pas-

try315 but also Chord316 and CAN.317 It is worth mentioning here that Overlay

Weaver,321 an open-source overlay construction toolkit that provides multiple

routing algorithms, Pastry, Tapestry,318 Chord, Kademlia,319 and Koorde,320 with
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a common API for higher-level services including multicast services, is available

for developing P2P-based applications. The Mcast service function in Overlay

Weaver allows a user to join and leave a group specified by an ID, and multicast

messages to the group. It can also notify an application of topology of a spanning

tree on which a multicast message is transferred.
An overlay multicast scheme needs to take group creation, delivery structure,

group management, session management, and message dissemination into

account. In many multicast applications, such as P2PTV, members of the multicast

groups may come and go, causing a high churn rate. Consequently, how to scal-

ably form an efficient multicast delivery structure, manage the dynamic group

membership, and maintain the reliability of multicast message dissemination

under high churn rates are important issues in OM. In summary, the functionality

for each multicast session should at least include:

n Session identification
n Session initiation/creation
n Session subscription/join
n Session leave/graceful departure
n Session message dissemination/data forwarding
n Session fault tolerance/tree reformation at peer failure
n Session termination

Additional useful functions may include:

n Session admission control
n Content access control and security
Group Management

IP multicast groups are normally managed in tree-based structures, but OM
groups are constructed and managed in either tree-based or mesh-based struc-

ture.322 The mesh-based strategy provides for more than one path between a pair

of nodes. In a single tree-based approach, however, a single path from each non-

leaf node to each of its children is established. It is also feasible to apply a mesh

first, followed by a tree construction algorithm to implement overlay multicast,

where the idea is to take advantage of both strategies.305

There are distinct differences in these two strategies that directly impact the

control mechanisms as well as the performance of the multicast protocols. A sin-
gle tree is an acyclic group that leads to loopless routing. This greatly simplifies

the routing algorithm. The acyclic nature also brings disadvantages to the system.

First, it does not utilize the bandwidth of the leaf nodes, causing a burden of

duplicating and forwarding multicast traffic carried by a small subset of peers that

are interior nodes of the multicast tree. This violates the fairness in resource and

load-sharing requirement in a P2P system. Second, it is sensitive to partitioning.

That means that if any nonleaf member of the multicast group leaves the group,
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voluntarily or by failure, the tree is broken and the children of the failure or

departure node need to be reconnected to the multicast to receive messages. In

multicast streaming applications, not only is there potential network and end host

(peer) heterogeneity, but also the network environment may change dynamically.

These entail additional group management costs in single tree-based multicast
system.

To cope with the network heterogeneity as well as the active network changes

and to enhance the performance of tree-based system, dynamic adaptation

approaches are needed. In the meantime, to improve the fairness in resource shar-

ing and thus improve the overall performance of the system, mechanisms that

can take advantage of the leaf node bandwidth are indispensable. In response to

those requirements, multiple tree-based overlay multicast systems were proposed.

CoopNet,323 SplitStream,324 and MultualCast325 are examples of multitree-based
systems. In CoopNet and SplitStream, multiple subgroups are formed in such a

way that an interior node in one tree is a leaf node in all the remaining trees and

bandwidth constraints specified by the nodes are satisfied. It further ensures that

the forwarding load is spread across all participating peers. In SplitStream, one

video stream is split into k substreams, each distributed along one tree. If all peers

want to receive k stripes and they are willing to forward k stripes, SplitStream con-

structs a forest such that the forwarding load is evenly balanced across all peers

while achieving low delay and link stress across the network. This allows a cooper-
ative multicasting environment whereby peers contribute resources in exchange

for using the service. A peer that is capable of forwarding more substreams will

receive more substreams and hence be able to obtain higher-quality playback.

In the case that a peer is unable to contribute enough bandwidth for full stream

forwarding, it may receive fewer substreams, giving lower-quality playback.

In their design, the expected amount of state maintained by each node is
O(log N); the expected number of messages to build the forest is O(N log N)
and O(N2) in the worst case, where N is the number of peers in the multicast
group. Figure 9.5 illustrates a simple example of SplitStream with two stripes.

An additional advantage of SplitStream is that it offers resilience to node failures

and ungraceful departures, even without additional mechanisms, since different

substreams to a node come from different peers. When one parent of a subgroup

fails, the peer node still may receive other substreams from other parents in other

subgroups and may reconstruct the content accordingly, although with lower

quality. The detailed multigroup management mechanism of SplitStream over

Scribe is described in [324].
MutualCast goes even further. A total number of N trees are used in a multicast

group of N nodes. To offer bandwidth adaptation, MutualCast uses TCP buffers to

achieve synchronization of the delivered stream.

Mesh-based multicast provides multiple or redundant connections between

members of the group with mesh-based construction. This offers the advantage

of lower probability of multicast group partitioning by node failure or departure,

since alternate paths will already exist without the need for group or subgroup
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FIGURE 9.5 SplitStream with two stripes.
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reconstruction or readjustment. Routing stability and QoS are subsequently
improved. PPLive is a good example of a mesh-based multicast system. In PPLive,

the delivery path of a message depends on the overlay as well as feedback from

neighboring peers. Unlike a tree-based mechanism that relies on overlay adapta-

tion for message dissemination, the status exchange-based message-forwarding

strategy is easier to implement and is also helpful in coping with churn and the

changing network conditions. The downsides of the mesh-based approach, how-

ever, are several-fold. It is inherently more costly, since multiple copies of a mes-

sage may be forwarded to a link on the routing path, imposing increased link
stress. Additionally, a proper routing algorithm is essential in the construction

of loop-free forwarding paths between group members.
Message Dissemination

The single tree-based multicast system uses a Rendezvous Point (RP) based mes-

sage dissemination scheme. That is, a sender of the multicast group sends a mes-

sage to the root or the RP node of the tree, which then forwards the message
along the tree to all receivers. The inefficiency of the approach lies in the fact that

all messages must first be routed to the RP before they reach the group members.

In CoopNet and SplitStream, the source stream is “split” into multiple sub-

streams or descriptions. Each substream is distributed along a different single dis-

tribution tree via one or more RPs to reach the end hosts. An end host will

reconstruct the media stream using the received substreams. With a proper
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coding scheme such as Multiple Description Coding (MDC),326 peers in the multi-

cast group may join one or more subgroups and are able to decode the content

with one or more substreams. The more substreams it receives, the higher the

media playback quality. For a network with heterogeneous end host (terminal)

devices, this has obvious advantages.
Mesh-based systems can use pull, push, or hybrid push-plus-pull delivery

mechanisms for multicast message dissemination. If the sender takes the initiative

in moving the message from peer to peer, it is called push-based message dissem-

ination. Alternatively, in a pull-based model, the receiver takes control of the

message delivery path by pulling message blocks from its neighbor. When the

sender and receiver manage the message delivery route via negotiation, a hybrid

mode is invoked. GridMedia327 is an example of a hybrid mesh-based multicast

system. In GridMedia, media blocks are classified into push blocks and pull
blocks. To reduce delay, pull mode is used when nodes first join the multicast

group; push mode is adopted otherwise. Since the receiver takes control in a

hybrid or pull-based approach, it offers higher probability of on-time delivery of

message blocks in a time-bounded multicast application. Meanwhile, active push

may benefit from efficient upload bandwidth balancing since the sender can con-

trol the delivery path. Readers can reference Chapter 8 on peer-to-peer streaming

for more discussion of push versus pull content delivery.

Unlike tree-based systems whereby messages may be immediately forwarded
at each intermediate node, messages in mesh-based multicast systems are often

forwarded after the neighborhood status information is gathered, causing possible

delays in message dissemination. How to take advantage of the reliability and

adaptivity of mesh-based schemes while retaining the low latency of tree-based

approaches for delay-bounded peercasting applications is being studied by many

researchers today.
Categorization of OM Systems

In the past several years, numerous designs for OM have been proposed. Noticeably,

designs differ in terms of overlay structure, message routing, tree management, and

the like, and each might be suitable for different applications. Obviously, the slow

deployment of IP multicast also contributed to the research interests in OM design.

In the previous sections, we looked at tree versus mesh at group management and

pull versus push at message dissemination, two different ways to categorize OM

schemes. In the following we look at some other general means for OM system
categorization.

First, depending on whether the group management and data replication are

implemented at end hosts (peer nodes) or intermediate overlay proxies, an OM

system can be categorized into distributed end systems or proxy-based systems

whereby dedicated proxies in the network are deployed to improve performance.

Narada305 and NICE328 are popular examples of distributed end systems;

AMcast,329 OMNI,330 Scattercast,331 and Overcast311 are some examples of
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proxy-based ones. Studies332 show that a well-designed proxy-based overlay multi-

cast may come close to the performance of IP multicast. The tradeoff is that prox-

ied overlay multicast does involve deployment costs and provisioning decisions.

Second,303 as discussed in Chapters 3 and 4, peer-to-peer overlays supporting

multicast protocols can be either structured or unstructured. Unstructured
schemes are not constrained by overlay topology. Peers may be organized ran-

domly in a flat or hierarchical graph. Most often, multicast messages are

disseminated via flooding or random walk on the graph. Since data and network

structure are fully decoupled, unstructured overlays can often support complex

search with a sacrifice on query efficiency, network bandwidth consumption,

and/or query hit rate. Most of the P2PTV systems we see today use unstructured

overlay for video multicasting. PPLive is a typical example of that.

Structured schemes, on the other hand, impose constraints on the topology of
the overlay and build multicast trees on top of the structured overlay. A few sys-

tems such as Scribe/Pastry and Bayeaux/Tapestry have integrated multicast with

structured peer-to-peer overlays. Pastry and Tapestry rely on a DHT to provide

the substrate for semantic-free and data-centric references through the assign-

ment of a semantic-free node ID. The DHT performs request routing between

peers for operations such as put and get. DHT-based schemes have strong theo-

retical foundations. There is a guarantee that a key can be found if it exists. On

the other hand, most DHT-based systems have a data object lookup latency char-
acterized by O(log N), whereN is the number of peers in the overlay. Furthermore,

DHTs assume that all peers equally participate in hosting published data objects

or their location information. This leads to a bottleneck at low-capacity peers.

The integration of overlay multicast with DHT-based structured peer-to-peer

overlays makes it possible to share routing table management overhead between

the DHT and the OM functions. This potentially improves the multicast system per-

formance. Furthermore, the underlying overlay may incorporate techniques to con-

sider and exploit network proximity. This has the benefit of reducing the number
of network-level hops an overlay message traverses. From the OM perspective, if

the overlay does not consider network proximity, multicast messages may travel

substantially long distances in some routing hops. Castro et al.333 found that incor-

porating topology awareness into the routing algorithm and proximity into node

address selection generally improved tree quality. However, a comparative study

of multicast in structured overlays with dedicated OM designs has not been done.

Third, OM systems can also be categorized according to tree construction

types:328

n Mesh-first, whereby a mesh control topology between peers is computed

first, followed by reverse-path forwarding (RPF)334 construction of the data

topology
n Tree-first, whereby the data tree is constructed first, followed by control
connections between nodes in the tree

n Implicit, whereby the control and data paths are defined simultaneously
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Studies328 have shown that mesh-first protocols are efficient for small groups,

tree-first protocols are more suited to applications requiring high-bandwidth

transfers, and implicit protocols can support both latency-sensitive and high-

bandwidth applications as well as very large group sizes.

Although OM can overcome some inherent problems of IP multicast, many issues
still remain to be explored. Security, privacy, content access control, and billing and

accounting are just some of the frequently discussed challenges. Additional chal-

lenges also exist for large-scale multicast services such as Internet-scale video broad-

casting, IPTV, and large-scale distance learning. How to deal with system

heterogeneity, the dynamic network condition, and the host churn rate; handle vari-

ous security threats and provide application appropriate security measures; provide

higher scalability for multicast group management; support various multicast groups

simultaneously; and reduce control overhead for low capacity devices are just some
examples.

As examples, we compare several popular OM systems in Table 9.3.
IMPROVING OM PERFORMANCE
Quality of Experience (QoE), which indicates user experience and satisfaction, is

a popular factor to measure the success of multimedia services. Startup delay and

playback jittering are two important factors affecting user experiences. In an

overlay multicast system, multicast join latency will impact the startup delay;

reconnection latency at node failure and tree reformation latency in a high-churn

application (such as a large-scale video-multicasting application) will affect the
playback jittering rate.

One popular approach to reduce join and reconnection latencies in overlay

multicast services is to use proximity-based routing, which improves arbitrarily

long distances in routing hops.303 In CAN, for example, landmark nodes are used

for proximity measurement. Tapestry and Pastry, on the other hand, exploit prox-

imity metric among pairs of nodes. OM schemes based on CAN, Tapestry, and Pas-

try may use round-trip time (RTT) to approximate network distance between a

pair of nodes. As discussed in Chapter 10, to reduce the cost of extensive RTT
measurement, various Internet coordinate systems (ICS) have been proposed

for proximity measurement.

Another approach utilizes proactive stepparent selection to reduce the recon-

nection time in tree-based multicast systems. That is, each peer in the multicast

group locates its potential stepparent in advance. At tree reformation, a node that

is a candidate parent in the multicast tree immediately takes over the role of par-

enting. This cuts down real-time messaging needed for tree reconstruction, thus

reducing the probability of playback jittering at the affected end hosts.
Furthermore, by reducing the message hop counts, not only can the time of a

multicast message being delivered from the sender to the receiver be reduced, it



Table 9.3 Selected OM Protocol Comparison

Protocol Scribe ESM CAN Split Stream PPLive

Target

applications

Large group

multicast.

Small group

multicast.

Large group

multicast.

Large group

multicast.

Large multigroup

multicast.

Approach Multicast tree is built

on top of Pastry. Uses

reverse path

forwarding to build a

multicast tree per

group. Each group is

identified by the

groupId. Multicast

message propagates

through the multicast

spanning three.

Multicast group

members

self-organize into

an overlay structure.

End hosts (peers)

periodically exchange

group membership

and routing

information, build a

mesh based on

end-to-end

measurements, and

run a distributed

distance vector

protocol to construct

a multicast delivery

tree.

CAN-based multicast

has two steps: (1) the

members of the

group first form a

group specific

overlay; (2)

multicasting is

achieved by flooding

over the overlay,

creating a separate

overlay per multicast

group. Multicast

message is broadcast

within each overlay.

Multiple trees per

multicast group are

established with the

video stream split into

multiple stripes and

each video stripe

delivered via one tree.

Mesh-based system

that utilizes a tracker

to identify

neighborhood peers

for data exchanging.

Buffer map is

employed to decide

on the chunks of

media stream to

retrieve at each

peer.
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Fault

detection

and

tolerance

Uses heartbeat

messages from each

nonleaf node to its

children to detect

node failure.

Each member needs

to refresh the

membership to other

members along the

mesh, needs to probe

other members

periodically, and

maintains the path

that leads to each

destination.

Uses periodical

message probing to

detect faulty nodes.

Offers resilience to

node failures and

ungraceful

departures, since

different substreams

to a node come from

different peers. When

one parent of a

subgroup fails, the

peer node may still

receive other

substreams from

other parents in other

subgroups and may

reconstruct the

content accordingly,

although with lower

quality.

Using mesh to offer

inherent fault-

tolerant capability.

Scalability Supports large group. Supports small

group.

Scalability is not as

good as Scribe.

Supports large group. Supports multiple

very large groups.

Advantages Lower delay and

overhead than

flood-based

approach.

Optimizes the

efficiency of the

overlay routing tree

based on end-to-end

measurement.

Low cost when all or

most nodes in the

overlay are members

of the multicast

group.

Better resource

sharing and load

balance than single

tree-based system;

better reliability at

node failure.

High scalability and

low multicast group

management

overhead.

Im
p
ro
vin

g
O
M

P
e
rfo

rm
a
n
c
e

2
2
3



224 CHAPTER 9 Peercasting and Overlay Multicasting
also potentially increases the reliability of message forwarding and hence reduces

playback jittering rate in videocasting applications.

It is also observed that the stream-splitting approach of SplitStream and the

hybrid multicast approach of UM also effectively improve multicast performance

by improving the probability of a message being successfully delivered to the
receiver nodes.

CASE STUDY: SCRIBE

Castro et al.333 compared flooding-based with tree-based multicast approaches

and found that tree-based construction in a single overlay outperformed the flood-

ing-based approach317 using separate overlays for each multicast session. One

generic P2P overlay multicast system using the tree-based approach is Scribe.314

In the following we use Scribe as an example to look more closely at the mini-

mum requirements for building an overlay multicast system.
Scribe is a large-scale overlay multicast scheme built on top of Pastry,315 a

structured peer-to-peer object location and routing overlay substrate. A Scribe sys-

tem consists of a network of Pastry nodes with each node running the Scribe

application software. To create a multicast group, a unique groupId is first gen-

erated, for example, using the hash of the group’s textual name. A group with this

groupId is created by a CREATE message sent toward the peer node with the ID

closest to the groupId. That peer node subsequently becomes the RP that is the

root of the multicast tree. The group with this groupId is then added to the list
of multicast groups. Scribe uses a scheme similar to reverse-path forwarding

(RPF)334 for multicast tree formation.

To join a group, a node X sends a JOIN message routed toward the RP through

Pastry, with the group’s groupId as the key. Each node along the path from the

subscriber to the root (RP) checks to see whether it is already within the multi-

cast tree. If it is not, it creates a children’s table that is used for multicast message

routing for the group, adds X to its children’s table, forwards a join message

toward RP, and becomes a forwarder of the group (see Figure 9.6A). Otherwise,
it simply registers X as a child and stops forwarding the JOIN message (see

Figure 9.6B). Notice that a forwarder is a member of the multicast tree but might

not be a member of the multicast group. Any source node in the multicast group

can multicast a message to the group by sending the message to the RP, and the

RP then disseminates the message to all group members along the multicast tree.

Scribe employs heartbeat messages from each nonleaf node to its children to

detect node failure. Multicast messages may be used as implicit heartbeat mes-

sages. On detection of the failure of its parent, a node rejoins the multicast group
by calling Pastry to route a JOIN message to the RP with the groupId (see

Figure 9.6C). Pastry will route the message to a new parent, thus repairing the

multicast tree. If a node finds itself to be overloaded, it passes some of its children

to its other children and making those its grandchildren. This mechanism effec-

tively minimizes the probability of a node becoming a bottleneck. Scribe can also

tolerate RP (multicast tree root) failure. This is realized via replication. The state

associated with the RP is replicated across the k closest leaf set nodes to the root
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node in the nodeId space. If the root fails, its immediate child or children detect

the failure and join the multicast group again through Pastry. Pastry routes the

join messages to a new root with the closest nodeId to the groupId, making it
the new RP. Multicast senders likewise discover the new RP by routing via Pastry.

Because in Scribe tree formation is completely decentralized, membership

change is also handled in a distributed fashion. Scribe has mechanisms to handle

node failure as well as overloaded nodes. Since its underlying overlay, Pastry, uses

randomized overlay addresses, well-balanced trees and fairness in multicast mes-

sage forwarding can be achieved. These lead to a scalable overlay multicast system.

Scribe offers best effort message dissemination using TCP. However, it also pro-

vides a simple framework to allow implementation with stronger reliability guaran-
tees for streaming media and other time-bounded applications. This is done

through buffering and assigning a sequence number to each message. All recently

multicast messages are buffered by the root and by each node in the multicast tree.

Messages are retransmitted after the multicast tree is repaired. To ensure reliable

delivery, the messages must be buffered for an amount of time that exceeds the

maximal time to repair the multicast tree after a TCP connection breaks.

Noticeably, when most nodes in an overlay network are members of a multi-

cast group, a flooding-based mechanism offers a cheaper way for message propa-
gation by eliminating the control overhead.
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UMMARY
any challenges still exist in building an appropriate peercasting system for vari-

us applications. We discussed some of the challenges throughout this chapter.

or example, challenges for large-scale overlay multicast systems and some fre-

uently mentioned P2P system challenges were briefly described. Some perfor-

ance-related challenges were discussed. Here we summarize them into several
ategories:303

Performance. Today some of the most popular peercasting applications still

have many problems in terms of performance and end-user quality of experi-
ence. This is especially true for the large-scale videocasting services. For

instance, many P2PTVs have a startup delay of seconds to minutes. We believe

an OM scheme should be tuned to the specific real-life application the scheme

is designed for, to maximize system performance.

Scalability for large-scale P2P applications. An OM solution may be unscalable

for many reasons, including control message overhead, network heterogeneity,

imbalanced tree, high link stress, and long delay in message dissemination.

Today’s commercial IPTV systems have not adopted peercasting approaches.

Can overlay multicast or hybrid multicast improve commercial IPTV systems’

scalability without sacrificing system performance? In this chapter we dis-

cussed approaches that provide ways to deal with some of the problems of con-

ventional OM schemes. Although these schemes together may offer better
scalability for a large-scale system, extensive real-life tests are needed to better

understand their properties, strengths, and weaknesses.

Reliability. Streaming multicast applications requires a guarantee of on-time
packet delivery. How to provide quality of service, ensure system recoverabil-

ity, and assure fast recovery from failure all are issues that need to be consid-

ered in designing a successful real-life system. UM and low overhead

proximity-aware routing schemes offer a certain level of benefit for streaming

multicast applications. Many other approaches also exist in the literature.

A comprehensive real system test can help to further quantify the benefit of

these schemes.

Security and trust. Most existing solutions do not yet consider the security

aspects of a peercasting system. Distributed mechanisms for group member-

ship control, secure message forwarding, distributed secure key distribution

schemes, and distributed trust mechanisms are some of the important security

issues that arise in peercasting.

Cost. A peercasting scheme should be easy to deploy to offer a practical solu-

tion over native IP multicast. Furthermore, it should incur high deployment

cost at the network, service provider, or the end-user side.
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FOR FURTHER READING
Scribe314 is one of the first and one of the most classical OM systems in the liter-

ature. Those interested in building a test overlay multicast system can try out

Overlay Weaver.320 Several survey and tutorial papers on overlay multi-

cast322,332,335,336,337 can also serve as good starting points. Meanwhile, the Scal-

able Adaptive Multicast (SAM) Research Group of the Internet Research Task
Force (IRTF) homepage (www.samrg.org) is a place to get information on the lat-

est advances in the field.

http://www.samrg.org


CHAPTER
1
0
Measurement for P2P
Overlays
The P2P overlay depends on the service characteristics of the underlying net-

work, but in today’s Internet the state of links and routers is not easily available

to applications. Thus many overlay networks use periodic probing of the underly-

ing network to measure network conditions. Since such measurements on the

scale of a P2P overlay can significantly load the network, techniques for reducing

the probing are of interest. P2P overlays frequently need to exploit network

latency for decisions regarding locality, proximity, and topology. This chapter dis-
cusses the use of Internet coordinate systems and other techniques for estimating

latency-related measurements in P2P overlays.
MOTIVATION
As discussed in previous chapters, peers have the flexibility to choose their com-

munication peers for their P2P overlay networks, overlay routing, and overlay-

based multicast applications. This flexibility can significantly improve P2P overlay

system performance by exploiting the localized properties of the underlying net-

works. This is because most requests in peer selection are able to be fulfilled by
peers in the nearby area of the requester and thus do not incur the high cost asso-

ciated with the massive scale of the entire Internet. Furthermore, selecting net-

work peers based on their proximity and topology locations in the network is a

basic building block for many P2P systems.

For example, in anoverlay-basedmulticast application, there exists the problemof

low-latency server selection. A client ideally wants to know the latency or available

bandwidth between itself and all the peers to construct latency-sensitive multicast

topology that can scale the Internet and is able to give the best possible end-to-end
multicast path in terms of the minimum delay penalty, minimized response time to

the user, and so on. Although dynamic network performance metrics such as latency

or available bandwidth are the most relevant to such applications and can be accu-

rately measured on demand, the huge possible number of end-to-end paths that need
229
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to be considered makes performing on-demand network measurements impractical

due to high cost and time consumption.

Similarly, in an online multiuser gaming application, some ideas for distributed

game server discovery mechanisms have been put forward in [338]. A player can sim-

ply measure its latency to all game servers and bind to the closest one for optimal
gaming experience. The discovery mechanismmust be scalable in terms of returning

a set of servers that is mostly closer to a player (e.g., k-Nearest Neighbors query). In

such, the proximity information about the servers and players and the efficient and

scalable discovery of closest server mechanism are important distributed system

design commitments. Online multiuser gaming applications can benefit substantially

from selecting nodes based on their location in the network.

In small distributed systems, it is possible to perform extensive measurements

and make decisions based on the global information of network metrics such
as Internet latencies between nodes. Unfortunately, knowledge of such global

information is not available without cost, even in small distributed systems.

On-demand network latency measurements for large-scale distributed Internet

applications such as P2P applications are expensive and time consuming, espe-

cially so when the number of possible communication nodes is massive at

Internet scale, global information is unwieldy, and lack of centralized servers

makes it difficult to find nodes that fit the selection criteria.

As shown in Figure 10.1, the geographical distances between a node in Brazil
(Brazil Node) to other Internet nodes such as Node1 and Node2 are not
Node

Node2

Brazil
Node

Between Brazil Node
and Node1:

Geographical distance
= 4,500 miles

Network Latency
= 180 ms Between Brazil Node

and Node2:
Geographical distance

= 6,000 miles
Network Latency

= 120 ms 

FIGURE 10.1 How far is the Brazil Node to Node1 and to Node2 in terms of geographical

distances? Which one is closest to the Brazil Node in terms of network latency?
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proportional to the Internet latencies between the nodes. In the figure, Node1 is

geographically close to the Brazil Node, but the network path between them

might not have the network connectivity and resources to route data packets

with the lowest possible latency. The route between the Brazil Node and Node1

has a higher latency than the one between the Brazil Node and Node2. Internet
latency depends on the underlying international network links provisioned as

well as the Internet routing policies that are implemented. Internet routing poli-

cies also do not guarantee symmetric shortest paths.339

A highly promising and scalable approach is to construct an Internet geometry

that can estimate unknown network distances such as Internet latencies (or avail-

able bandwidth) for a given pair of nodes in a network from a set of partially

observed measurements—network embeddings for Internet coordinate systems.

Such a mapping is called a network embedding, and ideally network distances
between node pairs are exactly embedded into the geometric space as their geo-

metric distances. The latencies on links are usually used as the network distances

for the network embedding because they are a fundamental property in

distributed systems and arise from the propagation delay, queuing at routers,

and computational load on end hosts.

Recent Internet coordinate systems340,341,342,343,344,345,346,347,348,349,350,351

have widely been used to embed the measured underlying end-to-end Internet

latencies in terms of roundtrip times (RTTs) between some node pairs in a network
of N nodes into some geometric space and to assign node coordinates to every

node to predict the unmeasured latencies between the nodes as their computed

geometric distances. The network embedding is scalable because the procedure

is carried out with much fewer latency measurements without a full mesh of N2

extensive measurement. Thus, Internet coordinate systems could be used to make

latency-conscious decisions in large-scale distributed applications, without the

overhead of directly probing the network with all pairs RTT measurements.

Coming back to the earlier example and as shown in Figure 10.2, node coordinates
and geometric distances between all node pairs can be computed after probing and

embedding the RTTs to only a small set of nodes, usually referred to as landmarks.

In the figure, node coordinates are assigned to the Brazil Node and Node1, and their

computed geometric distance approximates the Internet latencies between them.

An example illustrating a three-dimensional Euclidean coordinate space for

226 PlanetLab nodes is shown in Figure 10.3.

A distributed hash table (DHT) is network-oblivious by design because nodes

pick logical identifiers at random and data objects are replicated on neighbors in
the identifier space. Structured DHT-based P2P overlays are examples of network-

oblivious overlays; each overlay node creates connectivity to its immediate

neighbors in the logical identifier space. A short distance in the identifier space

in overlay routing may cause a long distance in the underlying network routing.
http://www.planet-lab.org/

http://www.planet-lab.org/
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Proximity-aware DHT-based P2P overlays exploit the freedom to select physi-

cally close nodes for inclusion in the overlay routing tables. Many existing

Structured DHT-based P2P overlays such as Pastry,352 Chord,353 and DHash354

use such network coordinate systems to determine nearby nodes for efficient

construction and scalable routing lookup operation. Besides routing lookup oper-

ation, Chord and DHash (which is built on top of Chord) also use the Internet
coordinate system Vivaldi347 in their remote procedure call (RPC) system to pre-

dict end-to-end latency for a given pair of nodes, because Chord often contacts

other nodes just once and it cannot measure the latencies to set the RPC retrans-

mission timer inexpensively. So, the node coordinate information makes the

search for nearby nodes more efficient and scalable by saving probe bandwidth

and reducing the time spent in searching for neighbors.

Network-aware P2P overlays such as Lightweight SuperPeers Topology (LST)355

and network-aware SuperPeers-Peers overlay multicast streaming application



Motivation 233
(Bos)356,357 are examples of P2P overlays that do not use logical identifier space.

Instead they create an overlay topology that is based purely on internode physical

latencies derived from scalable Internet coordinate systems and that exploits net-

work locality properties for their overlay routing strategy. A network-aware P2P

overlay content multicast application constructs streaming trees that benefit from
the smaller number of network routing hops and localized quality of service

(QoS) characteristics such as latency, bandwidth, and reliability.

Another overlay application example that uses an Internet coordinate system

is the recently proposed distributed stream-processing system (DSPS) called a

stream-based overlay network (SBON)358 that streams data from multiple produ-

cers to multiple consumers via network processing operators. As illustrated in

Figure 10.4, the SBON collects, processes, and aggregates data across massive

numbers of real-time streams and uses a modified stable and adaptive version of
Vivaldi359 to predict latencies between nodes in their operator placement algo-

rithm. The key challenge for an operator placement algorithm is the potentially

large number of nodes that need to be considered for placement in the overlay

network. No network entity has complete information about the current network

and node conditions to make an optimal decision. So, using the Internet coordi-

nate system, the operator placement algorithm can be designed to satisfy the

three basic requirements of scalability, efficiency, and adaptivity.
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NETWORK EMBEDDING
This section beginswith an overview of the basic properties of network embedding

for Internet coordinate systems. Two main categories of network embedding tech-

niques are described: numerical optimization of some defined objective function

and Lipschitz embedding360,361 with matrix factorization for dimensionality reduc-

tion. A survey of the existing proposed Internet coordinate systems is provided.
Basic Properties of Network Embedding

Given a network X consisting of a set of N nodes and a network distance metric

function d indicating the network distances between them, we are able to embed

these networked nodes into low-dimensional vector space with the aim of pre-

serving network distances between the nodes in the metric space. At times this

distance function is represented by an N � N distance matrix containing the dis-
tance between every pair of nodes. The justification for applying embedding is

that for any finite metric space (X,d), we can usually find a one-to-one mapping

Ø that maps the N nodes into a vector space of dimensionality k. By doing so,

the distances between the points are approximately preserved using a distance

function d. Such a mapping is called a network embedding.

As illustrated in Figure 10.5, the network embedding is scalable because it is

done with many fewer network distance measurements between nodes than

the O(N2) required on a full mesh of N nodes. Ideally network distances between
nodes are exactly embedded as their geometric distances in the geometric space.

That is, the geometric distances between the node coordinates allow the unmea-

sured network distances of all pairs of nodes to be estimated accurately. How-

ever, as shown in Figure 10.6, even if the full mesh of N nodes is measured in

the full network embedding, some levels of embedding accuracy can be lost;

we show this effect later in the chapter.

Formally, a metric space is a pair M ¼ (X,d) where X is a finite set of size

N nodes, equipped with the distance metric function d: X � X ! Rþ; for each
a,b 2 X the distance between a and b is given by the function d(a,b). We

require that for all a,b,c 2X,
n (Antireflexivity) d(a,b) ¼ 0 if and only if a ¼ b
n (Symmetry) d(a,b) ¼ d(b,a)
n (Triangle inequality) d(a,b) � d(a,c) þ d(c,b)

A norm in a real valued vector space is a measure of the length of a vector, which

serves as the basis of a distance metric. Usually, the norm is one of the Lp norms,
kxkp ¼ (S jxijp)1/p.

Distancemetrics based on such a norm are often termed Minkowskimetrics.453

The most common Minkowski metrics are the Euclidean distance metric (L2),

the City Block distance metric (L1), and the Chessboard distance metric (L1).
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An embedding of a finite metric space (X,d) into (Rk,d) is a mapping Ø:
X ! Rk, where k is the dimensionality of the embedding space and d: Rk � Rk

! Rþ is the distance metric function of the embedding space. If we denote

the norm in Rk with k.k, the distance metric d is defined as d (x,y) ¼ kx � yk.
Ideally, the distance d(Ø(a),Ø(b)) in the embedding space adheres closely to
the distance d(a,b) in the original space. However, it is often not possible

and/or impractical to achieve exact correspondence between the distances based

on d and d. If an embedding mapping function Ø exists such that d(Ø(a),Ø(b))
¼ d(a,b), for all a,b 2 X, then (X,d) and (Rk,d) are said to be isometric. Strictly

speaking, (X,d ) is isometric to (Ø(X),d), where Ø(X) 2 Rk is the range of X.
Lipschitz Embedding

A powerful class of embedding methods is known as Lipschitz embeddings.360,361

These are based on defining a coordinate space whereby each axis corresponds

to a reference set (or a set of landmarks) that is a subset of the nodes in the

network.

A Lipschitz embedding is defined in terms of a set L of subsets of the network

X, where L ¼ {l1,l2,li,. . .,lk}. The subsets li are termed the reference sets

of the network embedding. Let d(a,l) be an extension of the distance function

d of node a 2 X to a subset l � X, such that d(a,l)¼ minx2l{d(a,x)}.
An embedding with respect to L is defined as coordinate mapping Ø such that

Ø(a)¼ (d(a,l1),d(a,l2),. . .,d(a,lk)). In other words, we are defining a coor-

dinate space in which each axis corresponds to a subset li � X of the nodes, and

the coordinate values of node a are the distances from node a to the closest

element in each of li. Note that the distance preserving l1 embedding is a spe-

cial case of a Lipschitz embedding, where L consists of all singleton subsets of X

(i.e., L ¼ {{a1},{ai},. . .,{aN}}).
The intuition behind the embedding is that at an arbitrary node x 2 X, some

information about the distance between two arbitrary nodes a1 and a2 is obtained

with the help of comparing d(a1,x) and d(a2,x), that is, the value jd(a1,x) �
d(a2,x)j. This is especially true if one of the distances d(a1,x) and d(a2,x) is

small. Observe that due to the triangle inequality, we have jd(a1,x) � d(a2,x)j �
d(a1,a2). This argument can be extended to a subset l. In other words, the value

jd(a1,l) � d(a2,l)j is a lower bound on d(a1,a2). This can be seen as follows.

Let x1,x2 2l be such that d(a1,l) ¼ d(a1,x1) and d(a2,l) ¼ d(a2,x2).
Since d(a1,x1) � d(a1,x2) and d(a2,x2) � d(a2,x1), we have jd(a1,l) �
d(a2,l)j ¼ jd(a1,x1)� d(a2,x2)j. For the case that d(a1,x1)� d(a2,x2) is posi-

tive or negative, we have jd(a1,x1) � d(a2,x2)j � max{jd(a1,x1) � d(a2,x1)j,
jd(a1,x2) �d(a2,x2)j}. From triangle inequality, we have max{jd(a1,x1) �
d(a2,x1)j,j d(a1,x2) � d(a2,x2)j} � d(a1,a2). Thus, jd(a1,l) � d(a2,l)j is a
lower bound on d(a1,a2). Using a set L of subsets, we increase the likelihood that

the measured distance d(a1,a2) between two nodes a1 and a2 (as measured rela-

tive to other distances) is captured adequately by the embedded distance d in the

embedding space between coordinates Ø(a1) and Ø(a2), that is, d(Ø(a1),Ø(a2)).
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Numerical Optimization Embedding

One method is to construct an embedding Ø that works for an arbitrary metric

space by treating the embedding as an error objective function minimization

problem; this can be solved by any numerical optimization method. The purpose

of the numerical optimization algorithm is to detect the minimum of the objective

function in the k-dimensional parameter space. Starting from an initial parameter

set, the minimum has to be found iteratively by evaluating the value and/or gradi-
ent of the objective function, and performing small steps toward the minimum.

There are many different minimization algorithms, and the choice depends on

the characteristics of the objective function, the number of parameters to be esti-

mated, and the efficiency with which the forward problem can be solved.

One of the more common variants of objective functions seeks to minimize

stress, as defined as:
P

a;b2XðdðfðaÞ;fðbÞÞ � dða; bÞÞ2
P

a; b2Xdða; bÞ2

Minimizing stress is essentially a nonlinear optimization problem, whereby the
vector variables are the N � k coordinate values corresponding to the embedding,

that is, k coordinate values for each of the N variables (nodes), and then trying to

improve the stress in an iterative manner using any of the numerical optimization

methods. The result of the optimization is not always the embedding that obtains

the absolute minimum stress, but instead it is one that achieves a local minimum.

That is, the minimization can be depicted as finding the deepest valley in a land-

scape by always walking in a direction that leads downhill; the process can thus

get stuck in a deep valley that is not necessarily the deepest.
INTERNET COORDINATE SYSTEMS
Internet coordinate systems use network embedding techniques to embed the

underlying network distances such as RTTs between some Internet nodes into

a geometric space and assign geometric coordinates to all Internet nodes in such

a way that the computed geometric distances between the nodes closely approx-

imate their network distances. That is, an Internet coordinate system starts with a

collection of some nodes and measured network distances between these node
pairs. It then embeds all the nodes into a geometric space by associating each

node with a point in that geometric space.

Among the existing Internet coordinate systems described in the literature are

Global Network Positioning (GNP),341 Lighthouses,342 Virtual Landmarks,343

Internet Coordinate System (ICS),344 Internet Distance Estimation Service

(IDES),345 Practical Internet Coordinates (PIC),346 Vivaldi,347 Big Bang Simulation

(BBS) in Euclidean space,348 and BBS in Hyperbolic space.349,350

The challenges of constructing such an embedding into node coordinates
are twofold. First, the method must be scalable and done with many fewer
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measurements than the O(N2) required on a full mesh of N nodes. It should also

remain accurate even when the input is a small subset of all possible network

metric measurements. That is, the nodes’ coordinates being assigned should

allow the unmeasured network distances between nodes to be estimated accu-

rately. If an Internet coordinate system required O(N2) measurements, it saves
nothing compared with exhaustive measurements and search! Second, this must

be done so that the resulting system is accurate for all pairs of nodes, in the sense

that the geometric distances between embedded nodes should, in some way,

closely approximate their network distances. If accurate, such embedding techni-

ques would allow us to predict unmeasured network distances without costly

extensive measurements.

In all the Internet coordinate systems, there are two general methods for

embedding a finite metric space into low dimensional geometric space:

n Lipschitz embedding is done with matrix factorization of measured distance

matrix for dimensionality reduction of the geometric space. Matrix factorization

is a form of mathematical optimization and error function minimization. This

idea is illustrated in Figure 10.7. It is important to look at the Lipschitz embed-
ding step because inherent loss of accuracy may occur here.

n Numerical optimization of some defined objective distance error functions

based on accuracy metrics for node-to-landmark distances. This concept is illu-

strated in Figure 10.8.

Table 10.1 enumerates the embedding schemes for constructing Internet coordi-

nate systems. The table presents their differences in terms of the fundamental

embedding techniques and the metrics that determine the accuracy of the

distance estimation.
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FIGURE 10.7 Systems using Lipschitz embedding with matrix factorization algorithms.



Table 10.1 Network Embeddings for Internet Coordinate Systems

Internet
Coordinate
Systems

Fundamental Network Embedding Techniques Accuracy Metrics

ICS Lipschitz embedding and Principal Component

Analysis (PCA)/Singular Value Decomposition

(SVD) is performed for dimensionality reduction

in Euclidean space. Scaling from original

distance is done.

Average Relative

Error

Virtual

Landmarks

Lipschitz embedding with scaling done on the

Lipschitz coordinates in Euclidean space. PCA/

SVD is performed for dimensionality reduction.

Relative Error

IDES using

Matrix

Factorization

Distance computation based on matrix

factorization using SVD and Nonnegative Matrix

Factorization (NMF) on N x N distance matrix

into smaller sub-matrices X and Y in Euclidean

space. Such an embedding is a form of

dimensionality reduction.

Relative Error

Lighthouses Makes use of multiple local bases C together with

a transition matrix in vector space, allows

flexibility for any node to determine coordinates

relative to any set of pivot nodes provided it

maintains a transition matrix for global basis G. It

uses linear matrix factorization such as the QR

decomposition (Gram-Schmidt

orthogonalization).

Relative Error

(Continued)

L
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FIGURE 10.8 Systems using numerical optimization embedding algorithms.
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Table 10.1 Network Embeddings for Internet Coordinate Systems—Cont’d

Internet
Coordinate
Systems

Fundamental Network Embedding Techniques Accuracy Metrics

GNP Landmark nodes compute coordinates and

location in Euclidean space based on

minimization of objective squared error function

using Downhill Simplex algorithm. The nodes also

adopt minimization of the same objective error

function between measured and computed

Node-to-Landmark distances.

Squared Relative

Error

PIC Nodes compute coordinates in Euclidean space

using Downhill Simplex method for minimization

algorithm based on objective squared error

function. The nodes join the system does not rely

on infrastructure nodes. This is done by having

any secured nodes with coordinates to act as the

selected landmarks. The landmarks are chosen

with closest, random and hybrid (closest and

random) strategies.

Squared Relative

Error

Vivaldi Distributed minimization algorithm based on

objective squared-error function (equivalent to

Spring Energy/Force). The distributed distance

computation involves nodes to compute

coordinates based only on measured RTTs from

node to a handful of other nodes, and from

current coordinates of those nodes.

Squared Relative

Error

Big Bang

Simulation

(BBS)

Derivation of coordinates and location of nodes in

Euclidean space by minimization involving: First

phase – difference between Euclidean and

network pair distances based on objective

squared error function; simulating spring and rest

length of the spring in each pair is equivalent to

network pair distance; Second phase – reduce

the distortion of large relative error edges at the

price of slightly increasing average relative error;

Subsequent phases – involves the combined

functions of the second phase’s error

minimization. Embedding in hyperbolic space

uses ‘Loid model (Hyperboloid) of hyperbolic

space which averts the distance singularity on

the boundary of the poincaré.

Directional Relative

Error and Distortion
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Systems Using Lipschitz Embedding and Matrix Factorization

Numerical optimization embeddings are done using iterative algorithms for non-

linear optimization, which is computationally expensive, especially working with

large network latency datasets. In addition, each node determines its coordinates

from measurements to a set of landmarks. Thus the measurement traffic arriving

at the landmarks increases in proportion to the number of nodes in the system.

Both ICS and Virtual Landmarks are proposed to solve numerical optimization
problem of computational complexity and computation of node coordinates

and the scalability of the associated measurement process.

ICS and Virtual Landmarks are based on Lipschitz embedding of an assumed

finite metric space into Euclidean space. Two nearby nodes in the original metric

space may have very similar coordinate vectors and so may map to nearby points

under the Lipschitz embedding. They use Singular Value Decomposition (SVD)

with Principal Component Analysis (PCA) to reduce dimensionality of the Euclid-

ean space. Matrix factorization based on SVD is of the form D ¼ UWVT, where D is
the measured RTT distance matrix, U and V are orthogonal matrices, and W is a

diagonal matrix with nonnegative elements arranged in decreasing order and that

measure the significance of the contribution from each principal component.

This is related to PCA on the distance matrix row vectors in ICS and Virtual Land-

marks, where the first k rows of the matrix U(Uk) or k column of matrix V(Vk)
are used to compute the k-dimensional coordinates for the network nodes.

ICS employs this method to create a vector basis using a set of landmarks by

taking the full measured latency distance matrix of this set of landmarks. Then
SVD and PCA are performed with optimal scaling, and node k-dimensional coor-

dinates are computed from their Lipschitz coordinates. Virtual Landmarks directly

uses the node’s Lipschitz coordinates and performs SVD and PCA without scaling

to reduce the dimensions of the node coordinates. Thus, in Virtual Landmarks,

no knowledge is required of the inter-landmark latency distance matrix.

IDES uses the measured network distance matrix D, the rows of which are not

linearly independent, that is, it has rank strictly less than N number of nodes and

uses matrix factorization to approximate D, the elements of which represent pair-
wise distances by the product of two smaller matrices. The nodes measure their

network distances to random sets of landmarks to build the measured network

distance matrix D. The model is based on matrix factorization of the measured

network distance matrix D to give embedded distance matrix for representing

and estimating the network distances. Such an embedding can be viewed as a

form of dimensionality reduction.

The pairwise measured distance matrix D is expressed as the product of two

smaller matrices of X and Y through SVD or Nonnegative Matrix Factorization
(NMF) algorithms. It contains the outgoing X vector and incoming Y vector in

k dimensions, respectively, for each node. Estimated distances between nodes

are derived from the dot product of these two vectors, that is, the estimated dis-

tance is computed from the dot product between the outgoing vector of one
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node and the incoming vector of the other node. Thus, the distance between two

nodes is estimated as the inner product of the source’s outgoing vector and the

destination’s incoming vector.

The embedding technique in Lighthouses uses linear matrix factorization of the

measured distance matrix such as the QR decomposition (Gram-Schmidt orthogo-
nalization). It also allows the flexibility for any node to determine local coordinates

relative to any arbitrary set of kþ 1 local landmarks that spans the local vector basis

C as long as it maintains a transition matrix for transforming the local coordinates to

global coordinates in global vector basis G. The Lighthouses technique uses multi-

ple local bases together with a transition matrix to overcome the issue of using a

fixed set of well-known landmarks to form the vector basis to compute node coor-

dinates when the landmarks become unavailable. This fixed set of well-known

landmarks can limit scalability of the system if they become communication bottle-
necks and the accuracy is sensitive to their placement. The Lighthouses technique

relies on a set of nodes from which different joining nodes may select differently.

A node that joins the Lighthouses system does not have to query those global

landmarks. Instead, the new node can query any existing set of nodes to find its

coordinates relative to that set and then optionally transform those coordinates

into coordinates relative to the global landmarks.

The number of landmarks is kþ1, where k is the number of dimensions in the tar-

get vector space. This is to solve the possible problem that coordinate vectors of the
landmarks could be linearly dependent in the geometric space, which may cause the

nodes to be unable to differentiate their distinct geometric locations from these land-

marks and could hinder the computation of the node coordinates. That is, if the

landmarks have their coordinate vectors as a multiple of the other (in other words,

the landmarks are in a straight vector line), the nodes would not be able to compute

their distinct geometric locations from these landmarks. Only when the vectors of

the landmarks are linearly independent is a basis of the vector space formed.
Systems Using Numerical Optimization

For techniques involving minimization of some defined objective distance error

function, many algorithms are proposed to compute the coordinates of the

network nodes.

Both GNP and PIC systems use the Downhill Simplex algorithm362 to minimize

the objective distance error function: sum of relative errors. The problems with

the Downhill Simplex method are slow convergence, sensitivity to the initial

coordinates or positioning of the network nodes, and the potential chance of get-

ting stuck in the local minima. This leads to the eventual assignment of different

coordinates for the same node depending on the minimization process (e.g.,

selection of the initial position). So, methods that are clever to converge to the

global minimum are required.

GNP is an architecture for network distance prediction that is based on a kind

of absolute coordinate. The key idea of GNP is to model the Internet as a
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geometric space (e.g., a three-dimensional Euclidean space) and characterize the

position of any node in the Internet by a point in this space. The network dis-

tance between any two nodes is then predicted by the modeled geometric dis-

tance between them. The first part of their architecture is to use a small

distributed set of nodes known as landmarks to provide a set of reference coor-
dinates necessary to orient other nodes. These landmarks first compute their

coordinates in a chosen geometric space. The goal is to find a set of coordinates

for the landmarks such that the overall error between the measured distances

and the computed distances in that geometric space is minimized in an objective

function F that measured the errors. The way error is measured in F will affect

the eventual distance prediction accuracy. For a geometric space of dimensional-

ity k, this should have at least kþ1 landmarks. If the number of landmarks is not

greater than k, the landmark coordinates will lie on a hyperplane of at most k � 1
dimensions. Consequently, a point in the k-dimensional space and its reflection

across the landmarks’ hyperplane cannot be distinguished by the objective

function.

The computation of coordinates is considered as a generic multidimensional

global optimization problem that can be approximately solved by many available

methods. GNP uses the Downhill Simplex algorithm as the error minimization

method, which is used to first construct a basis and then using that basis to find

the coordinates of the nodes relative to that basis. The landmarks simply measure
the interlandmark RTTs using Internet Control Management Protocol (ICMP) ping

messages and take the minimum of several measurements for each path. In the

second part, equipped with the landmark coordinates, any end node can com-

pute its own coordinates relative to those of the landmarks and perform the

similar computation of a generic multidimensional global minimization problem.

Similarly, the node measures its RTT to the kþ1 landmarks using ICMP ping

messages and takes the minimum of several measurements for each path as the dis-

tance. This embedding technique sought a minimum of total square embedding
errors over all node pairs, which is proportional to the average pair distortion.

PIC attempts to solve the problems that limit the system practicality of relying

on a fixed set of well-known landmarks that are a single point of failure and can

limit scalability if they become communication bottlenecks. Any node whose

coordinates have already been computed can act as a selected landmark for other

nodes. Therefore, it can distribute communication and computation load evenly

over all the nodes in a system. PIC experimented with three strategies to choose

the arbitrary set of landmarks:

n Pick the landmarks randomly with uniform probability.
n Pick the landmarks closest to the node.
n Pick some random and closest landmarks (hybrid).

The closest and hybrid strategies require a mechanism to find the closest nodes to

a node in the network. This can be done in using expanding ring search using a

multicast mechanism363 or other algorithms.364,365
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PIC is able to compute node coordinates even when some nodes are malicious

by devising a security test to eliminate these malicious nodes. The test relies on

the observation that the triangle inequality holds for nodes in the Internet. But

in actual fact, triangle inequality does not hold for most nodes in the Internet

due to the problems of Internet routing policies such as Border Gateway Protocol
(BGP)366 and some structural network planning situations.

Both Vivaldi and BBS systems are based on the numerical minimization of sum

of distance error functions that are related to the problem of minimizing the

potential energy of Newtonian mechanics principles. The use of physical springs

to tabulate relative network positions with the rest length of the springs being the

observed latency was first used by BBS. The BBS algorithm models the network

nodes as a set of particles having a geometric position in Euclidean space. Each

particle or node is the geometric image of a vertex. The nodes are traveling in that
space under the effect of the potential force field that reduces the potential

energy of the nodes. This is related to the total embedding distance error of all

node pairs in Euclidean space:

ET
�
v1; . . .; vNÞ ¼

XN

i;j¼1
i>j

Eijðvi; vjÞ

where vd, d ¼ 1,. . .,N are vectors designating the coordinates of the N network

nodes in the target k-dimensional Euclidean space, Rk. The embedding distance
error of a pair of nodes, called the pair embedding error, is denoted by Eij.

Each pair of nodes is pulled by the field force induced between them, depend-

ing on their pair embedding distance error, that is, the embedding error of the

distance between them. The nodes accelerate under the effect of the force field,

attenuated by simulated friction force. The induced pair field force is equal to the

difference between the Euclidean and network pair distances. The resulting field

force can be realized by attaching an ideal spring with fixed elastic coefficient to

each pair of particles. The rest length of the spring in each pair is equal to the net-
work pair distance. Then a calculation phase consists of several iterations that

move the particles or nodes in discrete time intervals by applying Newton’s

movement equations to calculate the positions and velocities.

BBS has an advantage over conventional gradient minimization schemes, such

as steepest descent367 and Downhill Simplex algorithms, due to the kinetic

energy accumulated by the moving nodes, which enables them to escape the

local minima. The Downhill Simplex algorithm is sensitive to the nodes’ initial

coordinates. There are three embedding methods in the BBSs:

n All-pairs (AP) embedding. Embedding is done for the full mesh of the N nodes

of the network topology, with all N nodes selected as the landmarks.

n Two-phases (TP) embedding. Embedding is done using landmarks similar to

GNP, where the landmarks are embedded first and the coordinates of the other

nodes are calculated from the distance to several chosen closest landmarks

through minimization of the symmetric distortion in these node-to-landmark
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pairs. Specifically, the TP embedding requires kþ1 landmark measurements for

k-dimensional coordinate vectors.

n Log-random and neighbors (LRN) embedding. This method aims to increase

neighbor distance accuracy. The LRN embedding concurrently embed nodes

through minimization of objective error function of N nodes and the LRN sub-

set, which comprises the node pairs for which distance is below a certain

threshold, that is, the threshold is selected so that the number of distance

pairs that are below the threshold is O(N�logN) and together with a set of

randomly sampled distance pairs that are selected uniformly with probability
(logN)/N.

The number of randomly sampled distance pairs is equivalent to N�logN.
The LRN algorithm embeds all the N nodes concurrently. The objective function
is the sum of embedding errors for all N nodes in the system, and the embedding

error of one node is the error of distance from that node to the LRN subset of

nodes.

In hyperbolic geometric space368,369,370, a distance decreases as it moves away

from the origin. Similar to Euclidean line distance, the hyperbolic distance line

between two nodes is defined as the parametric curve, connecting between the

nodes, over which the integral of the arc length is minimized. Unlike Euclidean

line distance, a hyperbolic line distance bends toward the origin point. The
extent of the bend depends on the curvature of the hyperbolic space. The bend-

ing enlarges when space curvature increases; thus, the hyperbolic distance

between two nodes increases.

BBS in hyperbolic space uses the ‘Loid model that is embedded in the upper

sheet of the hyperboloid with hyperbolic distance in the Minkowski model. The

movement of the nodes is adjusted using the hyperbolic distance function. The

metric curvature is defined as the Gaussian curvature of the hyperbolic space

in which this metric is embedded with optimal accuracy and with minimal distor-
tion. By embedding into the k-dimensional hyperbolic space with various metric

curvature values, we are able to deduce and select the optimal metric curvature

by comparing the distance estimation errors.

In [350], they have shown that the embedding in hyperbolic space with

curvature k is equivalent to embedding the √k, which is the stretched metric in

canonical hyperbolic space. The curvature k is used for BBS-LRN embedding of
N �logN randomly sampled pairs, BBS-TP embedding of first t nodes as the selected

landmarks, and BBS-AP embedding with all nodes as the selected landmarks.
Before the stretching with k is done (i.e., multiply with k), the measured distances

are divided by the following normalizing factors, depending on the types of BBS

embedding methods:

n The mean node-to-node network distance is used as the normalizing factor (�).
BBS-AP embedding uses this normalizing factor together with k. Note that for

the case of BBS-AP embedding, it is full embedding whereby all nodes are

selected as landmarks.
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n Themaximumnode-to-node network distance is used as the normalizing factor (�).
Both BBS-TP and BBS-LRN embeddings use this normalizing factor together with k.

The hyperbolic distance function dH between two nodes with k-dimensional

coordinate vectors X ¼ (x1,. . .,xk) and Y ¼ (y1,. . .,yk) together with shrinking

factor (�/k) is computed as follows:

dH ¼ arc cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ k Xk2Þ � ð1þ kYk2Þ

q
�
Xk

i¼1
xiyi

" #
� �

k

Vivaldi constantly adjusts the node coordinates to minimize the error between the

predicted Euclidean distance in Euclidean space and the network latencies,
because each node contacts a random set of nodes in a decentralized manner.

Vivaldi uses each RTT sample to update its node coordinates. The weight w of a

sample is based on the ratio between the local and the remote error estimates.

The algorithm tracks the local relative error using a weighted moving average.

The node coordinates are updated by moving a small step toward the position that

best reflects the measured RTT. The size of the modification depends on the

weight of the sample and on the difference between the measured RTTs and the

estimated distances.
The work in Vivaldi has concluded that spherical coordinates do not model

the Internet well because the paths through the Internet do not wrap around

the Earth. A height vector model was proposed to model the time it takes packets

to travel the access link from he node to the core, and this is included in the two-

dimensional Euclidean coordinates. The distance between two nodes with coordi-

nates ((x1, y1) and (x2, y2)) is the sum of their heights (h1 and h2) and the usual

Euclidean distance as follows:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � x2Þ2 þ ðy1 � y2Þ2 þ h1 þ h2

q

MERIDIAN
Meridian371 is a lightweight and scalable network positioning and measurement

overlay that makes use of a loose routing system based on multiresolution rings

on each node; an adaptive ring membership replacement scheme that maximizes

the usefulness of the nodes populating each ring; and a gossip protocol for node

discovery and dissemination. The system can efficiently find the closest node to a

target that is required as the building block operation in many location-sensitive

distributed systems.

Multiresolution Rings

Each Meridian node organizes a small and fixed number of other nodes in the sys-

tem into concentric and nonoverlapping rings of exponentially increasing radii,

as shown in Figure 10.9. The reason for exponentially increasing ring radii is
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FIGURE 10.9 Meridian rings371 # 2005 ACM, Inc. Reprinted by permission.
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for the need of a node to have a representative set of pointers to the rest of the

network. Within a given ring, a set of nodes that span a large amount of space

(dark) are more desirable than a more limited subset (light).
The process of sorting neighbors into concentric rings does not require fixed

landmarks or distributed coordination; this is done independently. There is an

upper bound in terms of the number of k nodes maintained in each ring. The

overpopulated ring will drop nodes in such a way that the space requirement

per node is proportional to k.
Ring Membership Management

A large number of k nodes increases a node’s information about its neighbors

and helps make accurate choices when routing queries. On the other hand,

a large k represents more state, memory, and bandwidth overhead at each

node. Within each ring, a Meridian node keeps track of the k primary ring mem-

bers and a constant number l of secondary ring members. Each node defines a

local coordinate space using Lipschitz embedding. That is, a node i will periodi-

cally measure its latency d(i,j) to another node j in its ring for all 0 � i, j �
kþl. The coordinates of node i are {d(i,1),d(i,2),. . .,d(i,kþl)}, where
d(i,i) ¼ 0.

Having computed the node coordinates for all the members of a ring, a Merid-

ian node can determine the subset of k nodes that provide the polytope with

the largest hypervolume. A simple and greedy approach to ring membership man-

agement is adopted and occurs in the background: A node starts out with kþl
polytope and iteratively drops the vertex, the absence of which leads to the

smallest reduction in hypervolume until k vertices remain.
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Gossip-Based Node Discovery

Meridian’s gossip protocol is not for each node to discover every node in the sys-

tem but for each node to discover a sufficiently diverse set of other nodes:

1. Each node A randomly picks a node B from each of its rings and sends a gossip

packet to node B containing a randomly chosen node from each of its rings.

2. On receiving the packet, node B determines through direct probes its latency

to node A and to each of the nodes contained in the gossip packet from

node A. Node B sends probes to node A and to the nodes in the gossip packet

from node A regardless of whether node B has already discovered these nodes.

3. After sending a gossip packet to a node in each of its ring, node Awaits for the

start of its next gossip period and then begins from Step 1.

When a node initially joins the system, it needs to know the IP address of one of

the nodes in the Meridian overlay. The newly joining node contacts the Meridian

node and acquires the whole list of ring members, then it measures its latency
to these nodes and places them on its own rings. After that, the new node

participates in the gossip protocol as described.

During node churn, when an unreachable node is discovered during the

replacement process, it is dropped from the ring and removed as a secondary

candidate node; when an unreachable node is discovered during gossip or actual

query routing, it is removed from the ring and replaced with a random secondary

candidate node.
Closest-Node Discovery

The system discovers the closest node by performing a multihop search where

each hop exponentially reduces the distance to the target, where each hop brings

the query exponentially closer to the destination, similar to searching in
Structured P2P overlay networks such as Chord, Pastry, and Tapestry. The differ-

ences are that Meridian’s routing is performed using physical latencies and the

target nodes need not be part of the Meridian overlay.

When a closest-node query is received, the Meridian node determines the

latency between itself and the target, d. It then locates its corresponding ring, j,

and queries all nodes in this ring and the nodes in the adjacent rings, j � 1 and

jþ1, such that the distance to the origin is within d/2 to 3d/2. These nodes

report back to the source of their distance to the target. Those nodes that have
distances more than 2d are ignored because they are farther to the target than

the source. A route acceptance threshold b is used to determine the reduction

in distance at each hop.

As shown in the Figure 10.10, which illustrates the process, a client node

makes a closest-node query to target node T, to a Meridian node A. This node A

determines its latency d to target node T and probes its ring members between

(1 � b) � d and (1þb) � d, to determine their distances to the target node T.



Client node Target node T
Closest node B
Ring member of B
Forwarding of query

Initial node A
Ring member of A
Latency probe

FIGURE 10.10 Closest-node discovery to target T 371 # 2005 ACM, Inc. Reprinted by

permission.
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The client request is forwarded to the closest node. If no closer nodes meet the

acceptance threshold, routing stops and the closest node currently discovered

is chosen.
ACCURACY AND OVERHEAD
The work in [372] and [373] experienced and experimented with Internet coor-

dinate systems and found their accuracy to be disappointing in several respects.

First, distance estimation results are often unpredictable in the sense that many

nodes obtain good estimates whereas a few obtain extremely bad results. In a

real-world setting it seems that nodes cannot determine the quality of their esti-

mates without performing exactly the full probing that coordinate systems are

intended to eliminate. Second, the quality of an embedding often varied consider-
ably with small changes to the topology of the underlying network, something

that would be beyond the control of most users of a coordinate system. Third,

the quality of embeddings often varied considerably as the number of participat-

ing nodes changed, even when the underlying topology remained fixed. In short,

these observations suggest that it is very hard to predict when a coordinate

system will work well at any given node.

Highly aggregated accuracy metrics, such as absolute relative error, seem to

give little indication of these types of quality problems. The work presents three
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new accuracy metrics that attempt to capture more application-centric notions of

quality. The first is called relative rank loss at node A and is intended to be useful

for applications that need to know only their relative distance to other nodes.

That is, node A needs to answer the question: Which node is closer to me, B or

C? Which is A’s proximity query for nodes B and C? The other new metric we
define is closest neighbor loss at node A. This metric is intended to be useful

to nodes using applications that are interested only in determining which nodes

are closest. The last scalability meta-metric attempts to answer this question:

Would it be better to use a coordinate system generated from a topology con-

sisting of all sites, or one generated just from intersite RTTs restricted to smaller

clusters consisting of closer sites? The answer to this question will determine

how the Internet coordinate services could be designed for better embedding

accuracy in a scalable manner.
Both Figures 10.11 and 10.12 illustrate the latency data from the PlanetLab

site planetlab1.pop-mg.rnp.br for Lipschitz embedding and the Vivaldi system.

The X axis enumerates sites and the Y axis shows the latency distance of each site
Original
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FIGURE 10.11 Distance order ranking for PlanetLab site planetlab1.pop-mg.rnp.br

using Lipschitz embedding362 # 2005 ACM, Inc. Reprinted by permission.
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FIGURE 10.12 Distance order ranking for PlanetLab site planetlab1.pop-mg.rnp.br

using Vivaldi.
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from planetlab1.pop-mg.rnp.br (in milliseconds). The signature plot marked with *
indicates latencies in the original distance matrix, and the PlanetLab sites on the

X axis have been sorted to ensure that this plot is in ascending order of laten-

cies. The signature plot marked with o is the embedded distance between the

same sites in the embedded Euclidean space. The results shown here are not

very impressive. It would appear from these two plots that using Lipschitz

embedding and Vivaldi algorithms on PlanetLab site planetlab1.pop-mg.rnp.br

would give very poor results in terms of accurately identifying the list of closest

nodes’ rankings.
The work in [374] investigates the tradeoff in overhead between Vivaldi and

Meridian in terms of a node’s overhead over a range of query frequencies. The

experiment was done with the same parameters as in the evaluation of Meridian

(2048 nodes, 16 nodes per ring), and Vivaldi uses Content Addressable Network

(CAN) to find the closest neighbor. Figure 10.13 illustrates the ratio of the num-

ber of messages a node needs to route using Vivaldi and Meridian with varying

query rates. The results indicate that when the system query frequency is greater

than once per minute, maintaining Vivaldi has better scalability and is cheaper in
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terms of overhead than Meridian when a system often performs network-

aware (proximity-aware) measurements. This means that each query for closest

node in Meridian may have a large measurement overhead when a node’s ring

membership changes.
SUMMARY
Network latency is the key network metric commonly used to allow P2P overlays

to make decisions to optimize application performance by exploiting the locality,

proximity, and topological information of nodes in the underlying network perfor-

mance. It is found that the decisions made in terms of network awareness based
on the structure of the Internet latency result in good bandwidth characteristics,

too.375,376 Raw measurement of such metrics in massive-scale Internet can be

extensively demanding and impractical. Internet coordinate systems solve such

measurement problems using primitives from computational geometry. Although

Internet coordinate systems exploit scalable geometric techniques, there exist

serious accuracy problems in latency estimation due to the persistent and struc-

tural triangle inequality violations (TIVs) of Internet latencies in metric space,

arising from complex Internet routing policies.373 Other techniques, such as
Meridian, attempt to implement measurement overlay without subjecting to the

TIV conditions of the metric space; however, they suffer from large measurement

overhead due to the dynamism and node churn characteristics of the P2P mem-

bership.374 Though developing measurement systems for overlay network design

is important, there is still a long-term research challenge to create systems that are

scalable, accurate, and stable for dynamic P2P overlay under node churn.
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FOR FURTHER READING
As this chapter was being written, a new implementation of a large-scale latency

estimation system based on GNP377 has been incorporated into the Google con-

tent delivery network. Google’s implementation employs standard features of

conventional Web clients and carefully controls the overhead incurred by latency

measurements using a scalable centralized scheduler.
http://www.google.com

http://www.google.com


CHAPTER
1
1
Service Overlays
An overlay designed to provide a network service such as selecting an alternate

routing path, multicast delivery, or session establishment is referred to as a ser-

vice overlay. In addition, the application of principles of service-oriented archi-

tectures to P2P overlays is of growing interest. Three concepts—resource

virtualization, service orientation, and devices as peers—unify these two cate-

gories of service overlay and are described here. For network services we look

at examples such as delivering DNS records from a DHT, resilient overlay net-
works, and QoS-aware overlays. Then we discuss service discovery, replication,

and load balancing in the context of service-oriented service overlays. The chap-

ter concludes with some examples of service composition.
SERVICE ORIENTATION AND P2P NETWORKING
Service orientation is growing in importance as a fundamental architecture in

distributed enterprise computing. In the P2P context, an overlay could be used

by multiple applications, as opposed to a dedicated overlay for each type of

P2P application. The advantage is that common mechanisms such as routing,
naming, search, and security can be shared across multiple applications. Using

the P2P overlay as a service delivery platform could also accelerate the delivery

of new services. To enable this requires that the service-oriented architecture

be used for organizing the resources of the peer platform. Key elements of service

orientation, such as service discovery and service invocation, need to be

integrated with the P2P overlay.

Overlays have also been used to deliver services traditionally built into the net-

work layer. One reason for this is that wide-scale deployment of network layer
services can require changes to routers throughout the Internet. This is expensive

and is one reason that adoption of protocols such as IPv6 and multicast has been

slow. Many network services can be more easily deployed at the overlay level,

since infrastructure changes are not required. Although efficiency may be lost,
255
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the ability to quickly deploy and experiment with potential services is an advan-

tage of an overlay deployment.

Service overlay networks (SONs)392 have been proposed to address the diffi-

culties of deploying end-to-end network services that span multiple network ser-

vice provider domains. In this model, a SON operator purchases native network
services from service providers and provides an overlay that integrates these ser-

vices into an end-to-end service model for SON customers. There has also been

growing interest in using service overlays in the evolution of the Internet. Current

research projects include SpovNet407 and Ambient Networks Service-Aware

Transport Overlay (SATO).408 Clark et al.8,510 have examined the impact on over-

lays on the technology and business of the Internet.

This chapter examines service overlays from these two perspectives: as a

means to deploy network services and as platform for deploying applications
packaged as services. We first discuss key concepts of services overlays, including

virtualization and service orientation. The discussion of service overlays in the

remainder of the chapter follows the taxonomy shown in Figure 11.1. Several

of the network service categories (ALM, P2P-SIP, and telephony services) are

described in other chapters.
Service Overlays

Overlay ExampleNetwork Service

QoS Aware OverlayQoS

Peering of RADIUS 
Domains

AAA

Relays

Feature Servers

Telephony Services

IETF P2P-SIPSession Establishment

Stream Based Overlay 
Network (SBON)

Content Delivery

Application Layer 
Multicast

Multicast

DNS via DHTDomain Name Service 
(DNS)

Resilient Overlay Network

Routing Overlay 

Routing

Overlay ExampleService Oriented 
Architecture

BeehiveLoad Balancing

Service Models

NEMOMiddleware

SpiderNetService Composition

INS/TwineService Discovery & 
Advertisement

FIGURE 11.1 Taxonomy of service overlays, divided into network services and application

services.
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SERVICE OVERLAY CONCEPTS
Resource Virtualization

So far we have presented the P2P overlay as a virtualization of network transport,

providing transparent end-to-end connectivity across multiple internets. The fea-

tures of virtualization include indirect and dynamic mapping to the associated
physical resources. Virtualization of computing resources has been used in com-

puting, starting with early multitasking operating systems. It has proven to be

a powerful technique to manage physical resources to achieve scalability and spe-

cific resource-sharing policies. Virtualization comes with a cost. The resource is

accessed indirectly, meaning that virtual-to-physical mappings have to be created,

assigned, and applied to resource requests.

A key idea of service overlays is to extend the virtualization offered by the

basic overlay concept to other network and system resources. At the network
layer, services that can be virtualized include multicasting, content delivery, and

end-to-end quality-of-service guarantees. Although these services are efficiently

offered directly by network service providers, overlay service providers can pro-

vide value-add by tying the services of multiple NSPs together.

At the system layer, resources include storage and computation. Storage includes

replicated and distributed file systems, media servers, and caches. Virtualized

distributed computation is the focus of grid computing, including methods to locate,

distribute, coordinate, and schedule complex computations across large grids of
computers connected in an overlay network. As in the network layer, virtualization

means that the details of the physical resources can be hidden from the application,

can be selected dynamically, and application use can be reassigned dynamically.
Service Orientation

A second trend fueling service overlays is the growing importance of service ori-

entation as a fundamental architecture in distributed enterprise computing. In

the P2P context, this offers the possibility that an overlay could be used for mul-

tiple applications, as opposed to a dedicated overlay for each type of P2P applica-
tion. The advantage is that common mechanisms such as routing, naming, search,

and security can be shared across multiple applications. To enable this sharing

requires that the service-oriented architecture be used for organizing the

resources of the peer platform.

Service orientation in peer-to-peer architecturemeans that peers can offer and use

services from any peer without relying on centralized resources. Other elements of

SOAs, including service discovery and service description, are also incorporated into

the peer-to-peer architecture. By constructing the service-oriented middleware on
a peer-to-peer overlay network, a highly scalable service discovery mechanism is pos-

sible, addressing a critical requirement in achieving wide area service advertisement

and lookup.
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Devices as Peers

The third driver for service overlays is the goal of connecting networked mobile

devices and sensors into the P2P overlay as peers. Although such devices are not

general-purpose computing platforms—for example, they run special-purpose

operating systems, have relatively limited system resources, and typically cannot

be easily extended with new applications—their participation in the overlay is a

vehicle for sharing device resources, as described in Chapter 2, and collecting
real-time information from widely deployed sensors. Such resource sharing is

feasible today for devices connected in ad hoc, personal area, or home networks.

The use of an overlay means that such sharing can be extended to Internet scale.

To enable this functionality means that service advertisement and service

discovery mechanisms used by devices must be enveloped in the overlay.

The next several sections examine supporting specific network services using

an overlay. These services include DNS, routing, quality of service, and real-time

stream processing. We then return to examining P2P service orientation.
SERVING DNS RECORDS FROM AN OVERLAY
Domain Name Service

The Domain Name Service (DNS) has been an essential part of the operation of the

Internet since the 1980s. DNS is used by clients to resolve human-readable domain
names such as example.com into their corresponding routable IP addresses. It is

also used to look up mail servers and other network services. DNS makes it possi-

ble for applications and clients to refer to hosts and services using symbolic names

that are mapped to their IP addresses prior to making a connection to the host or

service. IP addresses can be changed without impact on applications and clients.

To manage the huge volume of name resolution requests, DNS is organized as

a hierarchy of servers, each of which is responsible for one or more namespaces

or zones. A server responsible for a specific zone is called the authoritative DNS
name server for that zone. There may be more than one authoritative DNS server

for a zone. Each root server is responsible for a top-level domain. For example,

com is the top-level domain for example.com. A DNS server may delegate respon-

sibility for portions of its zone to other servers. Thus, the root server for com may

delegate management of names in the domain example.com to a subsidiary

server. This subsidiary server can then handle all lookups for example.com, such

as www.example.com and ftp.north.example.com.

Each client needing to resolve a domain name sends a request to its local DNS
server if it hasn’t previously cached the resolution locally. The server may be respon-

sible for that zone, in which case it resolves the domain name using its local configu-

ration. Alternately, the server may have cached the resolution of the domain from a

previous response. In this case it resolves the domain name using its cache. In either

case, the response is performed immediately by the local server without consulting

http://www.example.com
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other servers in the hierarchy. If the server can’t resolve the domain name using one

of these two methods, it needs to locate the authoritative DNS server for that

domain. First it requests the root name server for the top-level domain for the name

server for the next level. Thus the root server for com will be consulted to find

the server for example.com. Likewise, the authoritative server for example.com will
be consulted to find the server for north.example.com, and so on.

The hierarchical organization of DNS is one of its strengths, since it distributes

the load of name resolution to the associated subsidiary servers. If a particular

zone becomes overloaded, new servers serving popular subsidiary zones can be

added. In addition, the DNS caching mechanism further reduces the lookup load

on the top-level servers in the hierarchy.

The characteristics of DNS make it an interesting application for a DHT. It

requires a global scale lookup mechanism, tens of millions of index entries, and
the ability to handle a large volume of lookups. It also creates some important

challenges:

n The distribution of index entries in the DHT may not be uniform across the

population of peers, skewing the load.
n The lookup load itself is not uniformly distributed. Without some means to dis-

tribute the load according to entry popularity, some peers will be heavily

loaded and others lightly loaded.
n Caching may be more difficult to implement since the lookup path is more

diverse in most overlays compared to DNS lookup. This fact affects whether a

subsequent lookup is likely to find an entry at an intermediate peer along the

lookup path.
n Indexing DNS records in a DHT requires that the DHT implement an authoriza-
tion mechanism so that only authorized peers can create or modify an address

binding for a domain or service. Otherwise the lookup is vulnerable to cor-

rupted entries or host spoofing attacks.
DDNS

Cox and Morris379 evaluated the use of a DHT to serve DNS record lookups,

simulated using a DNS dataset from previous work.380 DDNS uses a DHT called

DHash, a Chord DHT that implements six-way replication and caching along

the lookup path. That is, the response to a DHT lookup is sent back over the path

the request followed and stored at each peer. Subsequent requests that are routed
over a portion of the path will be served from the peer’s cache instead of being

forwarded to the destination peer. Note that reverse path caching means that

responses are sent back over up to log N hops rather than directly to the sender

of the lookup request.

In their simulation of DDNS, they used a 1000-node overlay with replication

disabled and no node failures. DNS records are inserted and digitally signed by the

owner. An example key for a domain’s address record is www.example.com, A;

http://www.example.com
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120,000 records were inserted. The dataset includes 280,000 successful queries

and 220,000 unresolved queries. Each lookup is sent from a random peer in the

overlay.

Figure11.2 shows the record distribution in the DHT (top) and the query distribu-

tion (bottom). For record storage, a small percentage of peers have up to seven times
the index entries as the median of 120 records. Caching works well for successful

queries but doesn’t improve the load distribution for unsuccessful queries that result
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from domains that don’t exist. This is shown by the long tail in the figure. The

slashdot query is 100,000 lookups against one record, which evaluates lookup

behavior for very popular domains. As shown in Figure 11.2 (bottom), the slash-
dot record rapidly propagates to the other peers in the overlay as a result of the cach-
ing mechanism. After that point is reached, queries no longer propagate to the index
peer.

Another important performance metric for DNS is the lookup latency distribu-

tion. As shown in Figure 11.3 (top), the majority of successful DNS lookups in the

dataset are less than 200 ms in duration, but a small percentage can have lookups
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in the tens of seconds. To estimate DDNS latencies, the RTT between pairs of

peers in DDNS is estimated using the times from the DNS dataset. This gives

the latency distribution shown in Figure 11.3 (bottom) for the same set of DNS

lookups. Though most responses aren’t handled in 200 ms, no queries exceed

1 second. So DDNS increases the average lookup time while removing the long
tail for a small percentage of lookups.
RESILIENT OVERLAY NETWORKS
Internet Routing and ISP Peering

The Internet is a collection of many different physical networks that use common

protocols and services to create a universal routing and transport fabric for appli-

cations. Generally, the different networks are operated as separate autonomous

systems (ASs) by their network service providers (NSPs). Inside an AS, an NSP will

use routing protocols that maintain detailed connectivity information for all rou-

ters in the AS. At the boundaries of the AS are connections to other NSPs’ net-

works at connection points called peering points. The routers at these peering
points use the Border Gateway Protocol (BGP), which maintains information

about BGP topology in the Internet and typically has limited details about routing

within a given AS. A consequence is that network traffic that is routed through an

AS will have a restricted path. Such transit paths are determined by each NSP

according to its peering relationships with other NSPs. Each NSP manages transit

traffic to balance its customer traffic with reciprocal sharing of network capacity

with peer NSPs.

As discussed in Chapter 10, one consequence of BGP routing policies is that
some routes cause violations in the triangle inequality property. That is, the direct

path from A to B may be longer in terms of latency than the indirect path A-C-B.

Another consequence is that route outages due to router failures may not be auto-

matically rerouted since the necessary routing table information may be missing

from the BGP tables.
Resilient Overlay Network

A Resilient Overlay Network (RON)383,384 is an overlay network that routes appli-

cation traffic over the network by finding low-latency and available paths that
might not be identified by the usual routing protocols. A RON requires peers

placed in different ASs, and these peers determine the latency and connectivity

state with their neighbor peers. When an application wants to send packets to

another application via the RON, the sender connects to the nearest RON peer,

called the ingress peer, and issues the packet. The ingress peer determines

whether the usual routing path is preferred over the overlay path. If it is, the

packet will be sent directly to the endpoint. If not, the packet is then routed at
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the overlay level using the lowest latency path as determined by the cooperating

peers. After reaching the egress peer to which the destination is attached, it is for-

warded by the egress peer to that application.

RONs are typically small, fewer than 50 nodes, and may be dedicated for spe-

cific applications. New peers join the RON by locating an existing member peer,
and the RON dedicates a well-known peer for bootstrap purposes. It then notifies

all other peers in the RON by flooding an announcement of its existence. Periodi-

cally each peer in the RON floods its list of member peer to all other peers. The

RON is a full-mesh network, and a peer maintains performance metrics for its

links to all other peers in the RON. It does this by a combination of active probing

and observation of existing flows. These metrics are for latency, reliability, and

throughput. Depending on the application, the peer computes scores for select-

ing the best link for a given type of traffic.
Using a RON of between 12 and 16 peers distributed across the United States

and Europe, experimental measurements show that the RON is able to find alter-

nate routes in at least 60% of link outages. The time to detect and find an alternate

path averaged 18 seconds. BGP can take on the order of several minutes to con-

verge to a new route. An example of link outage avoidance for the 12-node RON

is shown in Figure 11.4. An outage (t,p) occurs when the packet loss rate is

greater than p for some interval t. In Figure 11.4, t ¼ 1800 seconds and

p ¼ 30%. The plot shows that the RON successfully found alternate routes for
all Internet outages. Points to the right of the x ¼ y line indicate RON loss rates

that exceeded the Internet loss rate, but none of these points exceeded the

30% loss rate threshold.
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In these experiments, about 5% of the time two RON peers found a better

route via each other than via the normal path provided by the Internet. RONs

avoided around 50% of Internet outages.

DG-RON385 is a proposal for increasing the scalability of RON by eliminating

the need for the RON to construct a full mesh between all peers in the overlay.
It uses topology awareness based on a small set of landmark nodes to organize

peers into regions and performs direct probing of links only when a link failure

is detected. When an alternate path is needed, it uses the landmarks and heuris-

tics to select an alternate destination peer. In simulations, DG-RON performed

comparably to RON for alternate route selection in the face of path failures. How-

ever, DG-RON does not provide metrics for best-path selection. Topology aware-

ness techniques for overlays are discussed in Chapter 10.
Bandwidth-Aware RON

For applications that deliver streaming media over the network, available band-

width along the path can be more important than latency for selecting the path

dynamically. As discussed in Chapter 6, there are a number of techniques for an

endpoint to measure the available bandwidth along a path to another endpoint.

Available bandwidth depends not only on the minimum link capacity for all hops

along the path. Other applications typically share the link capacity. Available
bandwidth for a link is then the difference between the link capacity and the aver-

age traffic load by other applications on that link. The available bandwidth for a

path is the minimum available bandwidth for links for the set of network hops

the path traverses. Since this varies over time due to changes in traffic from other

applications, it must be periodically measured for each path to have an accurate

picture for path selection. As in the RON, each peer in the bandwidth-aware

RON periodically disseminates the available bandwidth measurements to all other

peers in the RON.
Given the available bandwidth state of the overlay, when a new flow enters,

the RON determines whether there is a better path available in the overlay than

the native path provides. If there is, the flow will be routed via the overlay path.

Over the lifetime of the flow, available bandwidth can change, both for the active

path and for alternate paths. Thus the RON can periodically try to switch the flow

to an alternate path with more capacity. Even if the existing path has sufficient

capacity, a path with more available bandwidth can make the flow more immune

to bursts in flows sharing links along the path. This aggressive use of alternate
paths is a proactive strategy. The RON could instead wait until a flow experiences

bandwidth loss on an existing path and then switch to an alternate path, a reac-

tive strategy.

Zhu et al.386 compared the proactive and reactive strategies using a simulation

involving 275 native nodes and 18 overlay nodes using a network topology modeled

after that of the four largest U.S. ISPs. They found (Figure 11.5, top) that reactive

overlay routing performs better than proactive overlay routing. Further, as the
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frequency of path measurements increases, reactive overlay routing gives a substan-

tial improvement in throughput compared to native routing. They also studied a

hybrid scheme that probabilistically combines reactive and proactive routing. Both

reactive overlay routing and the hybrid scheme outperform proactive overlay routing

and native routing over a range of flow arrival rates (Figure 11.5, bottom). An impor-

tant result is that overlay paths with at most one intermediate peer perform best.
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Lee et al.387 implemented Bandwidth-Aware Routing in Overlay Networks

(BARON) using 174 PlanetLab nodes in the United States, Europe, and Asia. Their

proactive strategy defines a bandwidth threshold that must be satisfied before a
new path is chosen. In addition, to increase scalability, a small number of

distributed infrastructure nodes (DINs) in different regions of the network act

as a repository of bandwidth measurements for each peer in their region. An

ingress peer consults with its local DIN to obtain information about better paths

from its region of the network (Figure 11.6, top). If the DIN doesn’t have a good

path, it can consult with DINs in adjacent regions for path candidates (Figure 11.6,

bottom). Because the peers don’t need to share measurements with all other

nodes in the overlay, this design increases scalability while requiring that addi-
tional infrastructure nodes be deployed.

Increasing the bandwidth threshold in BARON’s control algorithm generally

reduces the number of times a given session switches to a different path. How-

ever, it doesn’t increase bandwidth availability. An example six-hour session

between endpoints in New York and Colorado is shown in Figure 11.7. The max-

imum bandwidth overlay path shown in this figure is determined from five differ-

ent overlay paths that could be used in this session. In most cases the overlay path

provides more available bandwidth.
QoS AWARE OVERLAYS
Overview

In the quality-of-service (QoS) networking model, an application requires some

level of service guarantee for end-to-end delivery of packets. The alternatives to

the QoS model include best-effort service and priority service. In best-effort service,
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the network provides a variable and unspecified bit rate and service time. In prior-

ity service, packets are classified into different priority levels, and the router for-

warding function delivers higher-priority packets before lower-priority ones.

In practice an organization establishes a service-level agreement (SLA) with its

network service provider. The SLA is implemented by the service provider by pro-

visioning the necessary network resources, allocating resources as application

requests arrive, enforcing service guarantees, and policing traffic.

The Internet today is primarily a best-effort network. Efforts to extend the
Internet service model to support QoS date back to the early 1990s. The leading

techniques are the integrated services model (IntServ)388 and the Differentiated

Services model (DiffServ).389 The general deployment of these architectures has

met obstacles, including scalability and peering incompatibilities between differ-

ent service providers. Consequently there have been proposals to use overlay net-

works to implement end-to-end QoS.

Since an overlay network is implemented at the application layer in the net-

work protocol stack, it is not possible for an overlay to provide complete QoS
guarantees without network support. A QoS-aware overlay could be implemented

on top of preprovisioned dedicated network links. In this case, it provides an end-

to-end view of the collection of links and performs admission control to ensure

that applications don’t exceed the available network resources. This works if

the application topology can be reliably anticipated. If the underlying network

doesn’t provide QoS support or if the application topology varies frequently,
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the ability of an overlay mechanism to enforce service guarantees is significantly

limited. It is also possible for a QoS overlay to use a combination of provisioned

network resources and best-effort links.

For the portions of the network where only best-effort service is avail-

able, a QoS-aware overlay can nevertheless provide some service benefits to appli-
cations. Using techniques described in bandwidth-aware RONs, it can adapt to

network changes and provide better service quality than might be otherwise rea-

lized. It can also distribute the traffic over different overlay links and monitor

overlay traffic. It can also trade off bandwidth use for lower packet loss rates.

In the next sections we describe two QoS-aware overlays: OverQoS and

QRON. Table 11.1 briefly compares them to the native layer QoS mechanisms.

OverQoS

OverQoS390 introduces a controlled-loss virtual link (CLVL) abstraction into a RON-

like overlay. The CLVL uses a combination of forward error correction (FEC) and

packet retransmissions to ensure that the collection of flows over an overlay link

are always within the statistical guarantee for the loss rate for those flows. The

use of FEC and packet retransmission requires that sufficient bandwidth in the link
be reserved for redundant packets. The incoming packet rate is constrained to a

certain level, above which packets are dropped.
Table 11.1 Comparison of Native Layer QoS Architectures with QoS-Aware Overlays

IntServ [482] DiffServ [483] OverQoS [484] QRON [485]
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OverQoS was tested using the RON test bed and in PlanetLab using known
lossy network links. Figure 11.8 shows the cumulative distribution of bandwidth

for flows over 83 different overlay links, comparing 99% guarantee, 99.5% guaran-

tee, and best effort. The difference in available bandwidth between best-effort

and statistically guaranteed flows is due to the additional redundancy in the CLVL,

specifically the FEC and packet retransmissions.

The impact of these guarantees on packets’ delivery latency depends on the

whether a packet-ordering requirement is applied to the flows. For unordered

flows, an increase in latency of less than 50 msec was observed.
QRON

QRON391 assumes a best-effort native network and places Overlay Broker (OB)
nodes in different regions of the network to coordinate traffic routing and main-

tain network measurement information. The OBs connect to each other to form

the overlay over which application traffic is sent. A key feature of QRON is the

hierarchical arrangement of OBs. Each OB is a member of a cluster that includes

a number of nodes in a given region of the network. These clusters are further

grouped into larger clusters. Each OB periodically measures the available band-

width of the overlay links to which it is connected and propagates these measure-

ments to other OBs in its cluster. Only gateway OBs with links to adjacent clusters
share their measurements to form aggregated views. When a new overlay path is

needed, QRON divides the path into cluster-by-cluster segments and, in parallel,

searches for suitable segments by propagating requests through the hierarchy.

QRON path selection is based on least-cost path routing that considers the costs

of link capacity and OB capacity.
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SERVICE ORIENTATION
Overview

Service orientation is a paradigm for organizing distributed systems such that the func-

tions and resources of those systems are available to clients as modules with well-

defined programming interfaces called services. Services are described using a docu-
ment format suitable for run-time interpretation by other software applications. The

documents, referred to as service descriptions, can be considered as contracts

between the client and the service. Service orientation hides the implementation from

the client and leverages software technology trends, including XML and Web proto-

cols. The most popular instance of a service-oriented architecture is Web services.

As discussed in Chapter 2, devices and applications need to discover services

that are available on other devices. A key part of service-oriented architectures is

the protocol to discover and advertise services. Well-known service discovery
protocols include Simple Service Discovery Protocol (SSDP) for UPnP and Service

Discovery Protocol (SDP) for Bluetooth. Once a service is discovered, a client can

invoke it using a service invocation protocol. The service invocation protocol

used in Web services is called Simple Object Access Protocol (SOAP).

A large number of protocols have been developed for service discovery, but most

of these are designed for local area networks. The need to locate services in wide area

networks is a good fit for P2P searchmechanisms and is a prerequisite for using P2P as

a service platform. In the following discussion we use the following terminology:

n Service description. Information about a networked service such as type of ser-

vice, name of service, attributes of service, location of service, and invocation

of service. The service description may be stored in a document, at a service
repository, or at the node offering the service. It may be broadcast or multicast

by the node offering the service. It may be machine readable, human readable,

or both. For example, in Web services, service descriptions are encoded in an

XML format called Web Services Description Language (WSDL).

n Service advertisement. The publication of a service description, in whole or

part, by or on behalf of the service offerer, for access by other nodes.

n Service composition. The definition of a new service using two or more exist-
ing services.

n Service discovery. Retrieval or access of a service description by nodes other

than the service offerer, including browsing and search by name, class, type,

and/or service attribute.

n Service invocation. Remote execution of a service over a computer network.

Wide Area Service Discovery

Consider a device that connects to the Internet and discovers services offered by

any other device on the Internet. This is wide area service discovery, to distinguish

it from protocols that work in home networks, personal area networks, and so on.
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Many commercial services are already offered to devices as Web services. Using

wide area service discovery, location-specific discovery can be performed outside

the immediate area to access these Web services. For example, a roaming device

might discover services along a planned route. Wide area service discovery does

not require devices to offer services to other devices on the Internet.
Next consider devices that connect to the Internet, offer services, and dis-

cover services offered by other devices connected to the Internet. This usage is

wide area peer-to-peer service discovery. Compared to wide area service discov-

ery, it means that all participants can act as both service providers and service

users. There are several advantages to this strategy. Users can be content publish-

ers as well as consumers. Collections of home networks and PANs can interoper-

ate, as illustrated in Chapter 2. Multiple users in a social network can share device

resources regardless of geographic proximity.
Wide area P2P service discovery requires a global-scale service discovery

mechanism with the following capabilities:

n Internetwide service advertisement and discovery of services such that any

service on the Internet can be discovered by any peer on the Internet
n The ability to index service descriptions by geographic location and Internet

domain in which the services are available
n The ability to index service descriptions by arbitrary metadata describing

the service; metadata might be the owner of the service, implementation

compatibility, or some classification scheme

Since service descriptions are complex documents that include information such

as service name, type, unique identifier, offerer, and interfaces, lookup of a ser-

vice by direct hashing of the service description is likely to fail. In addition, it is

convenient to search for services by partial match, such as the service name.

One approach to achieve this goal is to index fragments of the service descrip-

tion. Then at lookup time, partial matches can be found, provided that the frag-
ments have been previously indexed.
INS/Twine

INS/Twine394 is the first system to use a peer-to-peer overlay for indexing and

retrieving resource descriptions. INS/Twine is built on Chord. It indexes descrip-

tion fragments and limits the number of identical strands that can be stored at any
peer. Each fragment is replicated at a fixed number of peers for reliability and

load distribution.
Location-Based Service Discovery

Some services such as media players might be widely implemented. Directly

indexing the service descriptions using the service name as the key would lead

to an enormous number of entries at one peer. To avoid this, we need some

means to distribute the entries across the index. One approach is to combine
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the service name with other values in a multipart key. The other fields in the key

should have a distribution of values that is preferably random but that is easily

generated by the peer doing the lookup. An example is the location of the service

expressed in some coordinate system. For example, service indexing using lati-

tude-longitude (LL) is described in [397], and service indexing using position in
a network coordinate system is described in [409]. An advantage of service

indexing using LL is that it can be used to support location-based services. A dis-

advantage is that it might not be suitable for services delivered from mobile

devices or other positions where location privacy is important.

Assume that each service is associated with a location, such as a retail store’s

address. The position can be represented as LL and can be normalized to decimal

format and aligned to the nearest grid point. The resulting grid point can be directly

indexed or can be combined in a multipart key with other information about
the service. For example, the key could be media-player:grid-position:
media-format.

To illustrate index sizing and key distribution, [397] assumed that locations

would correspond to population densities. In this experiment, two datasets were

used, one containing the LL position for the 2555 largest cities and another contain-

ing the square area for the 40 largest cities. Both are worldwide datasets. For the 40

largest cities, assuming a grid spacing of 1 city block (about 200 meters), there are

about 3.5 million grid points in the largest 40 cities. Randomly distributing points
in this grid produced a key distribution shown in Figure 11.9 (top). A separate exper-

iment indexing over 400,000 Internet domains registered in 1997 is shown in

Figure 11.9 (bottom). These distributions are similar to those of randomly generated

keys performed in [410].
Other P2P Approaches to Service Discovery

Other examples of peer-to-peer service discovery using Web services descriptions
include the Space Filling Curve system401 and the NEMO service orchestration

framework.396 Gu et al.405 propose a service-oriented P2P system called P2P ser-

vice overlay whereby peers can provide not only media files but also a number of

application service components.
REPLICATION AND LOAD BALANCING
Churn and Index Availability

When a peer in a DHT shares an object with other peers, it inserts an index entry

that can be stored at any peer in the DHT. The owner of the object has no control

over the peer storing its index entry. If the peer responsible for that portion of

the DHT index subsequently leaves the DHT, the availability of each entry for

which that peer is responsible depends on whether the peer has transferred its

DHT elements to the next peer that is assuming the responsibility for these
entries. If the peer’s departure from the index occurs without transferring these
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entries, subsequent lookups for these entries will fail. Further, some peers might

be disconnected from the overlay due to a network failure.

To avoid the loss of access to index entries, copies of the index entries can

be stored at other peers in the overlay. Index entry replication involves selecting

a replication level and determining which peers would be the owners of
these entries if the primary peer fails. If the secondary peers holding the repli-

cas are on a path to the primary peer for lookups, replication can also distribute

load.

Replication increases index availability at the cost of additional storage at

each peer.
Index Load and Object Popularity

We refer to the distribution of keys across the set of peers in the DHT as the index

load. Assuming that each key is equally likely to be accessed, any nonuniformity

in the index load will lead to nonuniformity in the lookup load on the peers. One

factor in the index load is the assignment of overlay addresses to peers. Byers

et al.411 show that random assignment of overlay addresses to peers produces

an imbalance so that, with high probability, a highly loaded peer stores a factor

of Y(log n) more keys than a peer with average load. Additionally, the arrival
and departure of peers change the index load balance. Several techniques have

been proposed for reducing this imbalance.411,412,413

Other factors that determine the index load are the design of the key space

and the selection of keys from the key space that are actually used by the applica-

tions. For example, suppose service names of 20 symbols in length are the key

space, with 50 unique symbols in the alphabet. Thus 2050 possible keys can be

generated for the key space, but in practice only a small fraction of these keys

are likely to be used, since keys are also generally expected to be human readable
or have application semantics.

In addition to imbalances in key distribution and peer ID assignment, the load

at peers is likely to be skewed due to different popularity of the objects being

indexed. Key distribution might be reasonably known ahead of time, but object

popularity is highly variable.

Two techniques have been proposed to adapt the DHT to nonuniform object

lookup: replication and load balancing. In replication schemes, the replication

factor for a given object is determined dynamically based on the popularity of
the object. Replicas are placed at other peers that are along the path to the pri-

mary peer responsible for that object. As the popularity increases, additional

replicas are added at the leaves of the tree formed by the lookups routed in the

overlay. As the popularity decreases, replicas are gradually removed, for example,

by expiration of the replica.

In load-balancing schemes, objects are moved from heavily loaded peers to

lightly loaded peers. Load balancing using virtual servers is described in [413].
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Beehive

Beehive404 is a replication mechanism for prefix-based multihop overlays such as

Tapestry and Pastry. Assuming that object popularity follows Zipf distribution,

Beehive uses object access statistics to proactively push objects to sufficient

levels in the overlay to meet the required number of hops per query.

In Beehive, object access statistics are aggregated at each object’s home node

and propagated to nodes along the access path (Figure 11.10, top). Each peer
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locally determines for objects that it currently stores, whether the access level for

each object requires increased replication and will push the object to other peers

that precede it in the prefix-based routing path. Because of these local decisions

and propagation of access statistics along the prefix tree, Beehive is able to

respond to both increases and decreases in object popularity (Figure 11.10,
bottom).
Service Composition

Another potential benefit of service orientation is to dynamically create new ser-

vices by composing them from existing services. This requires that the service

descriptions provide sufficient semantics about the interfaces and operations so

that correct bindings can be made. This is difficult to implement in general, but
it is possible to envision composition of device functions such as displays, user

input interfaces, and media processing components that can be configured for

predefined composition.

The basic idea of service composition using the service discovery and adver-

tisement (SDA) capability of the P2P overlay is illustrated in the following

example.

A media-storing peer (Peer-9095 in Figure 11.11A) advertises a search service

that provides content-based retrieval (CBR). Another peer (Peer-3321) discovers
this service using the service discovery method in the SDA layer. The SDA layer

connects to the DHT to search for the service description. After Peer-3321 has

discovered a peer offering the service of interest (Step 1), it then uses the ser-

vice invocation protocol (SI3) required by the service description for service

search-cbr-intf-v3 (Step 2). To implement this service, two subinterfaces

have been defined: preprocess and query process, which may be provided

either locally or by other peers. Peer-9095 discovers peers implementing these

subinterfaces and uses these peers’ services when it receives the incoming
search request from Peer-3321. Such service composition (Step 3) is mediated

by the SDA layer.

Next, a camcorder (Figure 11.11B) used to capture media immediately

encrypts the media using a DRM service, applies the owner’s rights management

policy, and prepares it for publication to a wide area peer-to-peer index. Once the

content is published in the P2P index, any peer may retrieve it. In Figure 11.11B,

Peer-4593 has retrieved the media file tom-movie-20050630-081003 from the

P2P index. Peer-4593 uses a local service (media-player-intf-v3) to play
the content, assuming that the peer also has the appropriate license. In addition,

this media player service uses two components that may be either local or

provided by other peers. In this simplified example, the components provide

two key functions of the media player: media decryption and media rendering.

Peer-7239 and Peer-1782 have previously registered services in the P2P index

which correspond to these interfaces. Peer-4593 can discover these services

and use them to perform the necessary function.
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SUMMARY
The concept of service overlays has developed in parallel for network services and

application services. In overlays for network services such as resilient overlay net-

works, the overlays are small, for example, less than 100 nodes, and may be

integrated with each application instance. The focus of these service overlays is

often efficient integration of network measurement mechanisms, resource alloca-

tion, and dynamic decision making based on a common set of measurements.

The success of these efforts has generated growing interest in using such service

overlays systematically in the evolution of the Internet. In May 2008 the IEEE Stan-
dards Association approved a work plan for a new standard on service overlays.393

Meanwhile, the adaptation of service-oriented architectures to P2P overlays

also sparked interest as a means of generalizing the sharing of resources and
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functionality. These SOA-type service overlays face a different set of problems,

including wide area service discovery and load balancing.

It seems likely that future service overlays will integrate these two sets of cap-

abilities, perhaps in a way that reflects the network layer trend toward service-

centric networking.
FOR FURTHER READING
Further information about DNS characteristics can be found in [378]. Pappas

et al.381 studied the comparative reliability of DNS versus using a DHT. They con-

clude that the DNS hierarchical structure with greater redundancy at key servers

is more resilient to random failures than a DHT but is more vulnerable to orche-
strated attacks than the flat organization of a DHT. Further, the caching in the

hierarchical structured DNS is more responsive to local popularity, whereas cach-

ing along the lookup paths in DHTs depends on global popularity.

Service discovery and advertisement (SDA)399,400 is fundamental to service

interoperability in pervasive computing, and many service discovery protocols

have been developed. Surveys of existing methods of SDA protocols include

[402], [398], and [395]. The Secure Service Discovery System (SSDS)403 is a cli-

ent/server architecture that provides for wide area service discovery using a hier-
archy of servers to provide scalability. Centralized authentication servers provide

authentication for service lookup. To reduce load at the top of the hierarchy, SSDS

uses Bloom filters to create service description summaries.
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1
2
Voice Over Peer-to-Peer
Voice over Peer-to-Peer (VoP2P) is another compelling application of P2P technol-

ogy. In VoP2P, peers take on roles that were previously reserved to servers in call

processing architectures. In this chapter we look at VoIP elements for session estab-

lishment, feature servers, and gateways and discuss how these can be mapped to

P2P overlays. In addition, we describe the use of application relays, an important

technique for reducing latency and increasing bandwidth for stream delivery. The

chapter concludes with case studies on Skype and the proposed IETF P2P-SIP
design.
FROM VoIP TO VoP2P
The delivery of communication services via the Internet has become a wide-

spread reality. Enterprises use SIP phones, service providers transport VoIP traffic

over their backbone networks, broadband access providers offer VoIP bundles to
consumers, and mobile operators are developing IP-based architectures. In addi-

tion to voice calls, the Internet is widely used for instant messaging, email, and

other communications services.

To achieve the goal of enabling VoIP to compete with PSTN required design-

ing a new scalable signaling and media transport architecture and set of protocols

that could be extensible and media independent. A key requirement was to be

able to address the service quality requirements needed in voice communications

in a packet-switching environment. Two important architectures emerged from
international standards communities: SIP from IETF414,415 and H.323 from ITU-

T.416 As of 2006, about 20% of international calls were made using VoIP.

Given the success of VoIP, then, what have been the drivers for using peer-to-

peer technology for communication services? Certainly the rate of adoption of

VoIP has left room for other approaches. Millions of instant-messaging users were

lacking integrated VoIP capability. Moreover, the leading VoIP models are

designed for deployment by service providers. In the past many observers have

argued that communication services could be delivered more economically and

279
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with richer features if the service provider model could be opened up to third-

party vendors. This is one motivation for the proposed IP Multimedia Subsystem

(IMS) being developed by 3GPP.417,418

Proponents of VoP2P have then similar goals: to accelerate delivery, increase avail-

ability, and reduce costs of IP communication services. Several characteristics of P2P
enable high scalability, easy upgrade, and minimal infrastructure dependence. The

VoP2Papproach doesn’t require a traditional service provider. It goes beyond the idea

of opening up the service provider model to a newmodel whereby overlay operators

use end-system resources and third-party services to deliver these capabilities. The

overlay operator role is discussed in Chapter 15, “Managed Overlays.”

Voice calls have important real-time quality requirements that must be satis-

fied, whether the fabric is PSTN, VoIP, or VoP2P. These include time to set up a

call, end-to-end delay between the call endpoints, and variation in the delivery
of voice packets during the call, also called jitter. It is equally important that ses-

sion setup and session connections be highly reliable. Users expect to be able to

reach other parties when they are available and to not lose connections during

calls. Finally, PSTN users enjoy the ability to place calls worldwide using a

uniform dialing plan from both wireline and wireless handsets.

In this chapter, we discuss the key issues for implementing VoP2P. How suit-

able is the overlay routing for meeting the real-time transport requirements for

voice? How does churn in the overlay impact call reliability? How do VoIP signal-
ing and transport elements such as proxies, media servers, gateways, and feature

services map to the peer-to-peer architecture?

In the next section we give an overview of mapping VoIP architectural ele-

ments to VoP2P. This is followed by sections discussing specific VoP2P issues

media relays and P2P call feature processing. At the end of the chapter we pres-

ent two case studies, Skype and P2P-SIP.
VoP2P
VoIP Elements

Before discussing VoP2P, it is important to relate it to the VoIP architecture, from

which it derives many of its elements. VoIP signaling can be broadly divided into three

layers (Figure 12.1): access, connectivity, and application. Access relates to the hand-

sets, network elements, and protocols by which endpoints connect to the VoIP net-
work. Due to the variety of media and protocols used by endpoints and for security,

scalability, and configuration purposes, endpoint connectivity into the core signaling

area is usually mediated by gateways. Session setup, call routing, and media handling

are performed in the connectivity layer. Connectivity to other networks such as Signal-

ing System 7 (SS7) is also handled in the connectivity layer. Finally, call-processing fea-

tures beyond those performed by endpoints are provided by the application layer

through feature servers or application servers.
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The term session is widely used to refer to the application of VoIP-type signaling

to other media, including video, text messaging, whiteboarding, and application

conferencing. Session establishment is the creation of one or more media paths

between endpoints, feature servers, and media servers. Media servers perform a

range of functions, from DTMF processing, playback of greetings, voicemail, and

conference call mixing. Feature processing refers to a variety of call operations such

as call blocking, call forwarding, call parking, and so forth.
Mapping VoIP Elements to a VoP2P Overlay

The P2P design principles discussed in Chapter 2 include self-organization, role

symmetry, and distribution of functions. The VoIP functions illustrated in

Figure 12.1 need to be distributed and widely replicated across the peer popula-

tion. Later in this chapter we’ll look at two approaches to this distribution:

the Skype P2P telephony application and the P2P-SIP standardization activity in
the IETF. In general, the functions that need to be distributed in VoP2P include

session establishment, media servers, and feature processing.

IP telephony involves two-way real-time media streaming, and the transition to

VoP2P must continue to satisfy call-quality constraints such as call setup time, end-

to-end delay and jitter, and sufficient bandwidth. Call setup time includes time to

resolve the callee’s address to one or more network addresses, locate the preferred

network address, send a message to the callee to initiate the session, and exchange

further messages to negotiate session parameters and create the media connections.
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If either of the endpoints is behind a NAT, additional messages are exchanged to tra-

verse the NAT, as discussed in Chapter 6. Session establishment protocols such as

SIP do most of this today with direct endpoint-to-endpoint messaging. Address and

location resolution are handled by servers in SIP. The search capabilities needed

for VoIP address and location resolution can be provided by the DHT. For example,
if tom@example.com resolves to IP address 24.255.10.11, the DHT can store

24.255.10.11 as the value for the key tom@example.com.
Likewise, media connections are also endpoint-to-endpoint, and protocols

such as Real-Time Protocol (RTP) can also be used in VoP2P. Media storage and

playback are needed, even for basic functions such as voice greetings and voice-

mail. In addition, interactive voice response systems using technologies such as

Voice XML are important to many enterprises and require media playback as well.

The use of overlays for real-time streaming is discussed in Chapter 8. Content
delivery applications such as those described in Chapter 8 have fewer stringent

latency requirements than telephony. Since overlay routing incurs a performance

cost compared to network layer routing, VoP2P designs typically avoid using the

overlay for media transport. Peers can be used for media storage and playback,

provided that reliability and security requirements are met, as discussed in

Chapter 8. Later in this chapter we discuss an important performance technique

called application relays in P2P streaming applications.

In addition to call establishment, many additional features are desired in tele-
phony. Examples include call waiting, call forwarding, call parking, and call bridg-

ing. Enterprise PBXs have hundreds of such features, and the implementation of

these features involves both endpoints and feature services. To date, VoP2P

designs have incorporated only a few elementary call features. Later in this chap-

ter we describe some of the issues in distributing feature processing in VoP2P.

In large-scale VoIP systems, many types of gateways are needed for compatibil-

ity with legacy communication systems and to support the plethora of handsets

and access technologies that are used. Many gateways have special hardware to
support specialized equipment interfaces. It might not be practical to distribute

gateway functions to peers if either hardware or physical location are important

attributes of the gateway.
APPLICATION RELAYS
Types of Relays

Application relays can reduce end-to-end delays and increase throughput for TCP

connections. To improve the performance of streaming between peers in the

overlay, additional capabilities can be added, such as application relays, media

transcoding, and mixers. Peers that provide these functions can be dynamically

integrated into streaming sessions. This provides more flexibility in meeting

QoS, fair load distribution, reliability, and performance goals.

mailto:tom@example.com
mailto:tom@example.com
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Such streaming services (Table 12.1) are typically selected in band during session

initiation. These services operate continuously on the media streams during the ses-

sion. Session characteristics might change, requiring renegotiation or reselection.
Relay Selection and Discovery

Application relay discovery and selection are important for streaming media appli-

cations and are representative of other inband streaming services. Liu et al.420

analyzed application relays and showed optimal relay selection algorithms for

multirelay paths in a connected overlay graph. TCP throughput B over a link is

B � 1/d�p1/2, where d is the link delay and p is the packet-loss probability. Assum-

ing homogenous packet loss probability on all links, the effectiveness of the relay

for increasing throughput and reducing end-to-end delay depends on its proxim-

ity to the midpoint position in the end-to-end delay between the endpoints.

Using RTT measurement as an estimator of packet delay over a path, a direct

way to find a relay located closest to the midpoint position is to measure the RTT
between candidate relays and each of the endpoints to obtain RTT1 and RTT2.

Since the end-to-end throughput is constrained by the segment with the largest

value of d, choose the relay that produces the minimum of RTT1þRTT2þABS
(RTT1�RTT2). This requires at least two probes per relay candidate, one for each

segment.
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In a large overlay there are many thousands, perhaps millions, of possible can-

didates. The population of relay candidates should be a significant portion of the

overlay population for there to be fair load distribution and sufficient capacity for

many concurrent streaming sessions. Because of the large number of peers, it is

impractical to probe all the candidates. It might be possible for a peer to cache
RTT measurements for a large number of other peers. However, the other end-

point must also cache RTT measurements and the set of cached measurements

must be for common peers; otherwise additional measurement is needed, reduc-

ing the utility of the cache. Next we discuss how use of measurement techniques

described in Chapter 10 can be incorporated in to the overlay for aiding relay

selection.

Suppose a peer p1 initiates a relayed session with a remote peer p2. Peers p1

and p2 must agree on an intermediate peer to act as a relay. Peers that are pro-
spective relays are called candidate relays. Identifying peers that are candidate

relays is the process of candidate discovery. Choosing a relay from a set of candi-

dates is the process of relay selection. Assuming that peers engage in many ses-

sions with different peers in the overlay, having a large set of candidate relays is

a prerequisite condition for selecting a high-quality relay for a session. This is

because of the arbitrary distribution of session endpoints in the overlay and the

Internet-scale overlay topology.

In general both peers and relays are part of the overlay network. To be a relay
candidate, a peer must have a public Internet address and have sufficient capacity.

There are several ways for a peer to obtain relay candidates, including config-

uration, using entries in the peer’s overlay routing table, sharing relay selection

history between proximal peers, and explicit advertisement and lookup. If the

peers in the overlay register with a bootstrap server, then when a peer joins

the overlay it can receive a configured list of relay candidates. Peers can remem-

ber relay selection history for future sessions, and proximal peers can share such

history. As discussed in Chapter 4, peers that participate in the overlay have a
routing layer that maintains address information about other peers in the overlay,

and this information is updated as peers join and leave the overlay. Routing table

entries could be used as relay candidates.

Selection of peers to perform inband stream services is important for

providing good session quality for streaming overlay applications. Systems today

typically use configuration to discover relay candidates and use RTT probing to

select the relay. To improve on these approaches, relays can advertise and be dis-

covered by peers using the DHT to store the advertisements, as discussed in
Chapter 11. Since selection of a suitable relay depends on the position of the relay

in the network in relation to the position of the peers, the advertisement can be

indexed in the DHT by network location. Methods for determining network posi-

tion in a global coordinate system are referred to as Internet coordinate systems

(ICS) and are discussed in Chapter 10. Since there could be a large number of

relays in the overlay, using network location has the advantage of distributing

the advertisement load over the DHT.
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Figure 12.2 compares the performance of relay selection using an ICS versus

direct probing of RTT. For the same quality of relay performance, the ICS index

reduces the message overhead by about 50%. These experimental measurements

used the Vivaldi ICS.
Dynamic Path Switching

The above relay selection mechanism finds relays which are close to the mid-point

of the path between the two endpoints. This reduces end-to-end delay and increases

throughput. If call quality subsequently deteriorates during a call, an alternate path
can be located. This is referred to as dynamic path switching, and is a key capability

of RONs discussed in Chapter 11. Mid-call switching to an alternate path involves

real-time detection of call quality degradation, measurement of call quality para-

meters over alternate paths, and session signaling to redirect the call path.

Orbit442 is a relay overlay which focuses on real-time measurement techniques

suitable for large-scale VoIP deployments such as found in global enterprises. Call

quality is passively monitored in real-time and scored using the ITU-T R factor.

When the score falls below a certain threshold, the receiver signals the sender
to select a better path. Orbit is used to perform measurements on alternate paths.

If a better path is found, the call is re-routed through that relay. Simulations

indicate that recovery can be performed in less than one second.
CALL PROCESSING
Overview

Apart from basic call-processing features, such as dialing in and dialing out, selecting

gateways, and some conferencing capabilities, little work has been done to map call

features to VoP2P overlays. Consequently, the degree of feature granularity that could

be provided in a VoP2P overlay is an open question. Here we discuss some scenarios:

per-call feature selection, selection of feature bundles, and individual feature selection.



286 CHAPTER 12 Voice Over Peer-to-Peer
Then we present detailed message flows for several representative widely

used features, showing signaling between both the endpoints and the feature

peers and between the endpoints and the overlay. The purpose of these examples

is to provide concrete illustration of how call processing could be achieved and

how service discovery is incorporated into the overall model.
Assumptions

Hybrid architectures that combine call-processing servers and gateways with the
P2P overlay are important, but here we take the general approach of permitting

any server-based feature in conventional VoIP systems to be implemented by an

arbitrary peer in the overlay. In practice, factors such as details of the feature,

its usage, its interaction with other features, and scalability of the feature will

influence the implementation decision. Example call features are taken from

[425]. If a call involves multiple features, we consider both bundled and

unbundled service offerings. In the unbundled case, separate peers implement

each feature, and different peers may be used for the same feature on separate
calls for the same endpoint. In the bundled case, feature sets might be offered

as bundles, such as an origination bundle or a media-processing bundle, by a sin-

gle peer.

Any feature including call routing can be mapped to an arbitrary peer in the

overlay. This dynamic mapping is suitable for VoP2P overlays, which are charac-

terized by limited resource peers and a highly volatile peer population. It is also

highly scalable in terms of processing resources, at the possible cost of increased

P2P message overhead and signaling time.
Consider an overlay in which peers referred to as proxy peers offer a call-routing

service for the P2P overlay. When user Jane calls user Bob, Bob’s proxy service may

be handled by proxy peer A. But when another user, David, calls Bob, Bob’s proxy

service may be handled by proxy peer B. Proxy peer A and proxy peer B are two

independent peers. They can both acquire Bob’s user profile and state information

from the overlay and route Bob’s calls. Without appropriate coordination mechan-

isms between proxy peer A and proxy peer B, theymay perform conflicting actions.

Suppose Bob has a presence-based call-handling feature that rejects calls when Bob
is on a call. If Jane and David call Bob at the same time, both proxy peer A and proxy

peer B independently conclude that Bob is not on a call and they route calls to Bob.

This situation is avoided if Bob uses a single proxy peer to handle his calls or if some

coordination mechanism is introduced.
Dimensionality

There are several dimensions to realizing call-processing features in P2P overlays:

n Feature peer selection. For a call with feature sequence F1)F2). . .)Fn, the
endpoints may recursively select peers for each Fi, the predecessor peer in
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the path may iteratively select the next peer, or some other distributed control

may be used.
n Feature granularity. One peer can provide for an endpoint a complete set of

features, a bundle, or only an individual feature.
n Call granularity. An endpoint may select feature peers for a single call or for an
extended set of calls.

n Feature atomicity. A feature is indivisible or could be composed of subservices

that are each implemented by other peers.
n Overlay coupling. Some features may be intrinsic to the overlay, such as a relay

or NAT traversal. Others may be layered on the overlay. Features might be imple-

mented as a specialized overlay, such as group overlay, which only contains

group information and handles call routing among various group members.
n Peer autonomy. The peers in the overlay may belong to the same administra-
tive domain or different domains without prior trust relationships.

n Peer addressing. All peers in a given call may belong to a single overlay (flat

address space) or may be members of different overlays (hierarchical address

space). Federated overlays introduce additional complexity on call routing

and trust relationship handling.

For simplicity in this discussion, let’s assume that a single endpoint discovers and

selects feature peers on a per-call and per-feature basis. Features are atomic. Peers

are autonomous, but the overlay provides a trust mechanism. All peers belong to

the same overlay, and the overlay provides generic services, including a DHT,

secure routing, NAT traversal, and group membership management.
Example Peer Features

In this section, we describe some call features and discuss ways of implementing

them in a P2P overlay. A basic set of call features are documented in [425]. Some
of these features (call hold, three-way calling, call transfer, call screening, and

automatic redial) are best implemented at endpoints. Call hold, three-way calling,

and call transfer are for an existing call on an endpoint, since the endpoint main-

tains the call states and can manipulate the media streams. Call screening and

automatic redial require the target endpoint to be online and to maintain a screen

list and a call number. Therefore, they should also be implemented on endpoints.

Call coverage features such as call forwarding, find-me, and group features

such as call park and call pickup can be implemented in a P2P overlay because
those features should still be available even when the called endpoint is offline.

Features that require specific resources, such as music on hold and click to dial,

can be better implemented in a VoP2P overlay.

In addition to the features in [425], there are many other features that can be

implemented in VoP2P overlays, such as anonymous call, voicemail, call bridging,

call hunting, and conferencing. Next, consider voicemail and call park as exam-

ples of ways to implement features in a VoP2P overlay.
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Figure 12.3 shows a call-signaling flow for a voicemail feature in a P2P overlay.
The callee is active on a call, so it stores its cover announcement media in the

overlay and discovers an announcement peer in the overlay that will render the

announcement. When a second incoming call arrives, the callee’s proxy peer

redirects the call to the announcement peer. The callee discovers and selects a

recording peer in the overlay. When the announcement is completed or inter-

rupted, the call is routed to the recording peer, which captures the media and

stores it in the overlay for later retrieval by the callee. Media objects such as voice-

mail can be replicated in the overlay for reliability.
Figure 12.4 shows the call flow for a call park/pickup service. Call park and

call pickup are group services that require group membership management.

The group for this example is handled by peer Group G, which maintains

group membership for all the member callees. Peers join the group using a join

operation, which validates the peers against the membership criteria. The

group service subscribes to service notifications and propagates these to the

group members.

Group G is notified by the park peer when a member in the group parks a call.
In turn, it notifies other members to pick up the parked call. Note that the state

information is handled by the group overlay and in this case proxy peers do not

require state information.
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CASE STUDY: SKYPE
Skype is a popular freely downloadable software application that supports free
computer-to-computer voice calls worldwide. Since its launch in August 2003,

Skype has grown to several hundred million registered users. In January 2007,

Skype reached 9 million concurrent online users. At the end of 2006, Skype usage

accounted for 4.4% of 313 billion international call minutes, VoIP services were

19.8%, and the remaining usage was traditional switched telephony.421 The user

view of Skype is described in Chapter 1. A general overview of Skype is found

in [422]. In the remainder of this section we are primarily interested in the oper-

ation of the P2P Skype network.
A Skype network is a peer-to-peer network implemented using a proprietary

and encrypted protocol. Details of this protocol have not been released, and vari-

ous efforts by researchers have been made to infer the architecture and operation

of the P2P protocols used in Skype.

Peers are supernodes if they have sufficient resources and have a public IP

address; otherwise, a peer is an ordinary node.426 Skype uses a central login

server to authenticate peers when they connect to the network. At login time,

the client receives a list of IP addresses that help bootstrap the node into the net-
work and act as supernodes if the client is an ordinary node. It is conjectured that

Skype uses a variant of STUN and TURN protocols to perform NAT traversal.426

Over time the client collects additional supernodes until its host cache is full.

An example of the key architectural elements of the Skype network is shown in
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Figure 12.5. This figure does not show other key elements needed to support
other features of Skype, such as Skype-to-PSTN calls and voicemail.

Calls involving one or more ordinary nodes are relayed through supernodes.

Then the network and computing resources used by supernodes can be consider-

ably higher than ordinary nodes. Some limited study has been made of Skype selec-

tion of supernodes. Experimental evidence seems to indicate that supernodes may

be used that are remote from the actual call path.423 For example, on a set of inter-

national calls, the RTT on the call path sometimes exceeded 300 msec, which

crosses the acceptable perceptual threshold of delay for voice calls (Figure 12.6A).
Further, the time to select a relay sometimes exceeded several hundred sec-

onds (Figure 12.6B). Xie and Yang430 show that Skype call quality would decrease

significantly if supernodes in edge networks (called AS stubs) adopted a policy of

blocking relay traffic. Zhou et al.424 show that if the relay population dropped
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below 15% of the total peer population, relay selection rates would drop
significantly.

Each client stores a buddy list and displays presence information about the

user’s buddies. This buddy list appears to be stored in the Skype network. When

a client login is performed, the buddy presence information is collected for the

client. As buddy state changes occur, such as when a buddy becomes unavailable,

these are propagated to each client. The protocol by which Skype manages buddy

state and how distributed search for buddies is performed are not known.

Peers on the Skype network exhibit signficantly longer lifetimes than those
measured for peers in P2P file-sharing systems.29 In P2P telephony, users are moti-

vated to stay connected, both to be able to receive calls and to view the current

status of their buddies. Long application lifetimes mean a low churn rate. These

factors are not present in the file-sharing applications.

Part of Skype’s success has been due to the perceived high call quality. This

has been attributed to the audio codecs Skype uses.426 Skype’s key innovations

include integration of a successful NAT traversal mechanism, leveraging of

resources on user machines in a sufficiently benign way so as to not deter users,
a scalable system architecture that integrates P2P routing, centralized authentica-

tion, and access to PSTN gateways to enable low-cost PSTN calling.
CASE STUDY: PEER-TO-PEER SIP
Overview

P2P-SIP is a standardization effort chartered in the IETF in 2007 to develop new

protocols that will permit a DHT to be used in place of the SIP location server.
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In SIP, a location server is used to resolve a SIP address such as john@example.
com to the IP address of John’s device. SIP414 uses various servers to establish ses-

sions between two endpoints. P2P-SIP is intended to eliminate the need for ser-

vers by using the DHT to perform address and location resolution. In the

remaining steps of session establishment, a peer uses the existing SIP protocol.

Figure 12.7 compares (a) SIP signaling with (b) the proposed P2P-SIP signal-

ing. In both cases, endpoints called user agents (UA) issue a SIP INVITE
request from the caller to the callee. The address of the callee, for example,
john@example.com, must be resolved to its IP address. In SIP, as shown in Steps

5 and 6, a location server is used. In P2P-SIP, as shown in Steps 2 and 3, a DHT

lookup is performed. In both cases, after the address is resolved, the request

is forwarded to callee UA and the usual SIP message exchange follows.

As described earlier, NAT traversal is a key issue for VoP2P. The P2P-SIP work

plan will leverage the ICE protocol described earlier. Since P2P-SIP is concerned

with the practical issues of building a reliable and secure overlay, some of the

P2P-SIP specifications are relevant to any application overlay.
Hip-Hop

Hip-Hop431 was an early proposal for a P2P-SIP overlay architecture based on the

Host Identity Protocol (HIP).532,533,534 HIP is an experimental protocol being

defined by a separate IETF working group. The idea of HIP is for each host to

mailto:john@example.com
mailto:john@example.com
mailto:john@example.com
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have a unique cryptographically secure host identifier (HI) separate from its IP

address. The HI (or a hash of it) is used to create a secure association between

communicating hosts. Once a secure association is established, using a four-step

handshake, subsequent exchanges are encrypted and the endpoints can be pro-

tected against various security attacks, including replay, man in the middle, and
denial of service.

The introduction of a new namespace to the Internet would mean that host

identities would be decoupled from routing and locating operations. For that rea-

son, there are important potential benefits for overlays for problems such as

NAT and peer mobility. In these cases, a HIP host has a unique identifier for

application-level addressing that is independent of whether the host is changing

its IP address due to roaming or having its address translated by one or more

intervening NATs. Further, the large HI address space with randomly selected
addresses fits well with the addressing requirements of P2P overlays, and a HI

could be used directly as an overlay identifier.

HIP defines a rendezvous server to store and resolve the association between

host identifier and IP address. This is similar to a DNS server, which resolves hos-

tnames to IP addresses. A mobile host updates its IP address at the rendezvous

server when its address changes after a roaming transition. Other peer hosts that

want to connect with the mobile host consult the rendezvous server to determine

the current IP address for the specified HI.
Using HIP means a new HIP layer is inserted into the network stack between

the IP layer and upper layers such as TCP and UDP (Figure 12.8). Each host self-

generates its own cryptographic identifiers using a public key and private key

pair. A host can have many such pairs. Additional pairs can be used for anon-

ymized communication or to make it more difficult for traffic analysis. The host
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Host Identifier Tag
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Public
Key

Private
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FIGURE 12.8 Network stack with new HIP layer.
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identity layer uses its public key as its HI to establish a secure association with
another host. Applications use an abbreviated version of the HI, called a host

identifier tag (HIT), which is a fixed-length hash of the HI. HITs are used because

they can be interchanged with IPv6 addresses at the API layer without requiring

the existing network APIs to be modified.

Given HIP support throughout the peer population (Figure 12.9, left), the

overlay functions of routing and maintenance could be placed above the trans-

port layer. Then the overlay layer uses HITs as peer identifiers. Overlay messaging

requires the corresponding peers have a HIP association. Although having a
peer’s address in the routing table doesn’t require the HIP association to be cre-

ated, any message exchange with that peer does. As described earlier, creating a

HIP association requires a 4-packet message exchange between the two peers.

The HIP-HOP stack (Figure 12.9, right) proposes a further optimization, which

is to integrate the overlay routing function with the HIP layer. Then overlay for-

warding decisions remain in the HIP layer, invisible to the application layer and

avoiding transport layer conversion overhead. In either case, the use of HIP to

support the overlay does not require a particular overlay routing algorithm.
Address Settlement by Peer-to-Peer

Address Settlement by Peer-to-Peer (ASP)435 is another early proposed design for

P2P-SIP that includes support for multiple overlay networks, digital certificate-

based security mechanisms for both routing and data storage, and an interesting

mechanism for upgrading overlay routing algorithms while the overlay is running.

It is intended to work with different overlay routing algorithms.
ASP incorporates the ICE protocol for NAT traversal but uses peers instead of

STUN and TURN servers. When first joining the overlay, each peer uses a central

STUN server to determine whether it is NATed or not. If it’s not, the peer is able

to act as a STUN or TURN server for other peers. Each peer stores its availability
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as a STUN or TURN server in the DHT at one of N predetermined positions in the

DHT space, where N is determined by an estimate of the overlay’s size. The use of

N positions distributes the lookup load in the DHT for these entries. After a peer

connects to the overlay using the central STUN server to mediate its NAT tra-

versal, it retrieves the peers to use as subsequent STUN or TURN request servers
for further overlay operations.

An important practical problem is how an overlay running one routing algo-

rithm might be dynamically upgraded to a new routing algorithm without causing

a service interruption for the existing clients. In ASP, peers that support the new

routing algorithm form a new overlay, which runs in parallel with the existing

overlay. This could continue for a period of months until the switchover is com-

pleted. In the interim period, peers would be connecting to two overlays.
Reload

REsource LOcation And Discovery (RELOAD) 443 has been adopted by the P2P SIP

working group as its starting point for the primary P2P-SIP protocols. RELOAD
incorporates aspects of the ASP design, the P2PP proposal described in Chapter

6, and other proposals related to security and the use of Chord. It is described

here as a snapshot of the current direction of the working group and is likely

to change.

The core components of the RELOAD architecture involve the overlay func-

tions which are divided into a generic routing layer, a forwarding layer, and a plug-

gable topology module which implements specific overlay algorithms. The

routing layer uses a routing table in the topology module to determine next
hop decisions. The topology layer implements algorithm specific maintenance

and measurement mechanisms. The forwarding layer handles algorithm indepen-

dent message transit decisions and interfaces with NAT traversal and secure trans-

port protocols. The purpose of the pluggable topology module is to support a

variety of different overlay algorithms without changing the basic protocol or

peer software. The forwarding layer performs packet header processing in an effi-

cient manner.

Key aspects of the RELOAD design include:

n A central registration server which is the basis for securing the overlay. Each

peer receives digital credentials from the registration server prior to joining

the overlay. Each message in the overlay is signed by the peer which is the
source of the message. Each object stored in the overlay is signed by the peer

which is the source of the object.
n NAT traversal is integrated into the overlay using the ICE protocol described in

Chapter 6. Peers behind firewalls use ICE and the TURN server capabilities in

each peer to make new connections with other peers in the overlay.
n Nodes self-organize in to peers or clients, depending on their capability. Clients

do not perform overlay routing and store no objects.



Table 12.2 Peer Statistics

Parameter Meaning

ROUTING_TABLE_SIZE Number of peers in the routing table

SOFTWARE_VERSION Manufacturer, model and version of the peer’s software

MACHINE_UPTIME Time the node has been up, in seconds

APP_UPTIME Time the peer’s software has been running, in seconds

MEMORY_FOOTPRINT Memory used by the peer’s application software

DATASIZE_STORED Disk storage used by the peer

INSTANCES_STORED An array of bytes stored by data type

MESSAGES_SENT_RCVD An array of number of messages sent and received by message

type

EMWA_BYTES_SENT Average number of bytes sent, using a weighted average with

previous estimate

EMWA_BYTES_RCVD Average number of bytes sent, using a weighted average with

previous estimate
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n Each object stored in the overlay has an associated data type. The data type

constrains how the object can be used, the keys that can be used to index it,

and which types of peers can access it.
n Messages are routed recursively and the response is sent back in the reverse

path that the request came. This is to avoid the overhead of creating new con-

nections between the destination peer and the requesting peer, which incurs

delay both because of the secure handshake and, in general, NAT traversal for
either or both of the endpoints.

Peers can collect operational statistics and status for the parameters shown in

Table 12.2. This information can be shared with other peers.
SUMMARY
At the beginning of this chapter we posed several questions that we recap now.

How suitable is the overlay routing for meeting the real-time transport require-

ments for voice? Application-layer routing can pay a substantial performance pen-

alty, so once the endpoint peer is contacted, direct network layer connections are
made between endpoints, avoiding the overlay routing layer. However, peers may

be behind NATs or may benefit from use of an application relay because of their

distance from each other in the network.
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How does churn in the overlay impact call reliability? Once the call is estab-

lished, the peers connect directly except when using NAT traversal or media

relays. In these latter cases, the impact of churn can be avoided but not fully

eliminated without additional redundancy in the media transport. However,

node lifetimes are longer for communication applications than for file-sharing
applications.

How do VoIP signaling and transport elements such as proxies, media servers,

gateways, and feature services map to the peer-to-peer architecture? Such

mapping is an ongoing issue, so that existing VoP2P overlays have focused primar-

ily on functions which are basic and can be easily distributed.

How do NATs effect connections? Due to their widespread use and the variety

of NATs, P2P overlays particularly including VoP2P overlays need mechanisms to

automate NAT traversal. These mechanisms involve some intermediate peer or
server mediating the NAT traversal, and there are both proprietary solutions

and open protocols such as ICE to perform this task.
FOR FURTHER READING
There are many resources for gaining an introduction to VoIP technology, one

starting point is available online at the IEC Website.436 The two most widely used
VoIP protocols, SIP and H.323, are discussed in several books, including Seinreich

and Johnston415 and Kumar, Korpi, and Sengodan.439 A proposal for integrating

P2P technology with IMS is found in [440]. The issues caused by NATs in peer-

to-peer communication and various techniques to solve them are described in

[437] and [438]. The latest information on P2P-SIP can be found at the P2P-SIP

Website.441



CHAPTER
1
3
Mobility and Heterogeneity
Using mobile devices as peers in an overlay introduces the possibility of increased

churn due to frequent roaming transitions that such devices experience. Possible

solutions discussed in this chapter include using mobility support in the native

layer, virtualizing such support in the overlay itself, or restricting the role of

mobile devices as peers. In addition, mobile devices and other networked con-

sumer electronics introduce a degree of resource heterogeneity into the peer

population. Adaptability to heterogeneous peer conditions is the scope of another
category of P2P overlays called variable-hop overlays, which are discussed here.

As mobile ad hoc networks (MANETs) and sensor networks proliferate, there

is likely to be significant value in integrating such networks into P2P overlays;

proposals for doing so are discussed at the end of the chapter.
IMPACT OF MOBILE DEVICES ON P2P OVERLAYS
Increasingly portable electronic devices are providing functionality previously

restricted to desktop computers. Such devices can connect to the Internet using

broadband wireless network interfaces. Local storage and compute capacity are

sufficient for storing and playing high-quality audio and movie files. Due to their

low cost, such devices are growing in popularity and may at some time become

the dominant mode by which users reach the Internet. Consequently, such

mobile devices will have an important role in future P2P overlays.

Mobile devices have four important characteristics that differentiate them
from desktop computers and that affect their interaction with the overlay. First,

due to their mobility, a device may move from one access network to another, a

behavior referred to as roaming. When a device roams, its IP address will change.

After its IP address changes, it can still connect to the Internet, but depending on

how the transition from the old IP address to the new IP address is managed, net-

worked applications that were running prior to the roaming transition may be

interrupted. P2P overlays are one type of such application. In addition, any peers
299
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that were neighbors of the roaming peer may now have the wrong network

address for the roaming peer. Thus roaming peers can cause the same kind of

churn behavior that was discussed in Chapter 5 but as a result of roaming transi-

tions instead of nodes leaving the overlay. Since roaming transitions can happen

frequently, the churn rate can increase for the overlay due to the presence of
mobile peers.

The second characteristic is node heterogeneity, which refers to the variation

in network capacity and compute resources available across the set of nodes in

the overlay. The overlay design can address heterogeneity by distinguishing

between more capable and less capable nodes, such as superpeers and regular

peers. It can also adapt the overlay maintenance algorithm so that, depending

on the available bandwidth, nodes with more bandwidth can maintain more rout-

ing state. This approach, called a variable-hop overlay, differs from most overlay
algorithms in which maintenance traffic is the same for all nodes.

The third characteristic is the need to preserve energy445 in mobile devices.

Power consumption by personal computers and consumer electronics devices

is an economic and energy conservation issue, accounting for an estimated 2%

of energy use in the United States.446 Power management involves a combination

of techniques, including network adapters that can trigger power resume of the

host while offloading certain network activity and network protocols that reduce

power consumption. In current overlay design, a mobile peer that goes into
power-saving mode would be treated as a node that has left the overlay.

The final characteristic is that future portable devices will most likely be

multihomed, that is, a device supports multiple network interfaces such as IEEE

802.11, WiMax, and UWB. These networks differ in range and bandwidth capac-

ity. A roaming device might not only be changing its IP address during roaming

but also switching to a different type of access network. Changing the access net-

work could change the available network bandwidth. The available network

bandwidth affects the ability of a node to act as a superpeer or relay. It also affects
the capacity of the parent nodes in Application Layer Multicast (ALM) trees and

in streaming applications. Further, there is tradeoff between peer routing state

and overlay diameter, as discussed in Chapter 2. In general, excess bandwidth

capacity can be used for improving overlay maintenance, potentially improving

performance.
P2P OVERLAY ISSUES CAUSED BY MOBILITY
Roaming and Node Lifetime

Several issues caused by the mobility of the peers in the overlay affect overlay per-

formance. These issues lead to higher churn rates compared to desktop peers,

which means either higher bandwidth usage for structured overlay maintenance
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or increased hop counts for overlay operations. These issues affect the average

node lifetime and changes to the native address associated with a peer:

n Energy limitations, device usage patterns, and network connection costs

can all shorten the node lifetime.
n Roaming scenarios cause native layer address changes, which are effectively

leave-join sequences.

In this chapter we use mobile peer to represent a peer that has active roaming

behavior and limited node lifetime compared to a peer running on a desktop

computer with a wired network connection.

Assuming that a device moves through an access network, we illustrate the

transition rates for driving and walking movement in Table 13.1. In most cases,

these transition rates exceed the churn rates reported in existing P2P file-sharing
systems. High churn rates mean that more overlay maintenance overhead is

needed to stabilize the overlay.

In addition, variation in the available bandwidth affects the rate at which a

mobile peer can send and receive packets to maintain and use the overlay. Wired

networks encounter bandwidth variation due to network congestion. In addition,

wireless networks face bandwidth variation due to a variety of media-related

factors. These include signal-strength issues such as the distance between the

device and the access point, obstacles in the transmission path, and signal reflec-
tions. Depending on the media access protocol, there may also be capacity loss

due to competition for the media with other devices sharing the network.

For example, Figure 13.1 illustrates throughput variation within a single access

network according to the distance of the device from the access point. As

a device’s distance from an access point increases, the available throughput

capacity decreases. Thus, even if a device doesn’t roam to a different network,

its position and other factors mean that significant variation in the node’s capacity

could occur.
Table 13.1 Example Transition Rates for Device Movement Across Various Access

Networks

Access
Network

WiMax 802.11n UWB

Range 5 km 50 m 10 m

Driving at

20 km/hour

4 transitions/hour 400 transitions/hour ¼
6.7 transitions/min

2000 transitions/hour or

0.55 transitions/sec

Walking at

1 km/hour

0.2 transitions/hour 20 transitions/hour 100 transitions/hour
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Growing Mobile Peer Frequency

Most studies of mobility in P2P overlays assume that the peer population consists

primarily of nonmobile nodes. Trends in consumer electronics and cell phone usage

suggest that in the future the majority of Internet-connected devices could be

operating on mobile nodes. If a large percentage of peers are mobile, overlay-based

techniques that accommodate mobility using the resources of stationary peers may
degrade in performance.
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A study ofmobility churn
447 shows the effects of increasing numbers of mobile

peers in an overlay. Stationary peers in the simulated overlay are given infinite life-

time and do not contribute to churn, thus allowing the identification of delay and

bandwidth induced due to node mobility. When the number of mobile peers is

small, an overlay with conventional failure detection and recovery algorithms
experiences fewer lookup timeouts and routing latency is not as impacted. In addi-

tion, maintenance requires fewer messages to detect and correct the changed state

of mobile peers. As the population of the mobile peers in the overlay increases to a

substantial proportion, timeouts due to lookups increase substantially, and the

amount of maintenance traffic needed to stabilize the overlay also grows.

To shield the overlay from native address changes as much as possible, mes-

sages to a mobile peer can be routed via an intermediate agent with a fixed net-

work address. When the address of the mobile peer changes, the intermediate
agent is notified. However, the change is invisible to other peers in the overlay.

This indirection can be done either at the native layer, via Mobile IP, or at the

overlay. Mobile IP is a native layer protocol that has been developed to mitigate

the impact of network address changes on applications. In Mobile IP, a mobile

node can use a home address (HoA) as its intermediate point for message and

connection routing. In the overlay, a mobile node uses its HoA instead of its

mobile address. Then when the mobile node roams, only the home agent sees

the address change. If Mobile IP is not available, an alternative is to designate a
stationary and stable peer in the overlay as a virtual home agent.

To compensate for an increasing number of mobile peers in the overlay, a P2P

overlay operator could provide superpeers to act as home peers for mobile peers.
MITIGATING MOBILITY CHURN
In a typical structured overlay, a mobile peer migrating between mobile networks
has to rejoin the overlay due to the invalidation of both its own state about other

peers and their state about it. Following [447], we refer to this churn due to

roaming mobile devices as mobility churn. The effects of mobility churn include

more traffic in the structured overlay due to increased overlay maintenance, deg-

radation of overlay routing efficiency, and an increase in average lookup latency.

As the number of mobile peers grows, many structured overlays may simply

break down under such high levels of churn.448,449 Consequently, techniques to

mitigate the impact of mobility churn on the performance of the overlay are
needed.
Mobile IP Support

When a mobile peer moves, it may receive a new network address on connection

to a new network access point. The peer then informs its neighboring peers of its

address change, which leads to routing table updates at those peers and potential
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propagation of the new information to other peers in the overlay. As discussed

earlier, the mobile peer may use an available Mobile IP infrastructure to use

its HoA IP address451 in the overlay. A drawback of using HoA is that it makes

topology and proximity information for a mobile peer and its neighboring peers

incorrect, since the mobile peer could be quite far from the HoA location.
A peer is assumed to have no prior knowledge of its mobility behavior and

therefore cannot inform other peers of any predictions of its mobility pattern.

Mobile IP infrastructure consists of home and foreign agents that may introduce

critical points of failure and performance bottlenecks. Therefore, configuring

and managing the mobile IP support requires additional administrative support.

In addition, Mobile IP as a network layer protocol cannot exploit the semantics

of the applications. It also needs the assistance of a reliable home agent to resolve

the validity of the network address of mobile nodes. The use of any indirection
increases latency in the overlay.

There are several proposals for fast handoff mechanisms in roaming transitions

in Mobile IP. However, the network layer delay is a small part of the overlay

maintenance time in propagating a new native address for a peer in the overlay

(Figure 13.2).
Stealth Nodes

The use of stealth nodes450 is a strategy in which mobile peers are used only as

clients of the overlay. The structured overlay has two distinct sets of nodes:

stealth nodes, which do not route data or store keys and are transparent to all

routing operations, and service nodes, which execute all overlay operations sup-

ported by a generic DHT. The selection of a peer as a service node depends on

stability of its network connection and its peer capacity.

Stealth nodes use a lightweight join mechanism and do not participate in send-

ing join announcement messages, which keeps them from appearing in service
nodes’ routing tables. When a stealth node joins or leaves the network, no

updates to the routing state are required. The stealth nodes also do not receive

routing table updates. Over time, a stealth node’s routing table becomes stale.

To solve this problem, a stealth node may periodically obtain additional state from

service nodes in the overlay, in either an active or passive manner.
Network Layer

Time to make
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FIGURE 13.2 Fast network handoff vs. overlay maintenance.
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Figure 13.3 shows the impact of mobility as the percentage of mobile peers

increases in the overlay, using the Pastry structured overlay for comparison. Pastry

is a multihop overlay and is described in Chapters 4 and 5. In this graph, average

lookup latency is the average time elapsed from when a node sends a get request
to when the response is received. The measurement of average lookup latency is

made for when the overlay treats the mobile nodes as stealth nodes (labeled

stealth) as well as when mobile nodes are included as regular peers (labeled

Pastry). For each case, there are two subcases, labeled static and moving.

The static and moving stealth nodes have similar end-to-end performance,

which confirms that the use of the stealth node role maintains efficient overlay

performance over a large range of the number of mobile nodes in the overlay.

The simulation model used in Figure 13.3 assumes that the mobile node’s access
links have high delay (about 200 ms) compared to conventional access networks.

By incorporating mobile nodes into the overlay routing mechanism, the latency

is increased. Thus, in this simulation Pastry’s average latency without stealth nodes

is larger than Pastry with stealth nodes. Stealth nodes hide the impact of mobility

churn and also can reduce the impact of high-latency access links for mobile nodes.
Bristle

Bristle452 routes to a mobile node using a stationary node, the address of which

is closest in the overlay address space, to shield the overlay from mobile churn.

Bristle is based on the Tornado overlay453 and consists of stationary and mobile

nodes. A stationary node stores the current IP address of those mobile nodes for

which the overlay addresses are close to that of the stationary node. Each

stationary node maintains a location information repository for its set of mobile

nodes.
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Figure 13.4 depicts the Bristle architecture, which separates the stationary and

mobile peers into separate structured overlays that share some number of stationary

nodes. These shared stationary nodes are used to forward routing requests between
the two overlays. For example, say that node X is forwarding a message to node Y,

and node X does not have the current IP address of node Y. To resolve node Y’s

address, node X sends the request to its associated peer in the stationary overlay.

The request is routed in the stationary overlay to a node Z, where Z’s overlay address

is closest to node Y’s overlay address. Z then forwards the request to mobile node Y.

In addition, mobile nodes in Bristle maintain connections to small sets of other

mobile nodes of interest, using a location update tree. When a mobile node

changes its IP address, it forwards the update to other members of the location
update tree.

Warp

Warp454 addresses mobility transitions both for individual mobile peers and for

crowds of mobile peers, such as might occur when a group of mobile peers on

a passenger train change networks at the same time. The transition of a mobile
crowd creates a burst of address changes. Warp allows a group of collocated

mobile peers to share a single overlay state update rather than having each mobile

peer separately perform the update.

As in Bristle, a mobile node in Warp is not part of the overlay. Instead it stores its

location in the DHT via a proxy node in the overlay, which performs the insertion

using the node’s mobile name as the key. This is referred to as type indirection in

Warp. Figure 13.5 illustrates the registration step using the Tapestry structured

overlay, which is discussed in Chapters 4 and 5. The mobile node (MN) first regis-
ters its address information via the proxy node (P), which in turn inserts it along

the path to the root node (R), per the Tapestry insertion algorithm.
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The mobile node’s unique name is used to choose the members of a virtual

hierarchy of indirection nodes; these nodes in the overlay act as foreign agents

for the mobile nodes to support fast handover operations. The mobile crowds

can redirect traffic through a single indirection point and aggregate handoffs as

a single entity. Later, a peer that wants to send a message to MN, called the corre-

spondent host (CH), uses the hash of the mobile node’s name as the key. This
message is routed indirectly to MN using the previously stored values for MN’s

location information, implementing the type indirection.

When mobile nodes move in Warp, proxy handover messages modify the for-

warding path between proxies. Similar to Mobile IP discovery techniques, mobile

nodes listen for periodic broadcasts from nearby proxies

Figure 13.6 summarizes the two types of mobility achieved by type indirec-

tion. The type indirection for a group of mobile nodes reduces handoff messages
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Mobile Crowd
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Leaf Leaf Leaf
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Mobile Node

Mobile Node
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FIGURE 13.6 A summary of levels of type indirection454 # 2004 Springer-Verlag, with

kind permission of Springer Science and Business Media.
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from one message per node to one message per mobile crowd with a unique

crowd identifier. Using the crowd identifier, any mobile trunk registers with the

proxy. When the trunk changes its position, it uses the same mechanism used

by mobile nodes. This allows the group of mobile nodes to relocate to a different

proxy in one step. In addition, for a corresponding host to address a mobile node
in a mobile crowd, it must be able to resolve the mobile node’s identifier to

the crowd identifier and in turn to the associated mobile node, which proxies

the crowd. In addition, each mobile node uses a join/leave mechanism to attach

to and detach from the crowd.
MULTIHOMED PEERS
Improvements in wireless networking and technologies such as cognitive radio

mean that it is practical to package multiple network interfaces in a mobile

device. The currently emerging wireless technologies important for mobile

devices are WiMax, 802.11n, Ultra Wide Band (UWB), and 3G/4G. These have dif-

ferent ranges versus throughput characteristics (Figure 13.7).

For example, consider a device that connects to both WiMax and 802.11n net-

works simultaneously. As a result, it has two IP addresses and could be connected

to a P2P overlay with both IP addresses. In this case, WiMax offers a larger range
but a smaller peak data rate than the 802.11n network. For example, the multi-

homed peer can register in the overlay using its WiMax IP address and provide

its 802.11n IP address as a secondary alternative path.

The availability of both addresses provides redundancy and potential perfor-

mance advantages. For example, a mobility transition on a single interface is less
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likely to lead to a leave/join sequence since the device will still be connected on

the other network interface. Redundancy can be used in several ways. Packets

that aren’t acknowledged on the primary path can be resent on a wide area inter-

face. Alternately, packets can be sent simultaneously on all available interfaces.
VARIABLE-HOP OVERLAYS
Overview

The concept of a variable-hop overlay is anticipated in the evaluation of multi-

hop structured overlays performed in [455] and discussed in Chapter 4. Impor-

tant insights developed in this work include the ability of a protocol to adapt its

bandwidth utilization through changing configuration parameters and the trade-

off between overlay latency and routing state evidenced in multihop versus

one-hop overlays.

In a variable-hop overlay, the key to efficiently using additional bandwidth
under overlay churn is for the protocol to adjust its routing table size. A peer lim-

its its routing table size and its update message level based on its available band-

width. The routing table stabilization can be replaced with opportunistic learning

through normal overlay lookup traffic. That is, as in EpiChord, peers can use

lookup traffic to improve their routing table accuracy for certain regions of the

overlay address space and can also transmit maintenance information with lookup

requests. During the periods where the nodes have low bandwidth capabilities,

overlay routing performance may reach that of multihop overlays, whereas for
higher bandwidth, routing performance reaches one hop.

Each peer has a bandwidth budget that is allocated to routing table mainte-

nance. A higher bandwidth budget means that more routing table updates can

be exchanged, thus leading to higher routing table accuracy. Each peer manages

its bandwidth budget independently. This requires that the peer be able to deter-

mine its overall bandwidth capacity (both inbound and outbound) and measure

bandwidth utilization.

By explicitly accounting for the network bandwidth that each peer consumes,
lookup latency performance can be better adapted for devices with heteroge-

neous resources and access network capacity. Additional goals of variable hop

overlay design are to accommodate low-bandwidth nodes while minimizing the

impact on high-bandwidth nodes.
Accordion

Accordion456 is a variable-hop overlay that uses consistent hashing in a circular

identifier space to assign keys to nodes. A primary goal of Accordion is to adapt

the routing table size to achieve the lowest latency, depending on bandwidth bud-

get and churn. Accordion provides a single bandwidth budget as a parameter to
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adapt during the operation of a peer. Latency depends on both the average num-

ber of timeouts incurred during a lookup and the average number of hops in that

lookup. There are two processes that help Accordion maintain its best routing

table size in terms of the overlay churn rate and given bandwidth budget:

n The state acquisition process involves the learning of new neighbors.
n The state eviction process removes stale routing table entries depending on

the churn rate.

Unlike Kademlia and EpiChord, Accordion uses recursive parallel lookups to

maintain fresh routing table entries in its neighborhood of the overlay and reduce

the probability of timeouts. A peer gathers routing table entries during recursive

parallel lookups. The peer requesting the lookup selects destinations based on

the key as well as gaps in its routing table. Responses to forwarded lookups con-
tain entries for these routing tables’ gaps. Note that the recursive parallel lookups

create more load on the target peer than iterative parallel lookups, since the tar-

get node receives p messages for each request. Excess bandwidth is used for par-

allel exploratory lookups to obtain routing table entries for the largest scaled gaps

in the peer’s routing table. The degree of parallelism is dynamically adjusted

based on level of lookup traffic and bandwidth budget, up to some maximum

value based on the maximum burst size of the parallelism window.

Accordion’s parallel lookup protocol improves lookup latency, since one
lookup can proceed while other lookups wait in timeout. Each response to a

lookup contains routing table information from the responding peer, which gen-

erally has more accurate information about its portion of the overlay address

space than does the requesting peer. This routing table information may contain

the identity of new nodes the requesting peer does not have in its own routing

table. By issuing parallel lookup requests, the peer can simultaneously explore

regions of the overlay for which its own table is sparse and obtain the needed

application data. As shown in Figure 13.8, Accordion’s average lookup latency
matches or improves on OneHop457 when bandwidth is in abundance. The

results are generated from a 3000-node overlay network with an extensive churn

workload. Each point in the figure represents a certain combination of parameter

settings for the protocol.

Using the same simulated 3000-node overlay network, Figure 13.9 compares

the adaptability of Accordion, Chord, and OneHop in terms of various levels of

overlay churn, where a lower node lifetime means higher churn. The results are

generated by setting Accordion’s bandwidth budget constant at 24 bytes per sec-
ond per node, whereas Chord and OneHop consume at fixed 17 and 23 bytes per

second, respectively, that minimize lookup latency, for a median node lifetime of

one hour. The average lookup latency of Chord and OneHop increases during

high node churn rate due to large number of lookup timeouts. Accordion’s aver-

age lookup latency decreases slightly and is lower than both Chord and OneHop

when the network becomes more stable.
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P2P AND MANETS
Overview

A mobile ad hoc network (MANET) is a collection of mobile nodes that act as

both routers and hosts in an ad hoc wireless network and that dynamically self-

organize in a wireless network without using any pre-established infrastructure.



312 CHAPTER 13 Mobility and Heterogeneity
Nodes typically transmit in broadcast messages that reach only nearby nodes.

Since routers may move randomly, the topology may change rapidly and in unpre-

dictable ways. Energy efficiency is also an important criterion for MANET routing

protocols. Like P2P overlays, MANETs are self-configuring. Uses of MANETs

include sensor networks and vehicular ad hoc networks (VANETs).
MANET applications are typically peer-to-peer and are reflected in application-

driven protocol behavior and networking operation.458 The benefits of P2P over-

lay networking in a MANET include:

n Extending the MANET routing layer to support more sophisticated mobile
applications and services

n Adding higher-layer mechanisms to address the unpredictability of the radio

channel and challenges caused by node mobility

In addition, since MANETs may be connected to infrastructure-based networks

and the Internet, supporting a P2P overlay on a MANET can be used to provide

end-to-end interoperability for search and data movement between nodes in the

MANET and peers in the Internet.

However, the underlying design assumptions for most P2P overlays are quite

dissimilar from the routing architectures developed for MANETs. MANETs are

characterized by low-bandwidth, higher-error rates of the wireless medium and

low computation power of each node. Energy preservation is also an important
consideration in the protocol design.

Node mobility and the continually changing network topology pose chal-

lenges to scalability and the design of a structured overlay for MANETs. A key

design strategy is to keep the MANET routing and transport protocols simple

and to complement them where possible with upper-layer functions via a P2P

overlays. If the MANET is small, flooding and broadcast can be used as an

alternative to the usual DHT overlay routing.
Mobile Hash Table

Since the assumptions of the underlying network used in most P2P overlays are

quite dissimilar to MANETs, one approach is to adapt the overlay design to the

underlying MANET routing algorithm rather than apply an existing structured

overlay algorithm to a MANET. An example of this approach is the mobile hash

table (MHT).459 MHT maps data onto mobile nodes by storing the data on the

node that moves along the most similar path to that associated with the data item.
The path of each data item is constructed as a loop and is derived from its key.

The location of a data item at any point in time can be calculated. To query for

a data item, a MHT node first calculates the data item’s location and then routes

the query to that position in the MANET.

A path consists of two points, and the x–y coordinates of these two points are

derived from the key. Using node information such as location, direction, and

speed, the node carrying a data item is determined. The larger the number of
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nodes in the overlay environment, the higher the probability that a node with the

path and speed similar to the path of the data item exists. So, as the number of

nodes increases, better matches can be achieved. Further, the data needs to be

moved between the associated nodes less frequently.

Routing in MHT is built on top of Greedy Perimeter Stateless Routing
(GPSR).460 In GPSR, each node knows the location of its neighbors to one-hop

distance through periodic exchange of announcements. Each announcement con-

sists of the node’s current speed and the direction of the node in which it is

moving. MHT nodes cache these announcements and use the information to find

a node that has the location, speed, and direction similar to the path of a data

item of interest. All the nodes frequently announce their locations, directions,

and speeds to their neighbors but with no explicit communication required.

In MHT, a joining node starts the normal local broadcast of its location, speed,
and direction. The neighboring nodes acknowledge its existence and consider

this new node for routing and storage. To leave the system, the departing node

stops sending regular local broadcasts. In turn, the neighboring nodes stop using

the departing node for routing and storage. The neighboring nodes’ routing tables

stay consistent after the departure of the leaving node and all updates are based

on local knowledge. So, no repair algorithm is necessary compared to conven-

tional maintenance algorithms such as Chord, which requires fixing the finger

tables. Data stored on the leaving node could be lost. To avoid this, a leaving node
announces its departure to its neighbors. This removes the leaving node from

being considered for routing and storage. The departing node forwards all pend-

ing data messages to the next hop and stores all data on the current best-matching

peer.

Figure 13.10 shows a typical data placement in the MHT. Data item d is stored

on a node nd, which is moved to another node nnext. Let r be the communication

range of a node. The data item d should be stored on a node nd, which is not fur-

ther away than r/2 from the data item’s position pd. This is determined by the key
that describes the data item d. As long as the data item d is stored not further

away from its position of r/2, for instance, a node nd in Figure 13.10, another node
r

d

r / 2
nd

n

r

FIGURE 13.10 Example data placement in MHT459 # 2006 IEEE.
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can reach it when it comes within r/2 range of the data d. The current speed and

direction of data and nodes predict future locations. It may be temporarily not

reachable when this node is farther away than r/2 from the data item’s position.

This is evaluated by the node that determines in which node to store the data

item.
MADPastry

MADPastry461,474,476 is an adaptation of the Pastry structured overlay to MANETs

using ad hoc on-demand distance vector (AODV) routing. MADPastry uses a

small set of the mobile nodes to subdivide the overlay address space. These nodes

are called landmark nodes. Landmark nodes self-select by comparing their iden-

tifier values against the predefined set of landmark keys. The node numerically
closest to a landmark serves as a landmark node.

Nodes in the vicinity of a landmark node use the prefix of that landmark

node’s address to select their own address. Nodes with a common prefix form

a spatial cluster in the mobile space. Figure 13.11 shows an example of spatial

clustering in which different icon types represent different prefixes in the region.

Like Pastry, MADPastry uses prefix routing and organizes its routing table to

easily match prefixes of different lengths. In addition, both use leaf sets to route

to peers with the same prefix. MADPastry uses its clustering organization to sup-
port key-based routing in two steps. In the first step, assuming that the destina-

tion is in a different cluster from the source peer, the message is routed toward

the landmark matching the initial prefix. After the message reaches the cluster
FIGURE 13.11 Spatial distribution of node address prefixes using random landmark clustering

in MADPastry. Reprinted from [461], # 2008, with permission from Elsevier.
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corresponding to that landmark, nodes in the destination cluster use their leaf set

entries to forward the message to the destination.
This two-step routing model is illustrated in Figure 13.12, where a message

from node 17 with overlay address 75A1FFE2 is sent to node 79 with overlay

address B7E9A014. The message makes three overlay hops, from nodes 17 to 4,

35, and 79. Each overlay hop is one or more MANET hops. For example, overlay

hop from node 17 to 4 takes MANET hops from node 17 to 54, 43, 39, 90, and 4.
Other P2P MANET Designs

A large number of designs have been proposed for implementing P2P overlays in
MANETs. Table 13.2 summarizes the key features of a number of proposals. The

MANET routing algorithms used in these systems include Dynamic Source Rout-

ing (DSR), Optimized Link State Routing (OLSR), AODV, and Simple Multicast

and Broadcast (SMB).



Table 13.2 Summary of P2P Overlay Designs

System
MANET Routing
Algorithm

P2P Overlay Lookups
Evaluation Size
(Nodes)

Node Speed
(m/s) and Range

MHT575 GPSR None Key maps to node’s path 1000 to 100,000 10–15 m/s

2000 x 2000 m2

Ekta590 DSR Pastry Prefix key-based 50 1–19 m/s

1500 x 300 m2

MPP586 Extended DSR Gnutella Flooding 50 . . .200 0–5 m/s

� 2000 x 2000m2

XL-Gnutella594 OLSR Gnutella Flooding with superpeers 50 � 15 m/s

not stated

MADPastry577,595,597 AODV Pastry Prefix key-based with

clustering around landmarks

100 and 250 1.4 m/s

1000x1000 m2

FastTrack over

AODV596
AODV FastTrack Flooding with superpeers 50 0–20 m/s

1500 x 320 m2

ORION588 Neutral, AODV

and SMB

Unstructured Flooding 40 0 to 2 m/s

1000 x 1000 m2

ISPRP585 DSR Chord Key-based 1000 NA

Dynamic P2P

Source Routing598
DSR Pastry DP2PSR 800 9–19 m/s

NA
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SUMMARY
This chapter discusses the mobility and heterogeneity of mobile nodes in P2P

overlay networks. Mobility of peers in an overlay induces increased churn, and

node lifetime can also be reduced due to other characteristics of mobile devices,

such as energy limitations and device usage patterns. Several proposals to miti-

gate mobility churn caused by mobile nodes use routing indirection or keep the
mobile peer outside the overlay routing mechanism. Routing indirection mechan-

isms include use of Mobile IP, a native layer solution, or using stationary peers in

the overlay to proxy routing to mobile peers. In addition, multihoming may

become an important feature of mobile peers in the future.

There are some similarities between P2P networking and MANETs, leading to

proposals to design P2P overlays for MANETs. MHT and MADPastry are described

and other designs are summarized.
FOR FURTHER READING
Several proposals for the future of the Internet use overlays that are tied into the

network infrastructure and that support network services that include mobility,

including SpovNet462 and Service-Aware Transport Overlay (SATO).408 In addi-

tion, the IETF Host Identity Protocol (HIP) WG464 is designing HIP-Bone, which

provides an overlay using HIP addressing. HIP-Bone is intended to leverage HIP
features and includes mobility transparency. Global Environment for Network

Innovations (GENI) is using overlays for testing future Internet architectures

and may consider them as deployment tools as well.463

Zahn and Schiller461 analyze the design requirements for P2P structured over-

lays in MANETs and propose a design to enable porting and direct deployment of

structured overlays in MANETs. Bisignano et al.465 review recent cross-layer

design approaches to synergistically integrate a P2P-MANET system.



CHAPTER
14
Security
Security is a fundamental issue for P2P overlays because peers reside in different

domains without enforcement of mutual trust. In addition, existing mechanisms

for enabling trust use server infrastructure, whereas P2P overlays seek a

distributed mechanism. In addition to conventional security issues, P2P overlays

have some specific security risks, including large-scale impersonation attacks,

use as a distributed DOS platform, and file pollution. This chapter surveys

and classifies the security issues and presents techniques for addressing them.
The chapter concludes with case studies on security in Groove, a P2P groupware

application, and pollution in P2P file-sharing systems.
INTRODUCTION
Security is an essential requirement and an important component of any commu-

nication and computing system. This is certainly true for a peer-to-peer system.
In fact, security in P2P is an issue of particularly concern to many. With Napster’s

debut in 1999, P2P file sharing became immensely popular. The public’s concern

with information security has also increased tremendously in the past eight years.

Web searches on keywords such as: P2P security news, P2P security concerns,

and P2P security story; all return long lists of results with many news headlines.

Interested readers can refer to Tiversa’s Website444 for some “P2P security

incidents.”

Many users wonder, “Am I leaking some private, especially financial, informa-
tion when I use a P2P system?” Recent studies478,479,480 focusing on information

leakage and inadvertent disclosures through P2P file-sharing networks found a

surprising number of threats to both corporate and individual security, including

a large number of searches targeted to uncover sensitive documents and data.

In their study,478 P2P searches and files on three P2P networks Gnutella, Fast-

Track, and eDonkey over a seven-week period (December 27, 2005, through

February 13, 2006) were categorized. Sixteen thousand searches out of an

estimated 800 million searches were found to be related to banking institutes.

319
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Out of the 16,000 searches, 7,194 were found to be medium and high risk, where

searches are directed for specific documents or data, such as account user infor-

mation, passwords, and routing and personal identification numbers (PINs).

These kinds of searches could fuel malicious activity and represent clear threats.

For example, USA Today
482 reported a case of ID theft by file sharing. The

offender reportedly used Limewire’s file-sharing program to troll other people’s

computers for financial information, which he used to open credit cards for an

online shopping spree. At least 83 victims were identified, “Most of whom have

teenage children and did not know the file-sharing software was on their com-

puter.” It also pointed out the possibility of the number of people affected in

the order of hundreds and the total amount lost in the order of hundreds of

thousands of dollars.

“We believe that P2P file-sharing networks represent a significant and poorly
understood threat to business, government, and individuals. Given the nature of

the threat, we would argue that many individuals may be experiencing identity

theft and fraud without ever knowing the source of their misfortune. Further-

more, we see many of the current P2P trends increasing the problem. We urge

both corporate executives and government officials to educate themselves

and their constituencies to the risks these networks represent,” an author of

these studies concluded in testimony before the Committee on Oversight and

Government Reform of the United States House of Representatives.481

File sharing is just one of many types of applications of P2P networks. The

increasing popularity of P2P applications, including P2P file sharing, P2P media

streaming, P2PTV, and P2P gaming, could potentially instigate security risks that

are more serious than those found in [479] and beyond the much discussed con-

tent security and copyright issues.483 It could open up opportunities for cyber

criminals to trawl the P2P network and steal or gather confidential information,

to damage documents, content, or even devices, and to poison the network for

criminal intents. It is believed that much of these vulnerabilities are rooted in
the autonomous and decentralized nature of P2P systems and the relatively

limited use of security techniques in existing P2P applications. In the following

sections, we look at the security threats of P2P systems, discuss several existing

solutions, and address some challenges in the P2P security domain.
SECURITY RISKS AND ATTACKS
Classifications of Attacks

Attacks on P2P systems can be classified based on various criteria. Some common

criteria include functional target, communication mechanism, propagation mech-

anism, effect on victims, and impact. Figure 14.1 lists four types of classifications.

Here, as examples, we look at three of those (Figures 14.1A, 14.1B, and 14.1C) in

more detail.
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FIGURE 14.1 Classification of attacks on P2P systems.
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Classification by Target Functional Layer
Attacks on P2P systems can be targeted on different layers (see Figure 14.2),

including the overlay network layer and the application layer. Application layer

security largely depends on the guarantees provided at the overlay network layer,

whereas security at the overlay layer relies on the assurance offered at the

network layers.
Security breaches that take place on the application layer assume direct user-

to-network interaction through application interfaces. Although file sharing has

been the most discussed application for security concerns in P2P networks, risks

and threats do exist in regard to other P2P applications as well. P2P file storage

systems and P2P media streaming, for example, are concerned with information

leakage and copyright protection as well.
Application Layer

Overlay Layer

Network Layer

Security

Security

Attacks

Attacks

Attacks

FIGURE 14.2 Attacks and security in a P2P network.
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At the overlay layer, attacks target overlay layer operation primitives to alter

or impair P2P communication. In structured P2P overlays, a major threat is

malicious routing, whereby attackers exploit the vulnerability of the DHT routing

mechanism, since peers rely on each other’s routing table to function prop-

erly. This can be the weakest point of the overlay. When some or a substantial
number of routing tables in the P2P overlay are compromised, the functionality

of any P2P application that is built on top of the overlay may be degraded or even

disrupted.

At the network layer, P2P overlay protocols are susceptible to existing conven-

tional attacks that affect many other networked applications. These attacks

include interception of packets, manipulation of packet contents, and mis-routing

of packets.

Classification by Effect on Victims
As in conventional networked applications, the overlay messaging is also suscep-

tible to four classes of attack:484

n Interruption. Unauthorized disruption.
n Interception. Unauthorized access.
n Modification. Unauthorized tampering.
n Fabrication. Unauthorized creation.

These attacks can be passive or active. Through exchange of information with

other peers as well as through embedding attack mechanisms in the peer appli-

cation software itself, a peer may easily be exposed to viruses, worms, Trojan

horses, adware, or spyware. Intrusion, eavesdropping, espionage, sniffing, sub-

stitution or insertion, jamming, overload, spoofing, sabotage, spamming, reverse

engineering, cryptanalysis, theft, scavenging, and denial of service are just some

of the many forms of attack existing today.

Classification by Attacker Goals
Goals of attacks in a P2P overlay, besides active intent such as theft of data, theft

of resources, tampering with devices and networks, and disruption of services,

also include passive intent such as traffic analysis and signal analysis.
The P2P Security Gap

One unique characteristic of some P2P aggravated attacks is the collective use
of resources to achieve malicious means. For example, a conspiracy of nodes

may act in concert to attack a victim peer. A malicious peer may exploit a large

amount of resources over the P2P network and use that to attack the victim.

A Sybil attack,485 forging of multiple identities for malicious intent, is representa-

tive of the type. To fight against this and other types of attack, some conventional

solutions may be adopted in semidecentralized P2P systems. However, in a fully

decentralized P2P system, decentralized security administration is expected.
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Using a Sybil attack as an example, in the absence of an identification author-

ity, a local peer’s ability to discriminate among distinct remote peers depends on

the assumption that an attacker’s resources are limited. Peers have to issue

resource-demanding challenges to validate identities, and peers must collectively

pool the identities they have separately validated. To achieve these goals, it is
required485 that (1) all peers operate under nearly identical resource constraints;

(2) all presented identities are validated simultaneously by all peers, coordinated

across the system; and (3) when accepting identities that are not directly

validated, the required number of vouchers exceeds the number of systemwide

failures. These goals, however, are very difficult to achieve in a large-scale P2P sys-

tem. That is, today decentralized security mechanisms are not in full place,

whereas traditional network manager server-based security schemes do not offer

suitable means for fully decentralized P2P network protection. This P2P security
gap amplifies the risks and hinders the application of P2P networks.

One security problem that is of significant concern in many organizations is

shown in Figure 14.3. To share data, files, or resources on your device and system

and to access data and files or utilize resources on other peer devices within a

P2P network, you may have to open a specific TCP port through the firewall

(see Figure 14.3) for the peers to communicate. This TCP port becomes an

“opportunity” for malicious attacks and increases the risk of malicious traffic at

the peers.
Sample Attacks and Threats

Theft is an example of an interception attack. Theft attacks can be targeted at

the network, overlay, or application layer with a simple goal of stealing confiden-

tial information from others. Theft is the major attack discovered in studies

of file sharing system security,479,480,481 in which adversaries took advantage of

information leakage and inadvertent disclosures to access confidential
information.
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FIGURE 14.3 A security gap in a P2P system.
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Wrapster,486 a free utility software initially designed for Napster users, was

released in 2000. It can be used as a tool to enable information leakage in P2P file

sharing systems. Wrapster is used to transform any file, such as a program, video,

or text, into a file in MP3 format to disguise it. An individual then shares the trans-

formed file as an MP3 file using a P2P file sharing system. A receiving peer uses
Wrapster to convert the file to its original format. Thus, using Wrapster together

with file sharing software on the company’s network, a malicious insider could

covertly bypass the company security mechanisms and policies, and leak confi-

dential information to anyone participating in the P2P file sharing system.

The most well-known attack is illegal copy and distribution of multimedia

content and software. Copyright protection has been a nonstop battle for the

Motion Picture Association of America (MPAA) and Recording Industry Associa-

tion of America (RIAA). According to recent reports487, U.S. movie studios lose
$447 million annually due to online piracy. Placing copyrighted content online

and sharing them freely via P2P file sharing applications has been a key attractor

of P2P file sharing and streaming. As a result, MPAA and RIAA have targeted P2P

networks as a potential threat. One of the most famous lawsuits perhaps is

the RIAA v. Napster case, which led to injunction and shutdown of the original

Napster service. The legal controversy has continued beyond Napster, however.

For example, in Elektra v. Barker, RIAA put individual users on the stand. The

goal is to prevent unauthorized copying and online distribution of music files.
Bandwidth clogging, an example of an interruption class of attack, has been a

concern of many corporations and universities. It is especially serious for P2P

content distribution applications. The rich multimedia (audio and video) files that

P2P users share are usually large in size. Consequently, P2P multimedia download

and streaming always cause heavy traffic, which clogs an organization’s network

and affects response time and performance of normal business correspondence.

The damage escalates when adversaries manipulate peers to issue multimedia

download or streaming simultaneously. This is the reason that many corporations
and universities are banning the use of P2P file-sharing or streaming applications.

Denial of service (DoS) is another important type of interruption attack.

Almost any attack that obstructs availability can be categorized as a DoS attack.

DoS attacks could cause service breakdown through disruption of physical

network components; consumption of resources such as storage, computation,

or bandwidth resources; obstruction of communications; and interference with

configuration and state information. For example, a DoS attacker may use mal-

ware to max out a user’s CPU time or crash a system by triggering errors in
instructions.

P2P networks further open up various possibilities for distributed DoS (DDoS)

attacks,488,489,490 networked DoS attacks whereby nodes work together to pre-

vent a system from performing its task. For example, an attacker registers with

a P2P overlay, gains access to multiple peer devices, plants zombie processes488

(daemons that perform the actual attack) on those peer devices, and launches

an attack with all the zombies on a target device or service at a predetermined
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time. With hundreds or thousands of zombies located on a P2P network working

together, the victim’s network bandwidth could be easily drained, causing denial

of services.

On May 14, 2007, Prolexic Technologies, a network security vendor specializ-

ing in protecting web sites from DoS attacks, issued an alert491 because the com-
pany observed an increase in the number and frequency of P2P-based DDoS

attacks, which can cause a major local network disruption. “The popularity of

peer-to-peer networks has now gained the interest of cyber criminals who see

these networks as a huge potential for distributing malware and launching DDoS

attacks by convincing 100kþ computers to attack on their behalf. Recently,

attackers have found a way to pull off this type of attack anonymously, and with

ease, flooding victims with far more connections than they can handle,” the

article stated. According to Prolexic, the most aggressive P2P-DDoS attack is a
so-called DCþþ492 attack, which employs the popular DCþþ open-source client

for Windows using a Direct Connection network. In a DCþþ attack, the adver-

sary acts as a puppet master, instructing peers of a P2P network to connect

to a victim’s Website. With a P2P network of size N peers, and each peer

opening m connections simultaneously, the victim’s site could potentially be hit

with up to mN connections in short order. Prolexic reported very large DCþþ
attacks of over 300k (N > 300,000) IP addresses in its article,491 which shows

how the DDoS problem constantly evolves. Today, an increasing number of
P2P-DDoS attacks are targeting Websites. In these attacks, peers (P2P network cli-

ent computers, for example) are tricked into requesting a file from the victim’s

site, allowing the adversary to use the P2P network to overwhelm the victim’s site

and disrupt its availability. To an adversary, the major advantages of using a DDoS

attack include (1) more attack traffic with a large number of distributed or peer

resources and (2) more difficulty for the victim to track and shut down the attack-

ing sources or zombies.

DDoS attacks appear in various forms. Mirkovic and Reiher489 classify DDoS
attacks based on degree of automation, communication mechanism, scanning

strategy, propagation mechanism, exploited vulnerability, attack rate dynamics,

and impact. For example, based on degree of automation, these attacks can be

categorized into manual attacks, semiautomatic attacks, and automatic attacks;

random, hit list, topological, permutation, and local subnet are several classes that

exist in scanning strategy-based classifications. Alternatively, the attacks can be

grouped into central, back-chaining, and autonomous subsets according to their

propagation mechanism.
Later in this chapter we look at how P2P overlay networks can be taken advan-

tage of by adversaries to issue DDoS attacks. Some available methods to defend

against DoS attacks are also discussed.

The term virus refers to a program that reproduces by introducing a copy of

itself and infecting another computer or device without permission or knowledge

of the user. Often the virus is appended to the end of a file or the program header

is modified to point to the virus code. A virus, as we all know, can cause severe
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damage to a system or device. A P2P network offers an attractive platform for

attackers to spread viruses. A piece of code, the virus, could appear to be a pop-

ular file-sharing program and subsequently when downloaded and accessed could

unknowingly affect many peers in the P2P overlay. The virus gains access to the

peers’ devices, modifies data and files on the devices, changes user password or
access information, destroys the file system, and more, causing an interception,

an interruption, a modification, and/or a fabrication class of attack.

These examples are merely an illustration of the security threats existing

in P2P networks. Interested readers can refer to [493] and [494] for more

discussion.
Overlay Layer Attacks

Unlike some other applications, P2P applications are built on top of overlay net-

works, which can introduce an additional layer of attack. At the overlay network

layer, current P2P overlays in the literature provide limited security for message

dissemination. Hence, a malicious peer has many opportunities to corrupt P2P

communication at the overlay level. Assuming that the underlying network layer

is reliable and secure, attacks on the overlay, such as attacks on peer identification

mapping schemes, attacks on routing table entries or updates, lookup attacks,

DoS attacks, attacks on data placement schemes, and attacks on message forward-
ing, can all potentially hinder the functionality of a P2P system. Using structured

overlays (Chapter 4) as an example, let’s look at several typical overlay layer

attacks.

NodeId Attacks
A nodeId attack496 can occur in a structured overlay when one node or a coali-

tion of malicious nodes are able to obtain a specific nodeId (node identification)

that maximizes its probability to appear in a victim peer’s routing table or be
closer to an object key. It could potentially compromise the integrity of a

structured P2P network without the malicious party controlling a large fraction

of nodes. For instance, one attacker may choose the closest nodeIds to all replica

keys (objects) for a particular content object to gain control of access to that

object. NodeId attacks would give the attacker the ability to mediate the victim

peer’s access to the overlay or censor the object.

Sybil Attacks
A Sybil attack is defined in [485] as a small number of entities counterfeiting mul-

tiple peer identities so as to compromise a disproportionate share of the system.

In other words, an adversary tries to get a large number of nodeIds, which may

or may not be randomly generated, to appear and function as distinct nodes. With

multiple identities, the adversary can get closer to a certain object or many

objects in the P2P overlay. It increases the opportunity to intercept message rout-

ing and overlay network operation. It can even enable a malicious party to take
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control of the P2P overlay network. The Sybil attack is named after the book

Sybil,
495 a case study of a woman with multiple personality disorder. In [485],

Douceur shows that, without a logically centralized authority, Sybil attacks are

always possible except under extreme and unrealistic assumptions of resource

parity and coordination among entities.

Routing Table Attacks
Routing table attacks include those attacks that manipulate routing table entries

for malicious intent. Adversaries could take advantage of routing table updates

to feed false updates and thus introduce faulty routing table entries to other

peers. The effect cascades after subsequent updates. This could potentially trig-

ger many problems in the P2P network. The routing poisoning-based DDoS attack

discussed later in the chapter is a representative case of an attack via routing table
manipulation.

Message-Forwarding Attacks
In the absence of faults, messages in structured P2P networks are delivered from

the source to the destination node after an average of h hops. Even if the proba-

bility of a routing table being controlled by attackers is minimized, an adversary

can still reduce the probability of a message being successfully delivered by sim-

ply not forwarding a message or by altering the routing algorithm. When one or
more peer nodes or routes between two nodes are compromised, a message

might be dropped, modified, or diverted. This is called a message-forwarding

attack in [496] and [497].

More on DDoS
In [490], Naoumov and Ross describe two approaches to create a DDoS engine

out of a P2P system: poisoning the distributed index in peers and poisoning the

routing tables in peers. In index poisoning-based DDoS attacks, the attacker
inserts bogus records into the P2P index system. In the index system, the location

of one or more popular files, say F1, F2, . . ., Fn, are replaced with the victim

(target)’s IP address IPa and port number PNa. The victim could be a mail server,

a Web server, or a user’s desktop. It might not even be a client of the P2P system.

When peers later search for F1, F2, . . ., Fn, the targeted port PNa of the targeted

host IPa is returned to the peers from the index. The peers then connect with

the target and attempt to download F1, F2, . . ., Fn. In a large P2P network, this

could potentially overwhelm the target server with fully open TCP connections
or by filling up the number of allowed connections and preventing legitimate

users from obtaining services.

In a routing poisoning-based DDoS attack, the attacker attempts to poison the

routing tables in the P2P nodes. As we discussed, the cascade effect can be

extremely significant. Using updates or other methods, the adversary could try

to poison the routing table entry of many peers and make the target a neighbor

of many peers in the P2P overlay. When those peers forward a query or other
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messages, it may select the target from its neighbor set and send the message

directly to the target. In a large P2P system, if a significant fraction of the

peers have their routing tables poisoned, the target host can potentially receive

a flood of query, publish, and maintenance traffic and hence be the victim of a

bandwidth DDoS attack.
Naoumov and Ross used Overnet498 as a vehicle to exploit the two types of

P2P-DDoS attacks and measure the impact of these attacks. For a 45-minute

period, bogus locations were advertised and location messages were sent to

crawled peers. With little effort, Overnet was used to attack a victim that is not

a client on the Overnet. For the entire duration of the attack, the victim received

traffic from 340,274 peers from 22,484 autonomous systems (ASs) in their

measurement. This illustrates the highly distributed nature of these attacks. This

distributed nature makes it extremely hard to defend against DDoS attacks and
makes filtering by source IP addresses difficult if not impossible.
SECURITY MECHANISMS
Given the vulnerabilities of existing P2P overlays and the attacks we’ve described,

can we still make a P2P overlay secure and dependable? Defending against

the threats against P2P overlays requires careful planning and selection of P2P
infrastructure and security mechanisms. Security policies are the foremost

requirement in building a secure system. The set of rules defines and governs

the control, use, and action entities of a system. With security policies in place,

it is then possible to design suitable security mechanisms to enforce the security

policies and ensure the security of the system.
Cryptographic Solutions

Cryptographic schemes offer the most effective solutions for many informa-

tion security issues. They are also essential to security in P2P. Among various

crypto tools, encryption and authentication are two fundamental and the most

frequently used crypto primitives.

Encryption is the process of disguising a message in such a way that its

content is hidden and cannot be revealed without a proper decryption key.

This is a fundamental security tool that implements confidentiality with coding.

Symmetric key and asymmetric key encryptions are the two types of encryption
algorithms. Symmetric key encryption algorithms, also called private key encryp-

tion algorithms, are a class of encryption algorithm that uses identical keys for

both encryption and decryption. Popular examples of symmetric key encryption

algorithms include Data Encryption Standard (DES) and Advanced Encryption

Standard (AES), which are standardized by the National Institute of Standards and

Technology (NIST) and are widely adopted by many applications. Asymmetric

key encryption algorithms, a.k.a. public key encryption algorithms, such as
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the RSA encryption algorithm, are another class of encryption algorithm that

employs different keys at encryption and decryption. Note that in general,

asymmetric key algorithms are much more computationally intensive than symmet-

ric algorithms.

Encryption can play many positive roles in P2P security. It makes it difficult
for attackers to carry out interception and modification classes of attack. If all

confidential information is encrypted, even if some is shared or leaked over some

insecure P2P file-sharing communication channels, adversaries would have a hard

time decrypting the information without a proper key. The security risks will

be subsequently reduced. Therefore, in the ID theft case discussed early in this

chapter, the offender would not have been able to get access to others’ financial

information that easily. The number of victims would have been greatly reduced

in that case.
Authentication, another essential security tool in computer systems, is the

process of verifying whether an object is in fact who or what that object declares

itself to be. A one-way hash that is nonreversible, sensitive to input changes, and

collision resistant is used for authentication as well as data integrity verification.

Authentication can also play many positive roles in P2P security. For example,

combining secure authentication of each peer with message encryption, a P2P

system can prevent eavesdropping attacks. With content authentication, informa-

tion substitution and insertion attacks can not easily be realized.
DoS Countermeasures

The most popular countermeasures of DoS attacks include service/host

backup, reactive detection, rate limiting, and filtering. Having a separate emer-

gency block of IP addresses, for example, can be invaluable in surviving a DoS

attack. Pattern detection is often helpful by storing the signature of known

attacks in a database. Rate-limiting mechanisms impose a rate limit on a stream
that has been characterized as malicious by the detection mechanism. These are

often used as a response technique when a detection mechanism cannot charac-

terize the attack stream. Effective filtering is another way to protect against DoS

and DDoS attacks. For example, attacks originating from or going to bogus IP

addresses can be filtered using Bogon filter (a bogus IP filter). Filtering traffic

based on access control lists (ACLs), rate limiting of IP addresses, or ranges of

IP addresses can also be employed. Some switches today offer deep packet

inspection capability and Bogon filtering. These can help defend against DoS
and DDoS attacks.

TCP splicing, also called delayed binding, is another widely used mechanism

to prevent DoS attacks. By postponing the connection between the client and the

server, sufficient information to make a routing decision can be obtained. Many

application switches and routers implement this capability today. Delay-binding

the client session to the server until the proper handshakes are complete can

prevent DoS attacks.
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Firewalls have been used to defend against many types of attacks. Today

advanced firewalls have built-in capabilities for differentiating good traffic from

DoS attack traffic. For example, Cisco PIX (Private Internet Exchange)499 uses

stateful inspection to confirm TCP connections before proxying TCP packets to

service networks. Certainly most simple firewalls have limited capabilities for dif-
ferentiating good traffic from DoS attack traffic, making it difficult to defend

against DoS attacks, let alone DDoS attacks.

Recall that Naoumov and Ross490 show the distributed nature of two types of

P2P-DDoS attacks, which lead to the ineffectiveness of IP address filtering in

defending such types of attack. Although pattern detection and advanced filtering

mechanisms may be helpful in detecting these types of P2P-DDoS attack, the

eruption of new types and large P2P-DDoS attacks make this type one of the

toughest to defend against.
Sia500 also exploited the DDoS vulnerability of the current BitTorrent (BT) pro-

tocol. Allowing a user to arbitrarily specify its own IP is one significant cause of

the BT protocol vulnerability to DDoS attacks. Sia suggested fixing this issue using

more strict protocols with source authentication and pattern-matching packet

filtering mechanisms.

Mirkovic and Reiher489 summarize DDoS defense mechanisms into a series of

categories. For example, resource accounting and resource multiplication are pre-

ventive types of defense, whereas pattern detection, anomaly detection, hybrid
detection, third-party detection, agent identification, rate limiting, filtering, and

reconfiguration are reactive defense types. Most notably, deploying comprehen-

sive protocol and system security mechanisms can substantially help improve

resilience to DDoS attacks. Additionally, enforcing policies for resource consump-

tion and ensuring that abundant resources exist can both help reduce the impact

of DDoS attacks so that legitimate clients will not be affected. For a comprehen-

sive list and discussion of DDoS defense mechanisms, readers are encouraged to

reference Mirkovic and Reiher’s survey and taxonomy.489
Secure Routing in Structured P2P

In [496], Castro et al. define a secure routing primitive that ensures that when

a nonfaulty node sends a message to a key, the message reaches all nonfaulty

members in the set of replica roots with very high probability. Secure routing

guarantees that even with the existence of malicious peers (nodes) that may cor-

rupt, drop, modify, replace, or misroute the message, the correct message will
eventually be delivered to the intended receiver with high probability.

Castro et al.496 and Wallach497 identify three categories of secure routing

requirements in structured overlays such as Chord,501 Pastry,502 and Tapstry,503

namely: (1) secure assignment of node identifiers, (2) secure routing table main-

tenance, and (3) secure message forwarding. Secure nodeId assignment ensures

that a malicious node, a node in the P2P overlay network that uses the network

improperly, whether deliberately or not,496 will not be able to choose its ID
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maliciously and a coalition of malicious nodes cannot allocate a collection of

nodeIds illegitimately so as to control a specific content object or to maximize

their chances of controlling a victim’s routes or the network. Secure routing table

maintenance deals with attacks on routing tables, such as imposing bad routing

table entries to divert a victim’s message routes. Secure nodeId assignment and
secure routing table maintenance may guarantee that the probability of a routing

table being controlled by attackers is minimized. However, an adversary can still

reduce the probability of a message being successfully delivered by simply not for-

warding a message or by altering the routing algorithm.504 When one or more

peer nodes or routes between two nodes are compromised, a message might

be dropped, modified, or diverted. To ensure that at least one correct copy of a

message sent to a peer reaches the correct peer with high probability, secure

message forwarding mechanisms are needed.

Secure nodeId Assignment
The most straightforward scheme for secure nodeId assignment is to establish a

centralized certificate authority to issue nodeIds496 and bind the nodeId to the

IP address. In enterprise system or private networks, user authentication is

already in place. Hence, central authority-based nodeId certification can be a pre-

ferred choice. Furthermore, imposing a nodeId certificate fee or physical identify

bound nodeIds will greatly reduce the risk of Sybil attacks. Many believe,
though, that trust is an important issue to improve a P2P system’s capability to

fight Sybil attacks.

A distributed nodeId binding scheme is another possible means to avoid mali-

cious nodes inserting themselves at multiple nodeId locations with a single IP

address. Every time a node accepts a particular binding <node id, IP address>
from another node, it stores the binding information in the overlay using the IP

address as the key. Before storing this binding, it checks to see whether another

binding for the same IP address is stored. If such a binding with a different
nodeId exists in the overlay, the current request to establish a new binding is

rejected. If, however, an existing binding in the overlay contains the same nodeId,
the current request is accepted. If there is no existing binding information for that

particular IP address in the overlay, again the current binding is accepted.

Noticeably, without additional measures this scheme is vulnerable to DoS

attack, whereby a malicious node simply inserts random bindings for different

IP addresses, preventing those IP hosts from joining the overlay. To avoid this

problem, a return routability test, similar to the one developed for Mobile IPv6,
can be employed. A return routability test should be conducted every time a bind-

ing is stored on the overlay, to ensure the validity of the binding. Obvious exten-

sions to this solution in terms of adding redundancy and verifying the source IP

address ensure that a single node (with single IP address) cannot hog a large por-

tion of the nodeId space. Although there is additional cost in terms of the return

routability message exchange, we believe that it is justified for the same rationale

behind the adoption of such a solution in Mobile IPv6.505
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Secure Routing Table Maintenance
Castro et al.496 suggests imposing strong constraints on the set of nodeIds that

can fill each slot in a routing table to maintain routing table security. A two-table

solution was given in [496]. In two-table routing, one guarantees performance

while the other is constrained such that the probability of it being manipulated

is minimized. Authentication is another way to reduce routing table attacks.

However, additional cost is expected and may reduce the performance of the

P2P application, especially delay-bounded applications.

A hybrid P2P architecture (see Figure 14.4) can also potentially help reduce
the risks of routing table attack, assuming that all supernodes can be guaranteed

trustworthy. Since ordinary nodes communicate through the supernodes, the

probability of routing table manipulation by a malicious peer, an ordinary node,

is greatly reduced.

Secure Message Forwarding
Since peer-to-peer overlays rely solely on other peers for message routing, a mes-

sage has to be properly routed without modification in transit. An adversary may
try to alter the message when routing the message to its receiver, alter its routing

table to disrupt the message forwarding, or take advantage of locality to control

some routes. Secure message forwarding ensures that at least one copy of a

message sent to a peer reaches the correct peer with high probability.

An obvious way to trade performance for security is to use multiroutes to send

duplicated messages from the source to the destination. However, in a bandwidth-

intensive application, message duplication will burden the system. An improve-

ment on the scheme is to utilize message authentication. Only when a message
fails an authenticity check, redundant routing is invoked to reforward a correct

copy of the message from one or more different routes. Although this is not help-

ful in streaming media applications due to the real-time and continuous playback

requirement, it can be used otherwise. In streaming media applications, instead

of redundant duplication, multiple substreams through multiple-route forwarding

can be introduced. With a stream-splitting algorithm such as multiple description

coding, a media stream can be split into multiple substreams. A receiver can still

play back the media without interruption when receiving only some of all the
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FIGURE 14.4 (A) Fully decentralized versus (B) hybrid P2P architecture.
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substreams, although with degradation of quality. In this case, a fine-grained

scalable message encryption and authentication scheme can help improve the

security in streaming message forwarding, with minimal additional cost. One tra-

deoff of the stream-splitting scheme, though, is the added control cost in terms of

multiple distribution routes (trees.)
Carefully designed overlay routing algorithms may also help reduce security

risks in the overlay layer. Assuming that there are an average of h routing hops

in message delivery from the sender to the destination peer, the percentage of

faulty nodes is g, so between the sender and receiver, the probability of routing

successfully to a correct destination peer is p ¼ (1�g)h. Obviously, the smaller

h is, the higher p may be. This suggests that routing algorithms with fewer hops

increase the probability of routing accuracy and hence reduce the probability of

security risks at the overlay layer due to faulty message forwarding.
The hybrid P2P architecture (see Figure 14.4B) that comprises supernodes in

the P2P overlay may also help improve secure message forwarding. If only trusted

nodes can be promoted as supernodes, those supernodes can serve as filers or

servlets. Trusted messaging between supernodes can be established. Further, a

supernode can serve as a “centralized” authority to those ordinary nodes

connected to it or message filters. This adds another layer of protection.
Fairness in Resource Sharing

Many researchers have observed the problem of fairness in P2P overlay-based

applications. In one study,506 70% of free riders were reported. It is unfair to other

peers in the overlay if some peers only want to use other peers’ resources with-

out fair contribution of their own resources. From a security point of view, this

kind of behavior can be characterized as resource theft under the interception
class of attack. Furthermore, with a large number of free riders in a P2P network,

such as the 70% reported in [506], the rest of the peers more easily become

congested or come under attack.

Auditing and Incentives
Incentives are one way to improve the situation; a peer gets an “incentive” to
use other resources by contributing its own resources on a pay-more/get-more

base. A centralized broker or trusted centralized quota authority that monitors

all transactions could accomplish the goal of fairness in resource sharing. How-

ever, scalability is a major limitation of this kind of scheme. The centralized

broker can quickly become a bottleneck in applications with frequent requests.

In this case, distributed mechanisms are needed. A quota manager507 approach,

for example, is one distributed approach. For each peer in the P2P network, a

manager set with a set of nodes, perhaps neighbors of the peer, acts as the quota
manager. Each manager records the amount of resources consumed by the peers

it manages. A remote node, when requesting a fair sharing, would seek an agree-

ment with a majority of the managers of the peer agreeing that a given request is
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authorized. If a hybrid P2P network architecture is employed, the supernodes

can naturally act as quota managers. In a fully distributed P2P network, though,

selecting peers to act as quota managers is a challenging problem. Clearly, in

either case, the process of approval can cause long latency.

Another class of distributed mechanism is distributed auditing. One approach
is to ask each peer in the P2P network to maintain a record of its own usage and

to publish it in the overlay. Other peers can audit these records to achieve fair

sharing. In the case of a hybrid P2P network, auditing can be done in two ways:

having the supernodes act as auditing authorities and collaboratively publish the

auditing records, or making supernodes take on the task of auditing monitoring,

whereby all peers publish records of their own, with the supernodes monitoring

the publishing and auditing of peers. Of course, techniques to ensure that all

peers will publish their records are needed, and this is most challenging in the
fully distributed P2P network. Incentives are one way to achieve this goal.507,508

Micropayment systems may also help improve the fairness issue. It is unclear,

though, whether any existing micropayment system or simple auditing scheme

could scale well to support large P2P overlay and/or high churn applications.

Mojo Nation, an already tested P2P system, tried to use a credit and incentive-

based scheme to improve fair sharing. It was a pseudo-currency micropayment-

based system. In Mojo Nation, if you provided resources, computational, storage,

or bandwidth, to the system, you earned Mojo, a kind of digital currency. If you
consumed resources, you spent the Mojo you’d earned. This system was intended

to keep freeloaders from consuming more than they contributed to the system.

But if users are heavily consuming resources, it does not pose a real threat to most

existing P2P system users, so Mojo Nation never really worked. Today, designing a

P2P system that can take advantage of incentive-based mechanisms with efficient

auditing is still a challenging problem that is being studied by many researchers.
TRUST AND PRIVACY ISSUES
One important aspect of a P2P system is the way a peer trusts another peer in the

system.509,510 The level of trust is the level of confidence of one peer toward

another peer with which it is communicating. A P2P system relies heavily on a

set of distributed peers working properly and fairly together. In a small P2P sys-

tem, especially one that involves only known entities, establishing and maintain-

ing trust between peers is easily achievable. However, today’s P2P system can
be tens of thousands to millions of peers in size, with peers interacting with many

unknown peers. Unfortunately, free riders are a common phenomenon in P2P

applications.

As we saw earlier in this chapter, adversaries actively try to subvert or take

advantage of the system to obtain confidential information for illegal financial

gain. As such, performing peer authentication and authorization and thus estab-

lishing and maintaining reliable trust between peers play central roles in many
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aspects of P2P security. The main goal is to avoid interactions with nodes that do

not lead to security risks. Noticeably, trust is not merely an issue of peer-to-peer

trust. Content and resource trust, being able to authenticate the content and

resource of an accessing peer, is also an obvious security issue.
Architecture

Figure 14.5 illustrates three different architectures of P2P trust management sys-

tems. For ease of discussion, let’s assume that trust between two entities Ea
and Eb (i.e., Ea and Eb have ascertained a trust relationship with each other)

is established when the two entities are authenticated with each other.

In Figure 14.5A, a centralized trust management architecture, a central authority

is used to manage trust. Assuming a network size of N, the number of operations
to establish and maintain trust is O(N).

In a fully decentralized architecture (Figure 14.5B), a naive scheme whereby a

peer has to perform authentication with each and every peer in the network will

have a cost of O(N(N�1)/2) ¼ O(N2), which imposes high overhead on the

network.

In a hybrid P2P (Figure 14.5C) in which supernodes can act as trusted entities,

the cost to establish and maintain trusts can be greatly reduced. Assume that we

have Ns supernodes and all supernodes have to authenticate each other to estab-
lish trust. An ordinary node, however, will treat the supernode as a central author-

ity. In this simple case, the number of operations to establish and maintain trust

will be O(Ns(Ns�1)/2þ(N�Ns)) ¼ O(Ns2þN) << O(N2) when Ns is small.
Peers

Peers
A

B C

Peers

Superpeers

Ordinary
Peers

Centralized
Authority

FIGURE 14.5 Three different architectures for trust management.



336 CHAPTER 14 Security
From a security point of view, a centralized system tends to be vulnerable

to single point of attack at the centralized authority, which is subject to DDoS

and many other types of attack. The hybrid architecture does not offer a single

point for attacks. However, without an intelligent management scheme, the net-

work can quickly become impaired when attacks target several supernodes
simultaneously.
Reputation

One notable facet of research focuses on trust value establishment.511,512,513

The key idea is to use previous interactions to determine the reputation and thus

the trustworthiness of a particular user in the P2P network. Reputation is the

memory and summary of behavior from past transactions. Reputation score is
the numerical representation of reputation. It can be calculated either via a

centralized reputation server or distributedly using local or global trust metrics.

Trust value can be a function of the reputation score that acts as a guide for peers

to make choices in selecting transaction partners or neighbors in a P2P network.

It also serves as an incentive for those peers that have good reputation scores.

According to Despotovic and Aberer, reputation systems can be split into

those using probabilistic estimation and those based on social networks.514 The

former considers only a small proportion of the globally available feedback
concerning a node’s behavior, using probabilistic methods to assess its trustwor-

thiness. The latter aggregates all the feedback available to assess trustworthiness.

The two solutions were found to have varying degrees of effectiveness depending

on the nature of collusion that occurs within the P2P network. For example, the

social networking technique was found to be most effective when the peer pop-

ulation was split into a group of colluding peers and a group of noncolluding

peers of equal size, with probabilistic estimation performing better otherwise.

The implementation cost in terms of message exchanges of the probabilistic
method was found to be O(log N) in structured networks with logarithmic

search costs and O(E) for unstructured networks, where N represents the number

of nodes and E the number of edges in the overlay. For social networks the entire

network must be flooded, and the cost is therefore O(N) and O(E) for structured

and unstructured networks, respectively.

In general, reputation requires mapping information about past transactions

to peers and a metric that can bind the mapping to trustworthiness. When a

peer solicits reputation information about a particular peer from other peers
of the network, it faces the problem of trust; should the peer trust the reputa-

tion information provided by other peers? Obviously, if any peer can easily

refresh or modify its reputation score, the value of the reputation-based scheme

degrades to negative. This implies that a reputation scheme needs to be secure

to prevent it from turning into the weakest link. Today this is still a challenging

problem.
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Privacy

Many P2P networks today do not have built-in privacy mechanisms. Users of

these P2P networks can be tracked or identified by others, including attackers.

Johnson’s testimony481 and the ID theft case discussed early in the chapter

are perfect examples of the gravity of privacy risks in P2P file sharing. Obviously,

user education, better software practice, and more secure protocols and system

architecture can help reduce the risks. Adding privacy technology to a P2P net-
work can also help offset this disadvantage. Goldberg515 believes that reputation

interacts well with privacy-enhanced technologies since reputation can be calcu-

lated without disclosing private information of a peer. His view is shared by

Kinateder and Pearson.516 They use a network of trusted agents on each client

platform that exploit Trusted Computing Platform Alliance517 (TCPA) technology.

A trusted agent forms recommendations and decides what is appropriate to send

out, depending on who is asking for it. This, or another such trusted agent, can be

used to formulate queries asking for recommendations from others in a peer-
to-peer network and process the responses. Furthermore, the system is designed

such that the agents are independent and may be trusted by entities other than

the owner of the platform on which they are running, and the integrity of these

agents is protected by the trusted platform against unauthorized modification.

Another approach attempts to improve privacy with anonymous communica-

tion. If a communication protocol can guarantee that the sender is indistinguish-

able from other peers in network to a receiver, and vice versa, sender and

receiver anonymity can be achieved. P5 [518] achieves this goal via a broadcast-
based protocol. It allows secure anonymous connections between a hierarchy

of progressively smaller broadcast channels and allows individual users to trade

off anonymity for communication efficiency.

Free Haven519 uses cryptographic techniques to protect the identity of all

parties, such as the reader, the server, the author, the document, and the query,

involved in the P2P system. This actively prevents any party other than the

authorized one to read or link information. Although it uses a simple routing

structure, its technique to protect anonymity is very sophisticated.
Tarzan520 serves as transport layer anonymizer. Each node selects a set of

peers to act as mimics. Initial node discovery and subsequent network mainte-

nance are based on a gossip model. Mimics are selected randomly but in some

verifiable manner from the available nodes. Each node exchanges a constant rate

of cover traffic of fixed size packets with its mimics using symmetric encryption.

The relays’ public keys are used to distribute the symmetric keys. Actual data can

now be interwoven into the cover traffic without an observer detecting where a

message originates. A sender randomly selects a given number of mimics and
wraps the message in an “onion” of symmetric keys from each node on the path.

The sender passes the packet—indistinguishable from cover traffic—to the first

node in the chain, which removes the outermost wrapper with its private key

and then sends it along to the next node. With the exception of the last node,
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each node in the chain is aware of the node before and after it in the chain but

cannot tell where it is in the chain itself.

The final node in the chain of mimics acts as the Network Address Translator

for the transport layer and sends the packet to its final destination through the

Internet. This final node gets the content and destination but has no information
about the sender. Nodes store a record for the return path, so a reply can be

received by the final node in the chain, rewrapped with its private key, and sent

back to the penultimate hop. The message is then passed back through the chain,

with each node adding another layer of encryption. The originating node can use

the public keys of each node to unwrap the layers and read the message. Since it

is the only node to know the public keys of each hop along the path, the content

is secure.
CASE STUDY: GROOVE
Groove521,494 is a P2P groupware tool for workspace collaboration. In Groove,

documents, data, and messages are shared confidentially and unaltered among

peers, that is, group members. Groove is capable of data synchronization among

all peers, even incremental changes. Groove builds on permanent secure connec-

tions with all shared space data encrypted on hard disks as well as in communica-
tions. Groove uses authentication to bind a user’s identity to specific actions.

Either out-of-band fingerprinting or a certificate authority management server is

used to authenticate members of a workspace. Data are authenticated in Groove,

with messages signed using 2048 bits RSA keys. Trust is established via physical

world trust between peers and through out-of-band communication at join.

Groove also provides access control using a hierarchical management peer struc-

ture. The P2P nature and rigid set of security policies protects Groove workspaces

from many types of attack. It is one of the best-protected P2P systems on the
market today.
CASE STUDY: POLLUTION IN FILE-SHARING SYSTEMS
Content security and copyright protection have brought a constant battle

between the content industry and P2P content-sharing companies and users in

the last several years. On one hand, many users are enjoying free content
distributed via P2P file-sharing and streaming applications. On the other hand,

content creators and their representatives are trying to stop unauthorized shar-

ing. While taking file-sharing companies and individuals to court, the content

industry also learned to take advantage of the distributed resources and other

characteristics of P2P networks to sabotage P2P file-sharing systems themselves.

One of the techniques they used is called pollution. The goal is to stop P2P

file sharing by causing user frustration. The basic idea is to create bogus content,
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especially popular content, and store it in a P2P file-sharing system. When peers

search for files on these systems, they could be directed to the bogus ones.

The chaining effect of such sharing will result in a large number of peers getting

constant bogus content so that they become frustrated with the system and thus

abandon it voluntarily.
Content pollution and metadata pollution are the two most popular types

used in these attacks on file-sharing systems. With content pollution, the actual

content of a music or video files is modified significantly to generate a bogus

copy. Metadata pollution alters the metadata of a fake copy of the content and

makes the metadata resemble the metadata of the target music or video. Because

many P2P systems do not have effective mechanisms to prevent pollution attacks,

these attacks have become successful tools for the content industry to use in

its fight against illegitimate content sharing over P2P networks. Overpeer,522 for
example, is such a tool that uses pollution attacks to help content creators and

distributors minimize sharing over P2P networks. Based on a measurement study

conducted by Liang et al.523 over KaZaa,524 50% of the copies of many popular

songs were polluted at the time of the study. This shows the success of polluting

file-sharing systems for copyright protection.

Pollution is used for copyright protection in the preceding case; it can also be

used for other purposes as well. To defend against pollution attacks, we can adopt

many mechanisms discussed in this chapter. Authentication and fingerprinting
may be used for peers to acquire only authenticated copies of data and thus

reduce the probability of downloading bogus contents. Trust and reputation

systems can also help reduce the spread of bogus files.
SUMMARY
In this chapter we addressed some possible security risks and some sample
isolated solutions. Although many stories have been told here, these obviously

still do not cover all the aspects of P2P security. Making P2P systems secure is a

big challenge due to their distributed nature and the wide availability of repli-

cated objects. Peers on P2P networks may be easily exposed to distributed

viruses, worms, Trojan horses, or spyware. They might even disclose sensitive

information unknowingly, as indicated in several studies.479,480,481 One significant

cause of these security threats is that users are not well educated about the exist-

ing security risks in today’s P2P-based applications. Certainly, many P2P systems
today, at their immature stage of adoption, still have many security flaws that

are subject to many types of attacks This is another important cause of the threat.

A third important root of the problem is the P2P security gap. For instance, to

share files on your device and to access files on other peer devices within a

P2P network, you must open a specific TCP port through the firewall through

which the P2P software can communicate. This increases the risk of malicious

traffic at the peers.
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Many P2P systems today are application specific. It is important to define the

security goals and adopt security schemes that are application and system driven.

Designing suitable protocols and systems with appropriate security policies and

enforcement mechanisms can get you off to a good start and help you prevent

and defend against various attacks.
FOR FURTHER READING
To further understand the security risks of P2P networks, “Why File Sharing

Networks Are Dangerous,” by Johnson, McGuire, and Willey480 is a good place

to start.



CHAPTER
15
Managed Overlays
Physical networks are managed by their operators to assure that network services

perform as expected. Although overlays are self-organizing, experience with

deployed overlays indicates that additional management mechanisms are needed

in some cases. This chapter compares the traditional network management func-

tions with the requirements for managing large-scale overlays and outlines a gen-

eral approach for integrating an external management agent with an overlay. In

addition, we review current trends in addressing the impact of P2P traffic on
ISP networks.
INTRODUCTION
In August 2007 the Skype P2P telephony service experienced a two-day outage due
to a large number of users simultaneously attempting to re-login to the service.525

The massive restart was reportedly triggered by the update feature on Microsoft Win-

dows in which a user’s computer automatically downloads and installs recent soft-

ware updates, followed by a reboot of the host computer. Those peers performing

the reboot almost simultaneously exited the Skype network. Large numbers of super-

nodes in particular were then no longer available to proxy regular nodes’ connec-

tions to the Skype network. A diminished population of supernodes likely led to

service disruption for regular nodes that rely on the supernodes. As the rebooting
hosts attempted to reconnect to the Skype network, their requests flooded the

Skype infrastructure, exposing a previously unknown bug in resource management

in the Skype infrastructure. At the overlay level, any peers leaving the network due to

normal usage were not being replaced by other peers joining the network due to the

login services being swamped, reducing the critical mass of supernodes needed to

maintain the overall population of the overlay.

Although exact details of the problem have not been released, we make a few

observations about this particular outage before considering the general issues of
service assurance for P2P overlays. Since Windows updates occur on a regular

basis, the fact that similar outages had not occurred previously suggests either
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that the scale of requests reached a level not seen before or that the reported

resource allocation bug was introduced relatively recently. If the former were

the case, it is reasonable to expect that the Skype operators had in the past moni-

tored the peer join and leave rate and would have noticed spikes of demand that

they needed to be able to satisfy.
More important, the fact that the outage lasted for up to two days is probably

due to factors such as these:

n Time to recognize that a problem was occurring. This is complicated by the

normally volatile nature of the overlay population, the distributed nature of
the peers making status costly to obtain, and the difficulty in forming a global

view of the P2P network.

n Time to identify the root cause of the problem. In conventional network man-
agement, this is also a significant problem; there is a flood of events (called

faults) that occur and there is a variety of explanations as to the cause of these

events that the network operators must diagnose and resolve. Was the problem

a DoS attack, a side effect of virus propagation among the client population, a

bug in the Skype client software, a bug somewhere in the infrastructure, an ISP

failure, or some combination of faults?

n Time to fix the problem and potentially update and restart the software. This

could stress the bootstrap mode of the P2P overlay, that is, the mechanisms

used to initially form the overlay. Since the Skype overlay typically operates in

steady-state churn mode, it is reasonable to expect that the bootstrap mode

would be less reliable and a relatively untested part of the system.

The Skype outage is a compelling motivation for the need to be able to manage large-

scale P2P overlays, but these factors enumerated here are general issues facing any

overlay deployment. It iswith these types of questionswe are concerned in this chap-

ter. Further, what makes this problem different from traditional application manage-
ment and why it is a relatively unexplored problem in the P2P community is that

P2P overlays are inherently self-organizing. This raises the question: What is the

appropriate boundary between self-organization and overlay operator management?

It is convenient to draw a parallel between the role of service provider in

conventional telecommunications networks and the operator of a P2P overlay.

The overlay operator is an entity that develops an application layer overlay to pro-

vide peer-to-peer services to end users and a service delivery platform for third

parties. As discussed elsewhere in this book, such services include personal
communications, file sharing, storage, and content delivery. In the peer-to-peer

overlay paradigm, the overlay operator designs into the overlay some degree of

self-management, adaptivity to network problems, and coordination with other

peers. In today’s overlays, the role of an operator is usually not visible and may

be distributed across an open-source development community. In most cases

there is no real-time operational view of the overlay or comprehensive data collec-

tion by which to plan performance upgrades. Instead, the overlay operator
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primarily provides and maintains the software implementation users install on

their computing devices. For the overlay operator to take on the role of monitor-

ing and potentially control aspects of the operation of the overlay to ensure that

service levels are met, the following capabilities are needed:

n Periodic collection of operational statistics and status at each peer
n A scalable architecture for management agents and/or peers to receive peer

status and statistics
n Means by which new resources and peer capabilities can be provisioned
n Ability for a management agent to remotely change peer configuration
parameters

Since overlays are designed to operate without central control, questions natu-

rally arise as to the nature and scope of a managed overlay. What is the boundary
between self-managed and centrally managed? Does a managed overlay differ

from an unmanaged or self-managed one, and if so, how? Which if any overlay

algorithms are more suited to management? Is a managed overlay better able to

offer different grades of service? What are the typical overlay failure modes?

Which operating parameters of an overlay can be configured dynamically? Which

performance parameters are important for collecting statistics? What manage-

ment mechanisms can be designed that are independent of the overlay algorithm?

These are for the most part still open questions, but a pragmatic approach527

retains the self-organization and peer coordination properties of the overlay and

its services while using the management function to monitor exceptional condi-

tions and provision resources to provide expected service quality levels. Assum-

ing that there is sufficient bandwidth and appropriate overlay routing for the

overlay manager to have a global real-time view, the manager can intervene where

the distributed algorithms of the overlay are insufficient. This boundary is likely

to change as the design of overlays advances.
MANAGEMENT OF OVERLAYS VS. CONVENTIONAL NETWORKS
Overlay Dimensions Impacting Manageability

A number of important protocols are widely used in enterprise and carrier net-

works for managing network elements, including Simple Network Management
Protocol (SNMP), Common Management Information Protocol (CMIP), and Trans-

action Language 1 (TL1). In these environments, there is typically one administra-

tive domain that controls the network elements. These elements—such as

routers, switches, and gateways—are deployed and provisioned by the operator,

have well-known operating characteristics, and have limited downtime. In carrier

environments, there may be special dedicated networks that are used to manage

the network elements. The communication latency from the management system

to the network elements is under the control of the network operator.
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On the other hand, peer-to-peer overlays have characteristics that are some-

what different than managed networks and that limit the use of conventional

management protocols and techniques:527

n They are operated on a scale involving millions of hosts and distributed over

the global network. It might be difficult or expensive to deploy distributed

management agents in close proximity to all parts of the overlay. This leads

to large volumes of management traffic and long delays between detection of

a condition and the response.

n As discussed in Chapter 5, the population of peers is dynamic and with mean life-

times that may be as low as one hour. The extent of any particular peer’s partici-

pation is unpredictable and the operator cannot control the time window of peer

participation in the overlay. In most overlay algorithms a peer knows the identity
of only a fraction of other peers in the overlay. Consequently, it is difficult for a

management agent to know the identity and state of all peers at any time.

n Peers run on end users’ machines in separate administrative domains. The over-

lay management agent doesn’t generally have authorization to administer either
the host or the network in these different networks.

n As discussed in Chapters 6 and 13, peers may be behind NATs or may be

mobile and might not be directly reachable.

n To apply conventional management techniques might involve deploying man-

agement agents in different regions of the Internet. The cost of deploying these

agents could exceed the cost of the overlay itself.

n Fundamentally, the introduction of central control is contrary to the design phi-

losophy. It may also increase the vulnerability of the overlay to security threats,

since the penetration of a management agent might permit an intruder to con-

trol or disrupt the overlay using the management interface. Even excluding cen-
tral control, performance monitoring is still useful to inform the designers of

areas of potential improvement.

A managed overlay should retain its inherent self-organizing and peer-to-peer oper-

ational model, and the management function should supplement the intrinsic self-
organizing features where necessary. First, some portion of a peer’s bandwidth bud-

get should be available on a continuous basis for management functions. This

depends on the frequency of monitoring and control messages and whether the

management agent needs to communicate with all peers in the overlay or a subset.

Later in this chapter we describe some designs for broadcast messaging in overlays.

Second, when the distributed algorithms of the overlay reach an operating

point at which they are known to substantially degrade, such as a high churn rate

or request load, the monitoring and control mechanisms should be enabled. Fur-
ther, unusual operating conditions such as sudden partitioning of the overlay,

DoS, and other large-scale security attacks535 should also trigger communication

with the management agent.
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Managed Overlay Model

Let’s assume that the monitoring and control messages between the management

agent and peers in the overlay are routed in the overlay rather than as separate

connections at the native layer. This means that any peer that is reachable in

the overlay is also reachable by some management agent. This also requires that

each management agent be a member of the overlay.

The set of messages for peer management depends on which management
functions we want to include. For monitoring only, some way to retrieve a set

of measurement variables is needed, and the ability to subscribe to periodic mea-

surement reports could reduce polling overhead. For configuration control, the

ability to get and set operating parameters of a peer is needed. These functions

are not unique to peers, and one implementation option is to encapsulate part

or all of an existing protocol such as SNMP into the overlay messaging. For discus-

sion purposes here, we avoid these details and focus on a generic description of

message functions, with the understanding that an actual implementation could
be mapped to an existing management protocol, either directly as messages in

the overlay or via a gateway between the overlay’s management agent and a con-

ventional network management system. In addition, in practice, the management

state of a peer could be represented as a management information base (MIB).

Following 527, a P2P overlay in some time interval ti is a set of peers P with a

set of attributes A. Each attribute has current state s and history h. History

includes attribute-related messaging with other peers. The set of attributes

A ¼ {a, c, r, l, v} contains the following:

n a. The peer’s overlay address in the overlay address space and its network address.
n c. The peer’s capability (peer capability determination is discussed in Chapter 6),

a vector of the peer’s system and network resource properties that determine

its role.
n r. The overlay routing behavior for this peer. This includes overlay-related

states such as a routing table, successor/predecessor references, and a list of

neighbor peers. It might also include messaging between peers for routing

table maintenance and overlay join/leave operations.
n l. One or more roles from the functional roles of peers in the overlay (example

roles are described in Table 15.4).
n v. The list of overlay services provided by this peer such as file storage, multi-

casting, and content-based retrieval.

In practice there would be limitations on the amount of state and history informa-

tion that could be stored at a peer or sent via the overlay to the management

agent. Most information focuses on the peer’s behavior and state. The misuse of
peer monitoring and configuration should be avoided, such as gathering informa-

tion about other applications running on the same host.

In a managed overlay it must be possible for a management agent to be able to

initiate and receive messages with any peer in the overlay. In addition, the operations

in Table 15.1 are supported between a management agent m and a set of peers P in



Table 15.1 Generic Management Operations

Operation Result

s ¼ get(P,x,m) Returns the state s of attribute x to node m

h ¼ get(P,x,t,m) Returns the history h of attribute x in interval t to node m

set(P,x,s,s1) Sets the state s of attribute x to s1

subscribe(P,x,e,m) Subscribes node m to event m for x

unsubscribe(P,x,e,m) Unsubscribes node m to event e for x

cmd(P,d,m) Performs command d and sends result to node m

notify(p1,p2,e) Sends notification from peer p1 to peer(s) p2 of event m
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the overlay. A managed overlay may also support these operations from other non-

management agents. There might also be means for other parties, such as the ISP

or a vendor that deploys services on the overlay, to connect their own management

agents to peers in the overlay. In this notation, P is the set of peers, s is the state iden-
tifier, h is history, t is an interval, and x is one of the attributes {a,c,r,l,v}.

The collection of peers with which the management agent needs to communi-

cate varies depending on the overlay operational state. An important configuration

change might need to be communicated to all peers. A network problem in a partic-

ular region of the Internet might involve only a subset of peers. Other peer sets could

be recently joined peers, peers in a given geographic or network or overlay region,

peers offering a specified service, and peers acting in a specified role. If the overlay

provides a group address mechanism, groups could be defined for each such case. If
not, the management agent must explicitly address each peer in the target set.
MANAGED OVERLAYS AND OVERLAY OPERATORS
Role of the Overlay Operator

There are clear parallels between the network service provider (NSP) role in tele-
communications networks and the concept of an overlay operator, also referred

to as an overlay ISP
383 or overlay service provider.390 In the future NSPs could

also take on the role of deploying and managing overlays to provide services that

extend beyond their network operating regions. It is important for managed over-

lays to leverage the significant investment and capability in management systems

that exists in enterprise and telecommunications network environments.

The Telecommunications Management Network (TMN) model is a network

management model standardized by ITU-T that is often used to explain the key
functions of network management. TMN divides the functions into four layers:

business management, service management, network management, and element
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management. Within the lower layers, the management functions are further

divided into fault, configuration, accounting, performance, and security. This set

of functions is usually referred to by the abbreviation FCAPS. At the service layer,

concepts such as service creation, service directories, and service provisioning

have emerged. In general the service layer provides higher-level capability that
represents a market need rather than a network element feature. Services at this

layer may also cross or aggregate multiple network technologies, which might be

separately managed at lower layers.

In this framework, an overlay is viewed as a service, and creation and configu-

ration of the overlay are service creation and service provisioning steps. This per-

spective supports both the case in which an overlay operator manages a single

overlay as well as the overlay operator that operates many overlays.

Service Creation
The overlay operator identifies an application that can be supported by an over-

lay. Peer software is developed or preexisting peer software is reused. The overlay

operator makes the peer software available to the user community, deploys infra-

structure peers (if any), and provides a suitable bootstrap mechanism so that

users can connect to the overlay. The peer software is designed using P2P princi-

ples described in previous chapters so that peers self-organize and automatically

connect to other peers in the overlay. In addition, the peer software collects oper-
ational statistics and status to deliver to the overlay operator’s management agent,

which monitors the overlay operation.

The operator controls the intrinsic services of the overlay and may provide a

service advertisement and discovery mechanism by which third parties can add

new services. For third-party services, the overlay operator can provide service

assurance capability to the third party for operations carried by the overlay. The

overlay operator should be able to monitor service-use statistics where service invo-

cation uses the overlay for messaging. Service usage records are needed for billing.

Service Provisioning
In conventional network services, a customer selects service options and service qual-

ity levels. The service provider in turn configures the necessary network resources

and activates the service. In the P2P overlay context, service options and quality levels

are determined by the host running the peer software, as well as the collective

resources of the current set of connected peers. The overlay operator may deploy

high-capacity peers to enhance service quality, such as superpeers, relays, multicast
proxies, and gateways. These deployments might be made for specific classes of over-

lay users, in specific regions of the network, or for specific types of overlay services.

Service Assurance
The service provider enforces the service quality levels agreed on with the cus-

tomer and sets configuration and monitoring mechanisms in place to enforce these

levels. The configuration mechanism relies on the configuration management
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component of FCAPS. The monitoring mechanism relies on the fault and perfor-

mance management components of FCAPS.

The P2Poverlay is adaptive by design, andpeers select the best connection or path

from the currently available set by periodically measuring the various links. Mechan-

isms such as dead node detection and replication are used to avoid information loss.
Peer functionality can be upgraded when the operator updates the peer software

algorithms and provides updates to existing peers via automatic software download.

The overlay operator monitors in real time any faults in the overlay andmaintains per-

formance statistics. As in conventional fault management, the operator is concerned

with failure conditions at each peer andwith correlating these across peers to identify

conditions that might cascade into larger regions over the overlay or that indicate a

coordinated attack on the operation of the overlay. As in conventional performance

management, the overlay operator is also concerned with performance conditions,
such as those that violate thresholds for the service class, that indicate problems

with the overlay design, or that require provisioning of additional overlay resources.

Accounting
Service costs in telecommunications networks can be packaged in a variety of

ways, including by base rate, by usage, and by class of service. In addition, the ser-

vice-level agreement (SLA) may have penalties to the service provider if the ser-

vice quality falls below agreed-on levels.
In a P2P overlay, usage-based charging is feasible if each use is securely asso-

ciated with its source and the amount of use can be reliably and securely measured.

For example, a basic service might permit a number of indexing operations per day,

and a peer performing beyond this level of indexing operations might either be

charged or required to contribute more resources to the overlay. Subscription-

based use is less demanding in terms of measuring use but requires subscription

management and enforcement of subscriber-only use.
Examples

Table 15.2 illustrates overlay management scenarios for both service assurance

and service provisioning. For each example there is a brief description and opera-

tions illustrating the use of the operators described. Next we look at scenarios

involving specific types of overlays such as resilient overlay networks (discussed

in Chapter 11) and P2P storage systems.
Managing a Resilient Overlay Network

A Resilient Overlay Network (RON) is an overlay network that routes application traf-

fic by finding low-latency and available paths thatmight not be identified by the usual

routing protocols. Most RONs have a small peer population, connect all peers in

a mesh, and exchange their link measurements with all other peers in the RON.

To monitor the operation of the RON, the management agent can be added as a



Table 15.2 Example Management Scenarios

Category Example Operation

Service

assurance

Peer notifies management agent

(MA) that its DHT storage capacity

has exceeded a threshold

notify (p,m,e) e ¼ threshold

exceeded event

Service

assurance

MA uses remote control of a peer to

perform a diagnostic latency

measurement to another peer

cmd(p,d,m) d ¼ latency

measurement

Service

assurance

Peer forwards routing table

statistics to MA, such as size of

routing table, average age,

distribution by region of overlay

notify (p,m,e) e ¼ performance

report

Service

assurance

A peer notifies MA that an object

inserted into the DHT is determined

to be invalid due to mismatch of

digital signature and public key

notify (p,m,e) e ¼ object invalid

Service

provisioning

MP broadcasts the list of peers that

are identified as vehicles for a Sybil

attack

set (P,r,r-list, r-list1)
P ¼ all peers in overlay

r-list¼ type of state is blocked peer list

r-list1 ¼ list of blocked peers

Service

provisioning

1. MP collects response time

history from a set of peers P in a

given region to their neighbors

2. MP uses remote control at the

peers P to determine response

time to peers outside the region

3. MP provisions superpeers in

adjacent regions to reduce end-

to-end delay

4. MP configures peers P with an

updated superpeer list

get (P,r,h,t,m)
h ¼ history

t ¼ most recent

cmd(p,d,m) d ¼ measure index

operation response time to specified

peers

get(P,r,rly-list,m)

set(P,r,rly-list,rly-list2)
rly-list ¼ state is superpeer list

rly-list1 ¼ updated superpeer list
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well-known RON peer and can take on the special role of management agent. This

role allows the peer to connectwith other peers in the overlay and receive statusmes-

sages without having to actively participate in flow routing. The overhead of partici-

pating in the operation of the overlay could interferewith its management agent role.

Following the FCAPS model, let’s divide the management parameters into con-

figuration, performance, and fault categories (Table 15.3). Configuration refers to

operational settings of peers that can be set either by the management agent or

the peer itself, using its self-organizing algorithms. Performance refers to vari-
ables that can be measured and that are significant to the function of the overlay.



Table 15.3 Example FCAPS Variables of Interest for Overlay Management by Type

of Overlay

Overlay
Type

Configuration Performance Fault

Generic

DHT

Peer membership

Overlay topology

Object max size

Max request rate

Max number of objects

Churn rate

Inbound and outbound

bandwidth usage per peer

Number of superpeers

Average connection degree

Lookup rate> threshold

Insert rate> threshold

Churn rate> threshold

RON Infrastructure peer

status

Latency topology

Per-flow measurements

Statistics for path switching

Overlay path quality <

native path quality

Distributed

storage

Replication level

Storage partition

capacity

Storage partition usage

Read/write bit rate

Replication level <

threshold

Read/write bit rate >

threshold

File sharing Proactive caching

Cache size

Number of lookups by file

Number of inserts by file

File length and signature

Corrupted object

inserted

Object size> threshold

VoP2P Feature peers

Relay peers

Media codecs

Feature usage load

Relay quality

Session lifetime

Voice quality <

threshold

Midcall relay failure
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For example, for most overlays churn rate is an important parameter and could be

calculated by having the management agent track join and leave events. Fault

refers to functional failures or performance thresholds being exceeded.
The topology of the overlay is an important configuration parameter to moni-

tor, since it can be used to determine load distribution and detect overlay parti-

tions. For a RON, the network measurements that each peer collects and

distributes to the other peers can also be sent to the management agent. Current

values can be displayed with the topology to visualize bottleneck and low-capac-

ity paths. Historic values can be used for trend detection or variation by workload

or time of day. The RON also maintains periodic per-flow measurements. These

measurements can be evaluated against a threshold so that a fault is generated
to the management agent when the path the RON selects is not meeting the per-

formance available to the native path. To evaluate and improve the behavior of

the overlay, it’s important to collect statistics for switching to alternate paths.

Managing a Distributed File Storage Service

A P2P distributed file storage service can be constructed using the secondary stor-

age areas of peers in the overlay. A number of designs have been proposed,
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including PAST,539 which runs on Pastry, and CFS,541 which runs on Chord. In

PAST, each user has a quota for the amount of storage that can be used in the

overlay. Files are stored using the hashed file name as the key. Thus two different

files from the same owner are likely to be stored at different sets of peers in the

overlay. Each file is stored at the k closest peers in the overlay. Since peer
addresses are generated randomly, there is a high probability that the k nodes

are geographically dispersed.

CFS provides a distributed read-only file system and stores files in the overlay by

dividing each file into blocks. The blocks for popular files will be spread over many

servers. Each block is identified using a hash of its contents as the key. Each block is

replicated k times in the overlay, with replicas at the peers immediately after the

block’s successor in the Chord ring. A peer sends a request for a block as a DHT

lookup of the block’s key. Each peer along the lookup path checks its cache to
see whether the block is present. If it is, the block is immediately returned. If the

request reaches the primary peer, the block is returned to the requesting peer,

which then sends a copy to each peer along the lookup path to add to its cache.

Figure 15.1 illustrates the role of the management agent in monitoring the ser-

vice quality of a distributed file store that is similar to the PAST model. A peer

stores a file by the hash of its filename. The peer that receives the request for-

wards it to the k-1 closest peers in the overlay address space for replication.

The management agent is notified that the distributed file service has accepted
a file with a specified identifier. Later one of the peers storing the replica leaves

the overlay. This generates a replication-level exception to both the peer that

inserted the file and the management agent. If the primary storing peer fails to

add another replica peer within a given time window, the management agent

may intervene.

In addition, the management agent can monitor the uptime and storage integ-

rity of each peer. The software for each peer can perform periodic file system

integrity checks and send negative results to the management agent. A notifica-
tion is also sent when the file system usage exceeds the threshold.
Peer – 1 Peer + 1, ..., kPeer
Manager

Agent

Insert(Hash(Filename),File)
Replicate

Service notification

Exit overlay

Replication level exceptionReplication level exception

FIGURE 15.1 Overlay messages between peers storing file replicas and the manager agent.
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OVERLAY MANAGEMENT ARCHITECTURE
Integration with Peer State and Event Detection

The management function should be organized to leverage the existing self-

organization and peer coordination mechanisms intrinsic to the overlay. In addi-

tion, the peers and the management agent need to communicate. In the next
section we discuss the various types of management messaging and how to

accomplish them over the overlay.

Each peer has internal state, including routing tables and storage for data

objects. It can instrument its state to collect statistics without interfering with

the operation of the overlay. For example, statistics about the size of the routing

table and the freshness of routing table entries can be calculated from time to time.

In addition, some peers may take on additional roles such as those shown in

Table 15.4. These roles may require specific capacity, and the peer is likely to
manage additional internal state information to perform these roles. Table 15.4
Table 15.4 Roles of Peers and Corresponding State Information for Performance

Management

Role Description State Information

Superpeer A peer that mediates NAT traversal for other

peers

Client peers

Media relay,

mixer, or

transcoder

For streaming applications, a peer that acts

an intermediary and may perform media

processing for a streaming media session

Number of relayed

sessions

Data rate per session

Latency measurements

for endpoints

Multicast

proxy

An infrastructure peer for improving the

performance of application layer

multicasting

Number of multicast

sessions

Node degree per session

Data rate per session

Quarantined

peer

A peer that is restricted to client status until

its lifetime reaches a minimum value

Operational statistics of

quaranteed peers

Client A node that is not part of the overlay but that

can use the overlay services

Operational statistics of

clients

Virtual home

agent

A peer with a static IP address that mediates

overlay messages for one or more mobile

peers

Number of mobile peers

Roaming handoff

statistics

Gateway A peer that processes messages between

peers in two or more different overlays;

translating between protocols as needed

Message rates

Message histograms
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shows example state information related to these roles. This state information is

likely to be of interest to the management agent, and collection of current and his-

toric statistics should be supported by the management architecture.

Peers may encounter unexpected conditions, sudden capacity reductions,

anomalous behavior from their neighbors, and performance problems. More
examples of overlay fault conditions are shown in Table 15.5. These fault condi-

tions should be reported to the management agent. A means to transmit notifica-

tion messages from any peer to the management agent is needed. When it

receives a fault notification, the management agent can correlate it with faults

from other agents. The management agent can also evaluate it in the context of

historical fault information. The management agent can more easily construct a

global view of fault conditions and may have access to information about under-

lying network conditions that might not be available to peers.
Table 15.5 Fault Notifications

Category Example Management Agent Response

Routing table entry

error

Can’t reach a peer

Timeout in peer’s keepalive

Correlate with other peer timeouts

Invalid message Duplicate overlay address

detected

Invalid overlay address

Unrecognized request

Detect and disable illegal peer

Capacity constraint Incoming message rate

exceeds threshold

Check for DOS attack

Capacity constraint Churn rate exceeds

threshold

Check for underlying network cause

Capacity constraint Too many keys to store Check load balancing

Capacity constraint Too many values for a key Check whether object indexing

popularity exceeds capability

Capacity constraint Object too large to store Count occurrences to identify DOS

attempt

Capacity constraint Number of clients exceeds

threshold

Check whether there are insufficient

superpeers in region

Security Failure to authenticate peer Count authentication failures

Integrity Object corrupted Correlate to detect pollution attack

Message or message field

corrupted

Correlate with network link errors
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Security Considerations

The introduction of a central point of control in the overlay is a potential security

vulnerability. Malicious peers may spoof the management agent and try to use

management agent message types to control other peers. If the overlay supports

message broadcast for management messages, this can be abused by flooding the

overlay with messages.

Thus, it is important that the management agent messages be directly authenti-
cated and the management agent and the message mechanism not be compromised.

There are additional requirements for the overlay itself, including security of peer

identity, ability to authenticate any peer and verify that a message is from a given

peer, and ability to prevent the interception of messages by other entities. The tech-

niques for securing the overlay described in Chapter 14 are applicable here.
Generality for Various Types of Overlay

In conventional telecommunications networks, the management protocols and

frameworks discussed earlier have been widely used in a variety of networking

technologies and with network equipment from many different vendors. Large

carriers routinely deploy a large number of legacy and new network technologies.
Their networks include technologies such as wireless, cellular, ATM, SONET,

Frame Relay, optical networks, IP, satellite, and microwave links. The flexibility

of the management frameworks is important since it future-proofs a service pro-

vider’s investment in management systems and enables higher-level service man-

agement and business management functions.

There are likely to be many types of overlays deployed in the future. Thus it is

desirable that overlay management mechanisms be general purpose so that they

can be easily reused across different overlay types. This requires a common man-
agement messaging protocol with common types for events, configuration para-

meters, state, performance metrics, and historical data.
OVERLAY MESSAGING FOR MANAGEMENT OPERATIONS
Reaching All Peers

For some management operations the management agent might need to send a

message to all peers in the overlay. For example, to counteract a Sybil attack, a list

of blocked addresses can be circulated to all peers. A software security patch for
all peers to download and install could also be sent to all peers. The number of

overlay messages needed for such broadcasts is O(N) assuming that every peer

receives exactly one message. If, in addition, all peers in the overlay use broadcast

messaging for application purposes such as global search, at least N2 messages are

sent. Thus overlay broadcast is impractical for large overlays as a general messag-

ing mechanism, but in limited use it is feasible.
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An overlay broadcast mechanism can be used to send a message to all peers. In

overlay broadcast, a message is propagated to all peers using the overlay routing

algorithm. Overall broadcast does not necessarily mean flooding as used in early

unstructured overlays. Several broadcast topologies have been developed for

structured overlays for overlay maintenance and these are suitable for overlay
broadcast. For example, as described in Chapters 4 and 5, O(1)-hop overlays One-

Hop and D1HT531 maintain a fixed topology for routing table maintenance

(Figure 15.2). Carrying a broadcast message over these topologies requires that

the overlay routing algorithm be modified to use a new broadcast message type

and to forward this message type using the maintenance connections. In addition,

a peer should check to see that the message hasn’t been previously forwarded.

These changes are straightforward to accommodate.

Some overlay broadcast-messaging mechanisms have been proposed for multi-
hop overlays. A blind search technique for Chord and Pastry uses a broadcast

topology534 by leveraging the finger tables and adjacent peer links. Instead of

sending a request to only a single neighbor, the request is forwarded to a subset

of neighbor links. The request is tagged to mark the region of the overlay to

which the request is to be propagated, to avoid duplicate messages. This blind

search message routing can be adapted to send a broadcast message.

In earlier work, El-Ansary et al.529 present a similar broadcast mechanism for

structured overlays for general use, which recursively divides the address space
to which the message is forwarded. The approach is based on viewing the routing

tables as forming a k-ary tree connecting all the nodes in the overlay, with the

node initiating the broadcast as the root of the tree.

It is preferred that the broadcast topology distribute the load uniformly among

all the peers and take advantage of proximity of peers in the network. In general,

due to churn and the inconsistent state of routing tables, these designs do not

guarantee that a message reaches all peers in the overlay.

If message broadcast is not available, peers can be programmed to periodically
poll a specific overlay address or Website for global messages.
Aggregating Data Collection for Performance Management

Performance information can be collected from the peers in the overlay in the

form of variables, historical data, and statistics. This information can be used for

trend analysis, for example, to identify areas of the overlay where resource satura-

tion might occur. It can also be used by the overlay operator to evaluate the set-
tings of configuration parameters, algorithm design, and the potential for new

services. Generally, performance data are not as time critical as fault information

except in applications in which quality of service must be enforced. On the other

hand, performance data collection can generate large volumes of information that

could easily overwhelm both the overlay and the management agent when aggre-

gated over all the peers. Two methods to manage the information flow are to con-

trol the rate at which performance data are sent and to have multiple collection

points for different areas of the overlay to report to.
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FIGURE 15.2 Broadcast topologies for overlays: (A) subdivision of overlay used in OneHop,

(B) connected clusters according to network topology, and (C,D) message broadcast using

overlay fingers in D1HT.
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Performance data can be sent to the management agent on request or by sub-

scription, in which case a peer publishes the information at some update interval.

The broadcast topologies described earlier can be used in the reverse direction

for peers to forward performance data to the management agent. A bottom-up

algorithm for constructing aggregation and broadcast trees is described in 543.
This scheme differs from the broadcast mechanisms described earlier in that

it doesn’t reuse the routing table links to form the tree. Instead, it defines a

parent(x) function that each peer x uses to determine its parent in the tree.

This approach has the flexibility that the tree can have different characteristics

such as a larger out-degree compared to the overlay’s own inherent tree structure.

However, additional overhead is required to build and maintain the bottom-up

tree, and if more than one tree is needed, each must be separately constructed.

Multicast

Most communication between peers and the management agent does not require
message broadcast. Data collection and configuration changes can be scoped by

peer role, geographic location, neighbors of a peer, region of the overlay, region

of the native network, or proximity to an infrastructure resource. Let’s assume that

the management agent can determine a set of peers and their overlay addresses that

are to receive a message. If the set is small, the management agent can send each

peer an individual message. Otherwise, to send a single message to a set of peers

is a type of scope-broadcast or overlay multicast. The broadcast tree described ear-

lier could be used for scoped broadcasts. For example, 530 and 544 use TTL values to
approximately control a k-node broadcast in an overlay spanning tree. However,

this technique may not be able to address the correct set of k-nodes and cannot

constrain the set of nodes reached by the message to exactly k. If the set of peers

is stable and messaging to this set is repeated over a suitable time window, a multi-

cast tree can be constructed with the management agent as the root. Algorithms for

implementing such multicast trees in overlays are described in Chapter 9.
MANAGING THE IMPACT OF THE OVERLAY TRAFFIC ON
THE ISP NETWORK
P2P Traffic in the ISP Network

In addition to managing the overlay’s service quality, both the design of the overlay
and its management are important to the underlying physical networks. Each overlay

relies on the services of these networks, which are operated by many different ISPs.

The impact of the overlay on the underlying network has become a major issue

due to the dramatic growth of P2P traffic in recent years. As a result of this

growth, P2P applications have become a dominant portion of network traffic in

ISP networks. High levels of traffic increase ISP costs and cause network conges-

tion, potentially affecting other applications and users. The problem is
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complicated by a number of factors, including the popularity of P2P applications

with end users, the desire of content owners to limit the use of P2P applications,

and regulatory policies for network neutrality in some jurisdictions, such as the

United States. In addition, some ISPs have reported that high network use is

due to a small percentage of P2P application users in the customer population.
Approaches to Managing P2P Traffic

There are several proposals for addressing the problems due to P2P application

use in ISP networks. Most of these are independent of the overlay itself or an abil-

ity to manage the overlay. These proposals include:

n Restrict each user’s bandwidth usage or define different classes of use so that

high-volume users pay more. This approach has the effect of throttling the P2P

traffic, thus reducing congestion, without requiring much investment from the

ISP. The perceived performance of P2P applications is likely to be affected.

n Block P2P traffic. No P2P traffic would be permitted. This solves the ISP’s traf-

fic problem but is unlikely to please its customers and may be difficult to

enforce, since peer protocols can be encapsulated in other protocols to avoid

detection. A good overview of current approaches to blocking and P2P applica-

tion countermeasures to blocking is provided in 549.

n Enable local peers to find resources in the ISP’s network. The idea is to help P2P

file-sharing applications route more of their file transfers to peers in the local net-

work. This makes the overlay more efficient but might not be appealing to every

ISP. It also won’t help other types of P2P applications such as VoP2P. An example
of this approach is P4P, discussed in the following section.

n Add P2P content caches similar to Web caches in the ISP network. Then a

request for a piece of content could go first to the local cache, saving network
bandwidth. An ISP operating such a cache could face legal claims from content

owners whose content is served by the cache.

n Upgrade the network equipment with higher bandwidth connections and

higher-capacity routers. The ISP might not have a means to recover this invest-
ment, and it could lead to higher network costs for all users, even those who don’t

use P2P applications. In addition, more capacity can’t eliminate all congestion.
P4P

Proactive Network Provider Participation for P2P (P4P) is an ISP mechanism by

which nearby peers in an ISP network can more easily locate each other for the pur-

poses of keeping traffic in the ISP’s network that might otherwise be routed to an

arbitrary peer anywhere in the world.547,548 P4P is an industry group organized by

DCIA.546 Most ISPs organize their networks into tiers of routers, with the edge
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routers being closest to customer connections and a border router connecting with

other ISPs’ networks. In between are regional routers. Routing becomes more expen-

sive for the ISP as packets move from edge routers to regional routers to border rou-

ters. If a peer can locate the required content at another peer at the same edge router,

the packets will not reach the next regional router. Peers in the same ISP network are
likely to perform transfers more quickly, improving performance for end users.

In the P4P approach, the ISP installs a server called an iTracker in its network.

The server contains information about the network organization, such as pre-

ferred routes and congested links. Each peer queries the local iTracker and uses

the information to connect to peers that are closer or preferred from an ISP stand-

point. For peers participating in torrents, the torrent tracker can also obtain infor-

mation about the ISP’s iTracker. The torrent tracker uses this information to

include a list of local peers.
SUMMARY
P2P applications can simplify the deployment of new distributed applications

because of their limited dependence on new infrastructure. But it is likely that as

P2P applications become a mainstream phenomenon, user expectations for service

quality will increase. Methods for managing conventional networks and applications
can be considered for managing future P2P overlays. But some distinct differences

require adaptation, including the self-organizing characteristics of the peers, that

most peers are in domains and run on hosts that are outside the control of an overlay

operator, and the goal of limiting management infrastructure deployment costs.

Today’s P2P applications are best-effort ones, but in the future they may offer dif-

ferent classes of service withmultiple pricing levels. Supporting such service models

requires real-time monitoring of service usage and the ability to provision new

resources to improve performance. Usage monitoring and billing are also important
if P2P service overlays are to attract third-party service providers. In addition, some

service plans require accurate monitoring and billing of service usage.

The popularity of P2P overlays has caused substantial growth in ISP network

traffic, increasing congestion and raising concerns about suitable methods for

managing P2P traffic. The issues include traffic fairness, customer satisfaction,

public policy, and ISP revenue.
FOR FURTHER READING
The concept of an overlay operator is called an overlay ISP in 383 and an overlay

service provider in 390.

Detailed information about telecommunications and network management

can be found in 533 and 532. Service management is covered in 537 and 538. Exam-

ples of service management are described in 536.
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Buford527 introduces and gives an overview of managed overlays and evaluates

the messaging costs compared to those for overlay maintenance in different types

of structured overlays.

Autonomic computing considers how properties of self-management, self-diag-

nosis, and self-healing can be added to existing systems to make them easier to
manage. Principles of autonomic computing are relevant to improving the man-

ageability of P2P overlays.

P2P overlays are also being considered as tools for network management, and

some recent results are found in a special issue of the Journal of Network and Sys-

tems Management on “Peer-to-Peer Technologies in Network and Service Manage-

ment” (Vol. 15, No. 3, September 2007, Springer Netherlands). SELFMAN545 is a

research project that uses a self-managing overlay to manage higher-level services.

Standardization of solutions for managing P2P traffic in ISP networks is being con-
sidered in the IETF. An overview of the potential technical work is provided in 550.



GLOSSARY
Bootstrap (1) The process by which a peer which intends to join an overlay

locates one or more peers that are connected to the overlay and through

which the joining peer can perform the join protocol. (2) The process by

which a new overlay is initially created.

Churn The arrival and departure of peers to and from the overlay, which

changes the peer population of the overlay.

A related concept is mobility-induced churn, which occurs when a roaming
node departs and rejoins the overlay due to a network address change after

a network-layer roaming transition.

Content-Addressable Network (CAN) A type of distributed object location

and routing system in which objects can be located either by identifier or

by some other representation of the content of the object.

Content locality In an overlay that spans multiple administrative domains, data

inserted by peers within one administrative domain or in the same local area

network are stored physically at peers within the same administrative domain

or located on the same LAN.

Distributed hash table (DHT) A structured overlay that uses key-based rout-

ing for put and get index operations and in which each peer is assigned to

maintain a portion of the DHT index.

Distributed Object Location and Routing A method for storing and finding

an object placed arbitrarily in a distributed set of networked hosts using an

identifier of the object. An example DOLR is key-based routing.

Eclipse attack An attack on an overlay network in which the attacker controls

a large fraction of neighboring nodes.

Federated overlay An overlay that is implemented by multiple administrative

domains, which may use different routing algorithms and addressing mechan-

isms in each domain.

Free rider A peer that uses resources of a P2P system significantly in excess of

the amount of resources it contributes to the P2P system.

Gossip protocol A protocol by which a node randomly selects and exchanges

information with other nodes in the network.

Half-life The time it takes for a peer-to-peer network to replace half its nodes

through departures and arrivals 38.

Hierarchical overlay An overlay architecture that uses multiple overlays

arranged in a nested fashion, and the nested overlays are interconnected in

a tree. A message to a peer in a different overlay is forwarded to the nearest

common parent overlay in the hierarchy.
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Hop In the path in which an overlay message is carried from a source peer to

destination peer, a hop is each direct transmission of the message from one

peer to another peer in the path.

Internet coordinate system (ICS) An ICS maps network position to an arbi-

trary dimension Euclidean space with a distance function such that the dis-

tance between two Internet hosts can be accurately estimated by the

distance between their respective ICS coordinates.

Key-based routing A set of keys is associated with addresses in the address

space such that the nearest peer to an address stores the values for the asso-

ciated keys, and the routing algorithm treats keys as addresses.

Managed overlay An overlay that can be dynamically configured and continu-

ously monitored for operational parameters so as to continuously enforce per-
formance, administrative, and security policies, where such policies can be

changed by the overlay operator.

Multihop structured overlay A structured overlay in which messages from
source peer to destination peer on average requiremultiple hops. An important

category of multihop overlays includes those in which the number of hops is

bounded by O(log N) hops, where N is the number of peers in the overlay.

Multicast A means of point-to-multipoint communication in which the same

message is sent to multiple destinations such that duplicate messages are car-

ried by the network only when routing paths for some subset of the destina-

tions diverge.

Network address translator (NAT) A device that converts network addresses

in packets as they are transmitted between two different address domains.

Typically a NAT is used to convert between a private address space and a

public address.

NAT traversal A mechanism to create a connection to a host that is behind a

NAT.

One-hop structured overlay A structured overlay in which messages from

source peer to destination peer on average require a constant number, that

is, O(1), of hops, regardless of the size N of the overlay.

Overlay address An identifier in an address space for the overlay in which

each peer has at least one unique identifier. The overlay address is used to

route messages in the overlay toward a destination peer.

Overlay multicast (OM) (1) Hosts participating in a multicast session form an

overlay network and only utilize unicast among pairs of hosts for data dissem-
ination. The hosts in overlay multicast exclusively handle group management,

routing, and tree construction, without any support from Internet routers.

This is also commonly known as Application Layer Multicast (ALM) or End

System Multicast (ESM).
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(2) A backbone overlay is constructed by deploying special intermediate

proxies that create multicast trees among themselves. End hosts communi-

cate with proxies via unicast or native multicast.

Overlay network or overlay An application layer virtual or logical network in

which endpoints are addressable and that provides connectivity, routing, and

messaging between endpoints. Overlay networks are frequently used as a

substrate for deploying new network services or for providing a routing

topology not available from the underlying physical network. Many peer-to-
peer systems are overlay networks that run on top of the Internet.

Overlay operator An entity that develops an overlay to provide peer-to-peer
services to end users and a service delivery platform for third parties.

Path locality In an overlay that spans multiple administrative domains, queries
for objects that are available at peers in the same administrative domain are

only routed to peers in the same administrative domain.

Peer An end system, node, or host that is a member of a peer-to-peer system.

Peer capability The available resources at a peer relevant to its role in a peer-

to-peer overlay, specified as a set of capacities and system attributes.

Peer software Application software provided by the overlay, which peers use

to participate in the overlay. The peer software may be extendable by third
parties. It may be instrumented to enable management of the peer function

in the overlay.

Peer-to-peer (P2P) “A distributed network architecture may be called a peer-

to-peer network, if the participants share a part of their own hardware

resources (processing power, storage capacity, network link capacity, prin-

ters). These shared resources are necessary to provide the Service and con-

tent offered by the network (e.g. file sharing or shared workspaces for

collaboration). They are accessible by other peers.” 25

“Peer-to-peer systems are distributed systems consisting of interconnected

nodes able to self-organize into network topologies with the purpose of shar-
ing resources such as content, CPU cycles, storage and bandwidth, capable of

adapting to failures and accommodating transient populations of nodes while

maintaining acceptable connectivity and performance, without requiring the

intermediation or support of a global centralized server or authority.” 107

Prefix-based routing Each peer in the overlay forwards messages to the next

hop based on the next sequence of address elements (the prefix) in the over-

lay address. First used in PRR, Tapestry, Pastry, P-Grid, Cycloid, and Z-Grid are

systems that use prefix-based addressing.

Proximity-based overlay Peers select adjacent nodes based on proximity of

the nodes in the network.
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Proximity neighbor selection (PNS) An overlay maintenance strategy in

which each node biases its selection of nodes in its routing table to those

with which it has low latency.

Proximity route selection (PRS) An overlay maintenance strategy in which a

peer operates to increase the size of its routing tables so as to have as many

nodes to choose from when routing.

Quarantine A mechanism to reduce churn in an overlay in which a joining

peer remains only a client of the overlay until the quarantine period has

passed, after which it is promoted to a normal peer. Quarantine benefits from

the node lifetime following a heavy-tailed distribution.

Routing table A method to organize overlay routing information that contains a

mapping between overlay addresses and native addresses and may contain
other information such as the capabilities of the peer, distance from the peer,

and time of last communication with the peer.

Small-world network A class of random graphs in which most nodes can be
reached by every other node in a small number of hops.

Semantic overlay An overlay network in which routing topology is organized
according to the semantic associations and relationship of information being

stored in the overlay.

Service overlay The integration of an overlay with one or more network or

application services, and which may include coupling the overlay with a ser-

vice advertisement and discovery mechanism.

Service-oriented architecture An information system architecture that uses

service orientation as its basic design principle, including external interfaces

defined as services with service description documents and typically service

discovery and advertisement mechanisms.

Stealth node A mechanism to avoid mobility-induced churn in which a mobile

peer can send outgoing overlay requests but does not receive incoming over-

lay requests.

Stretch An overlay performance metric that compares the network distance of

the overlay route versus the direct underlay route between the endpoints.

Specifically, if d(xi , xj) denotes the time to send a message from xi to

xj, the stretch of that path is [d(x1,x2)þ . . . þ d(xn�1,xn)]/d(x1,xn).

Structured overlay An overlay in which nodes cooperatively maintain routing

information about how to reach all nodes in the overlay.

Superdistribution The distribution of digital content from user to user such

that the content is freely distributed but usage and content changes are con-

trolled by the content owner.

Superpeer A hierarchical overlay in which peers with public IP address per-

form the overlay operations on behalf of regular peers that are behind NATs.
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Sybil attack An attack on an overlay in which the attacker obtains multiple dif-

ferent overlay identities.

Unicast A means of point-to-point communication where a message is delivered

from a sender node to a single other node. If a node wants to send the same

information to many destinations using unicast, it must perform replicated

unicast and send N copies of the data to each destination in separate

messages.

Unstructured overlay An overlay in which a node relies only on its adjacent

nodes for delivery of messages to other nodes in the overlay. Example mes-

sage propagation strategies are flooding and random walk.

Variable-hop structured overlay A structured overlay adapts the hop-count

performance of the overlay according to the peer’s network bandwidth bud-
get so that at higher bandwidth budget the average hop count decreases and

at lower bandwidth budget the average hop count increases.

Virtual node The assignment of multiple peer addresses to a single node in an
overlay, proposed in the design of the Chord DHT, to improve the distribu-

tion of keys in the overlay.

Whitewasher A user who leaves a P2P system and rejoins it after acquiring a

new identity to avoid reputational penalties.690
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